
The 802.11 subsystems
– for kernel developers

Explaining wireless 802.11 networking in the Linux kernel

Johannes Berg <johannes@sipsolutions.net>
Copyright © 2007-2009 Johannes Berg

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License version 2 as published by the Free Software Foundation.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this documentation; if not, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Abstract

These books attempt to give a description of the various subsystems that play a role in 802.11 wireless networking
in Linux. Since these books are for kernel developers they attempts to document the structures and functions used in
the kernel as well as giving a higher-level overview.

The reader is expected to be familiar with the 802.11 standard as published by the IEEE in 802.11-2007 (or possibly
later versions). References to this standard will be given as "802.11-2007 8.1.5".

Table of Contents
The cfg80211 subsystem ... vi

1. Device registration ... 1
enum ieee80211_band .. 2
enum ieee80211_channel_flags .. 3
struct ieee80211_channel .. 5
enum ieee80211_rate_flags ... 7
struct ieee80211_rate ... 8
struct ieee80211_sta_ht_cap .. 9
struct ieee80211_supported_band ... 10
enum cfg80211_signal_type .. 11
enum wiphy_params_flags .. 12
enum wiphy_flags ... 13
struct wiphy .. 15
struct wireless_dev ... 20
wiphy_new ... 23
wiphy_register ... 24
wiphy_unregister ... 25
wiphy_free ... 26
wiphy_name ... 27
wiphy_dev .. 28
wiphy_priv ... 29
priv_to_wiphy ... 30
set_wiphy_dev .. 31
wdev_priv .. 32
struct ieee80211_iface_limit .. 33
struct ieee80211_iface_combination .. 34
cfg80211_check_combinations ... 36

2. Actions and configuration ... 37
struct cfg80211_ops ... 38
struct vif_params ... 46
struct key_params .. 47
enum survey_info_flags .. 48
struct survey_info .. 49
struct cfg80211_beacon_data ... 50
struct cfg80211_ap_settings ... 51
struct station_parameters ... 53
enum rate_info_flags .. 55
struct rate_info .. 56
struct station_info .. 57
enum monitor_flags ... 60
enum mpath_info_flags .. 61
struct mpath_info ... 62
struct bss_parameters ... 63
struct ieee80211_txq_params ... 64
struct cfg80211_crypto_settings ... 65
struct cfg80211_auth_request ... 66
struct cfg80211_assoc_request ... 67
struct cfg80211_deauth_request .. 68
struct cfg80211_disassoc_request ... 69
struct cfg80211_ibss_params ... 70
struct cfg80211_connect_params .. 72

2

The 802.11 subsystems
– for kernel developers

struct cfg80211_pmksa ... 74
cfg80211_rx_mlme_mgmt ... 75
cfg80211_auth_timeout ... 76
cfg80211_rx_assoc_resp ... 77
cfg80211_assoc_timeout ... 78
cfg80211_tx_mlme_mgmt ... 79
cfg80211_ibss_joined ... 80
cfg80211_connect_result ... 81
cfg80211_roamed .. 82
cfg80211_disconnected ... 83
cfg80211_ready_on_channel .. 84
cfg80211_remain_on_channel_expired .. 85
cfg80211_new_sta ... 86
cfg80211_rx_mgmt .. 87
cfg80211_mgmt_tx_status ... 88
cfg80211_cqm_rssi_notify ... 89
cfg80211_cqm_pktloss_notify .. 90
cfg80211_michael_mic_failure ... 91

3. Scanning and BSS list handling .. 92
struct cfg80211_ssid .. 93
struct cfg80211_scan_request ... 94
cfg80211_scan_done .. 96
struct cfg80211_bss ... 97
struct cfg80211_inform_bss ... 99
cfg80211_inform_bss_frame_data ... 100
cfg80211_inform_bss_data .. 101
cfg80211_unlink_bss .. 102
cfg80211_find_ie ... 103
ieee80211_bss_get_ie ... 104

4. Utility functions ... 105
ieee80211_channel_to_frequency .. 106
ieee80211_frequency_to_channel .. 107
ieee80211_get_channel ... 108
ieee80211_get_response_rate ... 109
ieee80211_hdrlen ... 110
ieee80211_get_hdrlen_from_skb ... 111
struct ieee80211_radiotap_iterator ... 112

5. Data path helpers ... 114
ieee80211_data_to_8023 ... 115
ieee80211_data_from_8023 ... 116
ieee80211_amsdu_to_8023s ... 117
cfg80211_classify8021d .. 118

6. Regulatory enforcement infrastructure .. 119
regulatory_hint .. 120
wiphy_apply_custom_regulatory ... 121
freq_reg_info ... 122

7. RFkill integration ... 123
wiphy_rfkill_set_hw_state ... 124
wiphy_rfkill_start_polling .. 125
wiphy_rfkill_stop_polling .. 126

8. Test mode ... 127
cfg80211_testmode_alloc_reply_skb .. 128
cfg80211_testmode_reply .. 129
cfg80211_testmode_alloc_event_skb ... 130

3

The 802.11 subsystems
– for kernel developers

cfg80211_testmode_event .. 131
The mac80211 subsystem .. cxxxii

I. The basic mac80211 driver interface ... 1
1. Basic hardware handling ... 3

struct ieee80211_hw .. 4
enum ieee80211_hw_flags .. 7
SET_IEEE80211_DEV ... 11
SET_IEEE80211_PERM_ADDR .. 12
struct ieee80211_ops .. 13
ieee80211_alloc_hw ... 24
ieee80211_register_hw ... 25
ieee80211_unregister_hw .. 26
ieee80211_free_hw .. 27

2. PHY configuration ... 28
struct ieee80211_conf ... 29
enum ieee80211_conf_flags ... 31

3. Virtual interfaces ... 32
struct ieee80211_vif ... 33

4. Receive and transmit processing ... 35
what should be here ... 35
Frame format .. 35
Packet alignment ... 35
Calling into mac80211 from interrupts .. 35
functions/definitions ... 36

5. Frame filtering .. 67
enum ieee80211_filter_flags .. 68

6. The mac80211 workqueue ... 69
ieee80211_queue_work ... 70
ieee80211_queue_delayed_work ... 71

II. Advanced driver interface ... 72
7. LED support ... 74

ieee80211_get_tx_led_name .. 75
ieee80211_get_rx_led_name .. 76
ieee80211_get_assoc_led_name .. 77
ieee80211_get_radio_led_name .. 78
struct ieee80211_tpt_blink ... 79
enum ieee80211_tpt_led_trigger_flags ... 80
ieee80211_create_tpt_led_trigger .. 81

8. Hardware crypto acceleration ... 82
enum set_key_cmd .. 83
struct ieee80211_key_conf .. 84
enum ieee80211_key_flags .. 85
ieee80211_get_tkip_p1k .. 87
ieee80211_get_tkip_p1k_iv ... 88
ieee80211_get_tkip_p2k .. 89

9. Powersave support ... 90
10. Beacon filter support .. 91

ieee80211_beacon_loss ... 92
11. Multiple queues and QoS support ... 93

struct ieee80211_tx_queue_params ... 94
12. Access point mode support .. 95

support for powersaving clients .. 95
13. Supporting multiple virtual interfaces ... 105

ieee80211_iterate_active_interfaces ... 106

4

The 802.11 subsystems
– for kernel developers

ieee80211_iterate_active_interfaces_atomic .. 107
14. Station handling ... 108

struct ieee80211_sta ... 109
enum sta_notify_cmd .. 111
ieee80211_find_sta ... 112
ieee80211_find_sta_by_ifaddr .. 113

15. Hardware scan offload ... 114
ieee80211_scan_completed .. 115

16. Aggregation ... 116
TX A-MPDU aggregation ... 116
RX A-MPDU aggregation ... 116

17. Spatial Multiplexing Powersave (SMPS) ... 118
ieee80211_request_smps ... 119
enum ieee80211_smps_mode ... 120

III. Rate control interface .. 121
18. Rate Control API .. 123

ieee80211_start_tx_ba_session ... 124
ieee80211_start_tx_ba_cb_irqsafe ... 125
ieee80211_stop_tx_ba_session .. 126
ieee80211_stop_tx_ba_cb_irqsafe ... 127
enum ieee80211_rate_control_changed .. 128
struct ieee80211_tx_rate_control ... 129
rate_control_send_low .. 130

IV. Internals .. 131
19. Key handling ... 133

Key handling basics ... 133
MORE TBD ... 133

20. Receive processing ... 134
21. Transmit processing .. 135
22. Station info handling ... 136

Programming information .. 136
STA information lifetime rules ... 141

23. Aggregation ... 143
struct sta_ampdu_mlme ... 144
struct tid_ampdu_tx .. 145
struct tid_ampdu_rx .. 147

24. Synchronisation .. 149

5

The cfg80211 subsystem

The cfg80211 subsystem

Abstract

cfg80211 is the configuration API for 802.11 devices in Linux. It bridges userspace and drivers, and offers some
utility functionality associated with 802.11. cfg80211 must, directly or indirectly via mac80211, be used by all modern
wireless drivers in Linux, so that they offer a consistent API through nl80211. For backward compatibility, cfg80211
also offers wireless extensions to userspace, but hides them from drivers completely.

Additionally, cfg80211 contains code to help enforce regulatory spectrum use restrictions.

Table of Contents
1. Device registration ... 1

enum ieee80211_band .. 2
enum ieee80211_channel_flags .. 3
struct ieee80211_channel .. 5
enum ieee80211_rate_flags ... 7
struct ieee80211_rate ... 8
struct ieee80211_sta_ht_cap .. 9
struct ieee80211_supported_band ... 10
enum cfg80211_signal_type .. 11
enum wiphy_params_flags .. 12
enum wiphy_flags ... 13
struct wiphy .. 15
struct wireless_dev ... 20
wiphy_new ... 23
wiphy_register ... 24
wiphy_unregister ... 25
wiphy_free ... 26
wiphy_name ... 27
wiphy_dev .. 28
wiphy_priv ... 29
priv_to_wiphy ... 30
set_wiphy_dev .. 31
wdev_priv .. 32
struct ieee80211_iface_limit .. 33
struct ieee80211_iface_combination .. 34
cfg80211_check_combinations ... 36

2. Actions and configuration ... 37
struct cfg80211_ops ... 38
struct vif_params ... 46
struct key_params .. 47
enum survey_info_flags .. 48
struct survey_info .. 49
struct cfg80211_beacon_data ... 50
struct cfg80211_ap_settings ... 51
struct station_parameters ... 53
enum rate_info_flags .. 55
struct rate_info .. 56
struct station_info .. 57
enum monitor_flags ... 60
enum mpath_info_flags .. 61
struct mpath_info ... 62
struct bss_parameters ... 63
struct ieee80211_txq_params ... 64
struct cfg80211_crypto_settings ... 65
struct cfg80211_auth_request ... 66
struct cfg80211_assoc_request ... 67
struct cfg80211_deauth_request .. 68
struct cfg80211_disassoc_request ... 69
struct cfg80211_ibss_params ... 70
struct cfg80211_connect_params .. 72
struct cfg80211_pmksa ... 74

viii

The cfg80211 subsystem

cfg80211_rx_mlme_mgmt ... 75
cfg80211_auth_timeout ... 76
cfg80211_rx_assoc_resp ... 77
cfg80211_assoc_timeout ... 78
cfg80211_tx_mlme_mgmt ... 79
cfg80211_ibss_joined ... 80
cfg80211_connect_result ... 81
cfg80211_roamed .. 82
cfg80211_disconnected ... 83
cfg80211_ready_on_channel .. 84
cfg80211_remain_on_channel_expired .. 85
cfg80211_new_sta ... 86
cfg80211_rx_mgmt .. 87
cfg80211_mgmt_tx_status ... 88
cfg80211_cqm_rssi_notify ... 89
cfg80211_cqm_pktloss_notify .. 90
cfg80211_michael_mic_failure ... 91

3. Scanning and BSS list handling .. 92
struct cfg80211_ssid .. 93
struct cfg80211_scan_request .. 94
cfg80211_scan_done .. 96
struct cfg80211_bss ... 97
struct cfg80211_inform_bss ... 99
cfg80211_inform_bss_frame_data ... 100
cfg80211_inform_bss_data .. 101
cfg80211_unlink_bss .. 102
cfg80211_find_ie ... 103
ieee80211_bss_get_ie ... 104

4. Utility functions ... 105
ieee80211_channel_to_frequency .. 106
ieee80211_frequency_to_channel .. 107
ieee80211_get_channel ... 108
ieee80211_get_response_rate ... 109
ieee80211_hdrlen ... 110
ieee80211_get_hdrlen_from_skb ... 111
struct ieee80211_radiotap_iterator ... 112

5. Data path helpers ... 114
ieee80211_data_to_8023 ... 115
ieee80211_data_from_8023 ... 116
ieee80211_amsdu_to_8023s ... 117
cfg80211_classify8021d .. 118

6. Regulatory enforcement infrastructure .. 119
regulatory_hint .. 120
wiphy_apply_custom_regulatory ... 121
freq_reg_info ... 122

7. RFkill integration ... 123
wiphy_rfkill_set_hw_state ... 124
wiphy_rfkill_start_polling .. 125
wiphy_rfkill_stop_polling .. 126

8. Test mode ... 127
cfg80211_testmode_alloc_reply_skb .. 128
cfg80211_testmode_reply .. 129
cfg80211_testmode_alloc_event_skb ... 130
cfg80211_testmode_event .. 131

ix

Chapter 1. Device registration
In order for a driver to use cfg80211, it must register the hardware device with cfg80211. This happens
through a number of hardware capability structs described below.

The fundamental structure for each device is the 'wiphy', of which each instance describes a physical wire-
less device connected to the system. Each such wiphy can have zero, one, or many virtual interfaces asso-
ciated with it, which need to be identified as such by pointing the network interface's ieee80211_ptr
pointer to a struct wireless_dev which further describes the wireless part of the interface, normally this
struct is embedded in the network interface's private data area. Drivers can optionally allow creating or
destroying virtual interfaces on the fly, but without at least one or the ability to create some the wireless
device isn't useful.

Each wiphy structure contains device capability information, and also has a pointer to the various opera-
tions the driver offers. The definitions and structures here describe these capabilities in detail.

1

Device registration

Name
enum ieee80211_band — supported frequency bands

Synopsis

enum ieee80211_band {
 IEEE80211_BAND_2GHZ,
 IEEE80211_BAND_5GHZ,
 IEEE80211_BAND_60GHZ,
 IEEE80211_NUM_BANDS
};

Constants
IEEE80211_BAND_2GHZ 2.4GHz ISM band

IEEE80211_BAND_5GHZ around 5GHz band (4.9-5.7)

IEEE80211_BAND_60GHZ around 60 GHz band (58.32 - 64.80 GHz)

IEEE80211_NUM_BANDS number of defined bands

Device registration

The bands are assigned this way because the supported bitrates differ in these bands.

2

Device registration

Name
enum ieee80211_channel_flags — channel flags

Synopsis

enum ieee80211_channel_flags {
 IEEE80211_CHAN_DISABLED,
 IEEE80211_CHAN_NO_IR,
 IEEE80211_CHAN_RADAR,
 IEEE80211_CHAN_NO_HT40PLUS,
 IEEE80211_CHAN_NO_HT40MINUS,
 IEEE80211_CHAN_NO_OFDM,
 IEEE80211_CHAN_NO_80MHZ,
 IEEE80211_CHAN_NO_160MHZ,
 IEEE80211_CHAN_INDOOR_ONLY,
 IEEE80211_CHAN_IR_CONCURRENT,
 IEEE80211_CHAN_NO_20MHZ,
 IEEE80211_CHAN_NO_10MHZ
};

Constants
IEEE80211_CHAN_DISABLED This channel is disabled.

IEEE80211_CHAN_NO_IR do not initiate radiation, this includes sending probe requests or bea-
coning.

IEEE80211_CHAN_RADAR Radar detection is required on this channel.

IEEE80211_CHAN_NO_HT40PLUS extension channel above this channel is not permitted.

IEEE80211_CHAN_NO_HT40MINUSextension channel below this channel is not permitted.

IEEE80211_CHAN_NO_OFDM OFDM is not allowed on this channel.

IEEE80211_CHAN_NO_80MHZ If the driver supports 80 MHz on the band, this flag indicates that
an 80 MHz channel cannot use this channel as the control or any
of the secondary channels. This may be due to the driver or due to
regulatory bandwidth restrictions.

IEEE80211_CHAN_NO_160MHZ If the driver supports 160 MHz on the band, this flag indicates that
an 160 MHz channel cannot use this channel as the control or any
of the secondary channels. This may be due to the driver or due to
regulatory bandwidth restrictions.

IEEE80211_CHAN_IN-
DOOR_ONLY

see NL80211_FREQUENCY_ATTR_INDOOR_ONLY

IEEE80211_CHAN_IR_CON-
CURRENT

see NL80211_FREQUENCY_ATTR_IR_CONCURRENT

IEEE80211_CHAN_NO_20MHZ 20 MHz bandwidth is not permitted on this channel.

IEEE80211_CHAN_NO_10MHZ 10 MHz bandwidth is not permitted on this channel.

3

Device registration

Description

Channel flags set by the regulatory control code.

4

Device registration

Name
struct ieee80211_channel — channel definition

Synopsis

struct ieee80211_channel {
 enum ieee80211_band band;
 u16 center_freq;
 u16 hw_value;
 u32 flags;
 int max_antenna_gain;
 int max_power;
 int max_reg_power;
 bool beacon_found;
 u32 orig_flags;
 int orig_mag;
 int orig_mpwr;
 enum nl80211_dfs_state dfs_state;
 unsigned long dfs_state_entered;
 unsigned int dfs_cac_ms;
};

Members
band band this channel belongs to.

center_freq center frequency in MHz

hw_value hardware-specific value for the channel

flags channel flags from enum ieee80211_channel_flags.

max_antenna_gain maximum antenna gain in dBi

max_power maximum transmission power (in dBm)

max_reg_power maximum regulatory transmission power (in dBm)

beacon_found helper to regulatory code to indicate when a beacon has been found on this
channel. Use regulatory_hint_found_beacon to enable this, this is
useful only on 5 GHz band.

orig_flags channel flags at registration time, used by regulatory code to support devices
with additional restrictions

orig_mag internal use

orig_mpwr internal use

dfs_state current state of this channel. Only relevant if radar is required on this channel.

dfs_state_entered timestamp (jiffies) when the dfs state was entered.

dfs_cac_ms DFS CAC time in milliseconds, this is valid for DFS channels.

5

Device registration

Description

This structure describes a single channel for use with cfg80211.

6

Device registration

Name
enum ieee80211_rate_flags — rate flags

Synopsis

enum ieee80211_rate_flags {
 IEEE80211_RATE_SHORT_PREAMBLE,
 IEEE80211_RATE_MANDATORY_A,
 IEEE80211_RATE_MANDATORY_B,
 IEEE80211_RATE_MANDATORY_G,
 IEEE80211_RATE_ERP_G,
 IEEE80211_RATE_SUPPORTS_5MHZ,
 IEEE80211_RATE_SUPPORTS_10MHZ
};

Constants
IEEE80211_RATE_SHORT_PRE-
AMBLE

Hardware can send with short preamble on this bitrate; only rele-
vant in 2.4GHz band and with CCK rates.

IEEE80211_RATE_MANDATO-
RY_A

This bitrate is a mandatory rate when used with 802.11a (on the 5
GHz band); filled by the core code when registering the wiphy.

IEEE80211_RATE_MANDATO-
RY_B

This bitrate is a mandatory rate when used with 802.11b (on the 2.4
GHz band); filled by the core code when registering the wiphy.

IEEE80211_RATE_MANDATO-
RY_G

This bitrate is a mandatory rate when used with 802.11g (on the 2.4
GHz band); filled by the core code when registering the wiphy.

IEEE80211_RATE_ERP_G This is an ERP rate in 802.11g mode.

IEEE80211_RATE_SUPPORT-
S_5MHZ

Rate can be used in 5 MHz mode

IEEE80211_RATE_SUPPORT-
S_10MHZ

Rate can be used in 10 MHz mode

Description

Hardware/specification flags for rates. These are structured in a way that allows using the same bitrate
structure for different bands/PHY modes.

7

Device registration

Name
struct ieee80211_rate — bitrate definition

Synopsis

struct ieee80211_rate {
 u32 flags;
 u16 bitrate;
 u16 hw_value;
 u16 hw_value_short;
};

Members
flags rate-specific flags

bitrate bitrate in units of 100 Kbps

hw_value driver/hardware value for this rate

hw_value_short driver/hardware value for this rate when short preamble is used

Description

This structure describes a bitrate that an 802.11 PHY can operate with. The two values hw_value and
hw_value_short are only for driver use when pointers to this structure are passed around.

8

Device registration

Name
struct ieee80211_sta_ht_cap — STA's HT capabilities

Synopsis

struct ieee80211_sta_ht_cap {
 u16 cap;
 bool ht_supported;
 u8 ampdu_factor;
 u8 ampdu_density;
 struct ieee80211_mcs_info mcs;
};

Members
cap HT capabilities map as described in 802.11n spec

ht_supported is HT supported by the STA

ampdu_factor Maximum A-MPDU length factor

ampdu_density Minimum A-MPDU spacing

mcs Supported MCS rates

Description

This structure describes most essential parameters needed to describe 802.11n HT capabilities for an STA.

9

Device registration

Name
struct ieee80211_supported_band — frequency band definition

Synopsis

struct ieee80211_supported_band {
 struct ieee80211_channel * channels;
 struct ieee80211_rate * bitrates;
 enum ieee80211_band band;
 int n_channels;
 int n_bitrates;
 struct ieee80211_sta_ht_cap ht_cap;
 struct ieee80211_sta_vht_cap vht_cap;
};

Members
channels Array of channels the hardware can operate in in this band.

bitrates Array of bitrates the hardware can operate with in this band. Must be sorted to give a
valid “supported rates” IE, i.e. CCK rates first, then OFDM.

band the band this structure represents

n_channels Number of channels in channels

n_bitrates Number of bitrates in bitrates

ht_cap HT capabilities in this band

vht_cap VHT capabilities in this band

Description

This structure describes a frequency band a wiphy is able to operate in.

10

Device registration

Name
enum cfg80211_signal_type — signal type

Synopsis

enum cfg80211_signal_type {
 CFG80211_SIGNAL_TYPE_NONE,
 CFG80211_SIGNAL_TYPE_MBM,
 CFG80211_SIGNAL_TYPE_UNSPEC
};

Constants
CFG80211_SIG-
NAL_TYPE_NONE

no signal strength information available

CFG80211_SIG-
NAL_TYPE_MBM

signal strength in mBm (100*dBm)

CFG80211_SIG-
NAL_TYPE_UNSPEC

signal strength, increasing from 0 through 100

11

Device registration

Name
enum wiphy_params_flags — set_wiphy_params bitfield values

Synopsis

enum wiphy_params_flags {
 WIPHY_PARAM_RETRY_SHORT,
 WIPHY_PARAM_RETRY_LONG,
 WIPHY_PARAM_FRAG_THRESHOLD,
 WIPHY_PARAM_RTS_THRESHOLD,
 WIPHY_PARAM_COVERAGE_CLASS,
 WIPHY_PARAM_DYN_ACK
};

Constants
WI-
PHY_PARAM_RETRY_SHORT

wiphy->retry_short has changed

WIPHY_PARAM_RETRY_LONG wiphy->retry_long has changed

WI-
PHY_PARAM_FRAG_THRESHOLD

wiphy->frag_threshold has changed

WI-
PHY_PARAM_RTS_THRESHOLD

wiphy->rts_threshold has changed

WIPHY_PARAM_COVER-
AGE_CLASS

coverage class changed

WIPHY_PARAM_DYN_ACK dynack has been enabled

12

Device registration

Name
enum wiphy_flags — wiphy capability flags

Synopsis

enum wiphy_flags {
 WIPHY_FLAG_NETNS_OK,
 WIPHY_FLAG_PS_ON_BY_DEFAULT,
 WIPHY_FLAG_4ADDR_AP,
 WIPHY_FLAG_4ADDR_STATION,
 WIPHY_FLAG_CONTROL_PORT_PROTOCOL,
 WIPHY_FLAG_IBSS_RSN,
 WIPHY_FLAG_MESH_AUTH,
 WIPHY_FLAG_SUPPORTS_SCHED_SCAN,
 WIPHY_FLAG_SUPPORTS_FW_ROAM,
 WIPHY_FLAG_AP_UAPSD,
 WIPHY_FLAG_SUPPORTS_TDLS,
 WIPHY_FLAG_TDLS_EXTERNAL_SETUP,
 WIPHY_FLAG_HAVE_AP_SME,
 WIPHY_FLAG_REPORTS_OBSS,
 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD,
 WIPHY_FLAG_OFFCHAN_TX,
 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL,
 WIPHY_FLAG_SUPPORTS_5_10_MHZ,
 WIPHY_FLAG_HAS_CHANNEL_SWITCH
};

Constants
WIPHY_FLAG_NETNS_OK if not set, do not allow changing the netns of this wiphy at all

WIPHY_FLAG_PS_ON_BY_DE-
FAULT

if set to true, powersave will be enabled by default -- this flag will
be set depending on the kernel's default on wiphy_new, but can be
changed by the driver if it has a good reason to override the default

WIPHY_FLAG_4ADDR_AP supports 4addr mode even on AP (with a single station on a VLAN
interface)

WIPHY_FLAG_4ADDR_S-
TATION

supports 4addr mode even as a station

WIPHY_FLAG_CON-
TROL_PORT_PROTOCOL

This device supports setting the control port protocol ethertype. The
device also honours the control_port_no_encrypt flag.

WIPHY_FLAG_IBSS_RSN The device supports IBSS RSN.

WIPHY_FLAG_MESH_AUTH The device supports mesh authentication by routing auth frames to
userspace. See NL80211_MESH_SETUP_USERSPACE_AUTH.

WIPHY_FLAG_SUPPORT-
S_SCHED_SCAN

The device supports scheduled scans.

WIPHY_FLAG_SUPPORT-
S_FW_ROAM

The device supports roaming feature in the firmware.

13

Device registration

WIPHY_FLAG_AP_UAPSD The device supports uapsd on AP.

WIPHY_FLAG_SUPPORTS_T-
DLS

The device supports TDLS (802.11z) operation.

WIPHY_FLAG_TDLS_EXTER-
NAL_SETUP

The device does not handle TDLS (802.11z) link setup/discov-
ery operations internally. Setup, discovery and teardown packets
should be sent through the NL80211_CMD_TDLS_MGMT com-
mand. When this flag is not set, NL80211_CMD_TDLS_OPER
should be used for asking the driver/firmware to perform a TDLS
operation.

WIPHY_FLAG_HAVE_AP_SME device integrates AP SME

WIPHY_FLAG_REPORTS_OBSS the device will report beacons from other BSSes when there are vir-
tual interfaces in AP mode by calling cfg80211_report_ob-
ss_beacon.

WI-
PHY_FLAG_AP_PROBE_RESP_OF-
FLOAD

When operating as an AP, the device responds to probe-requests in
hardware.

WIPHY_FLAG_OFFCHAN_TX Device supports direct off-channel TX.

WIPHY_FLAG_HAS_RE-
MAIN_ON_CHANNEL

Device supports remain-on-channel call.

WIPHY_FLAG_SUPPORT-
S_5_10_MHZ

Device supports 5 MHz and 10 MHz channels.

WIPHY_FLAG_HAS_CHAN-
NEL_SWITCH

Device supports channel switch in beaconing mode (AP, IBSS,
Mesh, ...).

14

Device registration

Name
struct wiphy — wireless hardware description

Synopsis

struct wiphy {
 u8 perm_addr[ETH_ALEN];
 u8 addr_mask[ETH_ALEN];
 struct mac_address * addresses;
 const struct ieee80211_txrx_stypes * mgmt_stypes;
 const struct ieee80211_iface_combination * iface_combinations;
 int n_iface_combinations;
 u16 software_iftypes;
 u16 n_addresses;
 u16 interface_modes;
 u16 max_acl_mac_addrs;
 u32 flags;
 u32 regulatory_flags;
 u32 features;
 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES# 8)];
 u32 ap_sme_capa;
 enum cfg80211_signal_type signal_type;
 int bss_priv_size;
 u8 max_scan_ssids;
 u8 max_sched_scan_ssids;
 u8 max_match_sets;
 u16 max_scan_ie_len;
 u16 max_sched_scan_ie_len;
 u32 max_sched_scan_plans;
 u32 max_sched_scan_plan_interval;
 u32 max_sched_scan_plan_iterations;
 int n_cipher_suites;
 const u32 * cipher_suites;
 u8 retry_short;
 u8 retry_long;
 u32 frag_threshold;
 u32 rts_threshold;
 u8 coverage_class;
 char fw_version[ETHTOOL_FWVERS_LEN];
 u32 hw_version;
#ifdef CONFIG_PM
 const struct wiphy_wowlan_support * wowlan;
 struct cfg80211_wowlan * wowlan_config;
#endif
 u16 max_remain_on_channel_duration;
 u8 max_num_pmkids;
 u32 available_antennas_tx;
 u32 available_antennas_rx;
 u32 probe_resp_offload;
 const u8 * extended_capabilities;
 const u8 * extended_capabilities_mask;
 u8 extended_capabilities_len;

15

Device registration

 const void * privid;
 struct ieee80211_supported_band * bands[IEEE80211_NUM_BANDS];
 void (* reg_notifier) (struct wiphy *wiphy,struct regulatory_request *request);
 const struct ieee80211_regdomain __rcu * regd;
 struct device dev;
 bool registered;
 struct dentry * debugfsdir;
 const struct ieee80211_ht_cap * ht_capa_mod_mask;
 const struct ieee80211_vht_cap * vht_capa_mod_mask;
 possible_net_t _net;
#ifdef CONFIG_CFG80211_WEXT
 const struct iw_handler_def * wext;
#endif
 const struct wiphy_coalesce_support * coalesce;
 const struct wiphy_vendor_command * vendor_commands;
 const struct nl80211_vendor_cmd_info * vendor_events;
 int n_vendor_commands;
 int n_vendor_events;
 u16 max_ap_assoc_sta;
 u8 max_num_csa_counters;
 u8 max_adj_channel_rssi_comp;
 char priv[0];
};

Members
perm_addr[ETH_ALEN] permanent MAC address of this device

addr_mask[ETH_ALEN] If the device supports multiple MAC addresses by masking, set this
to a mask with variable bits set to 1, e.g. if the last four bits are vari-
able then set it to 00-00-00-00-00-0f. The actual variable bits shall
be determined by the interfaces added, with interfaces not matching
the mask being rejected to be brought up.

addresses If the device has more than one address, set this pointer to a list of
addresses (6 bytes each). The first one will be used by default for
perm_addr. In this case, the mask should be set to all-zeroes. In this
case it is assumed that the device can handle the same number of
arbitrary MAC addresses.

mgmt_stypes bitmasks of frame subtypes that can be subscribed to or transmitted
through nl80211, points to an array indexed by interface type

iface_combinations Valid interface combinations array, should not list single interface
types.

n_iface_combinations number of entries in iface_combinations array.

software_iftypes bitmask of software interface types, these are not subject to any
restrictions since they are purely managed in SW.

n_addresses number of addresses in addresses.

interface_modes bitmask of interfaces types valid for this wiphy, must be set by dri-
ver

16

Device registration

max_acl_mac_addrs Maximum number of MAC addresses that the device supports for
ACL.

flags wiphy flags, see enum wiphy_flags

regulatory_flags wiphy regulatory flags, see enum ieee80211_regulatory_flags

features features advertised to nl80211, see enum nl80211_feature_flags.

ext_fea-
tures[DIV_ROUND_UP(NUM_N-
L80211_EXT_FEATURES# 8)]

extended features advertised to nl80211, see enum nl80211_ex-
t_feature_index.

ap_sme_capa AP SME capabilities, flags from enum nl80211_ap_sme_features.

signal_type signal type reported in struct cfg80211_bss.

bss_priv_size each BSS struct has private data allocated with it, this variable de-
termines its size

max_scan_ssids maximum number of SSIDs the device can scan for in any given
scan

max_sched_scan_ssids maximum number of SSIDs the device can scan for in any given
scheduled scan

max_match_sets maximum number of match sets the device can handle when per-
forming a scheduled scan, 0 if filtering is not supported.

max_scan_ie_len maximum length of user-controlled IEs device can add to probe
request frames transmitted during a scan, must not include fixed IEs
like supported rates

max_sched_scan_ie_len same as max_scan_ie_len, but for scheduled scans

max_sched_scan_plans maximum number of scan plans (scan interval and number of iter-
ations) for scheduled scan supported by the device.

max_sched_scan_plan_interval maximum interval (in seconds) for a single scan plan supported by
the device.

max_sched_scan_plan_iterations maximum number of iterations for a single scan plan supported by
the device.

n_cipher_suites number of supported cipher suites

cipher_suites supported cipher suites

retry_short Retry limit for short frames (dot11ShortRetryLimit)

retry_long Retry limit for long frames (dot11LongRetryLimit)

frag_threshold Fragmentation threshold (dot11FragmentationThreshold); -1 =
fragmentation disabled, only odd values >= 256 used

rts_threshold RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled

coverage_class current coverage class

17

Device registration

fw_version[ETH-
TOOL_FWVERS_LEN]

firmware version for ethtool reporting

hw_version hardware version for ethtool reporting

wowlan WoWLAN support information

wowlan_config current WoWLAN configuration; this should usually not be used
since access to it is necessarily racy, use the parameter passed to
the suspend operation instead.

max_remain_on_channel_duration Maximum time a remain-on-channel operation may request, if im-
plemented.

max_num_pmkids maximum number of PMKIDs supported by device

available_antennas_tx bitmap of antennas which are available to be configured as TX an-
tennas. Antenna configuration commands will be rejected unless
this or available_antennas_rx is set.

available_antennas_rx bitmap of antennas which are available to be configured as RX an-
tennas. Antenna configuration commands will be rejected unless
this or available_antennas_tx is set.

probe_resp_offload Bitmap of supported protocols for probe response offloading. See
enum nl80211_probe_resp_offload_support_attr. Only valid when
the wiphy flag WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is
set.

extended_capabilities extended capabilities supported by the driver, additional capabili-
ties might be supported by userspace; these are the 802.11 extended
capabilities (“Extended Capabilities element”) and are in the same
format as in the information element. See 802.11-2012 8.4.2.29 for
the defined fields.

extended_capabilities_mask mask of the valid values

extended_capabilities_len length of the extended capabilities

privid a pointer that drivers can use to identify if an arbitrary wiphy is
theirs, e.g. in global notifiers

bands[IEEE80211_NUM_BANDS] information about bands/channels supported by this device

reg_notifier the driver's regulatory notification callback, note that if your driver
uses wiphy_apply_custom_regulatory the reg_notifier's
request can be passed as NULL

regd the driver's regulatory domain, if one was requested via the reg-
ulatory_hint API. This can be used by the driver on the
reg_notifier if it chooses to ignore future regulatory domain
changes caused by other drivers.

dev (virtual) struct device for this wiphy

registered helps synchronize suspend/resume with wiphy unregister

18

Device registration

debugfsdir debugfs directory used for this wiphy, will be renamed automati-
cally on wiphy renames

ht_capa_mod_mask Specify what ht_cap values can be over-ridden. If null, then none
can be over-ridden.

vht_capa_mod_mask Specify what VHT capabilities can be over-ridden. If null, then
none can be over-ridden.

_net the network namespace this wiphy currently lives in

wext wireless extension handlers

coalesce packet coalescing support information

vendor_commands array of vendor commands supported by the hardware

vendor_events array of vendor events supported by the hardware

n_vendor_commands number of vendor commands

n_vendor_events number of vendor events

max_ap_assoc_sta maximum number of associated stations supported in AP mode (in-
cluding P2P GO) or 0 to indicate no such limit is advertised. The
driver is allowed to advertise a theoretical limit that it can reach in
some cases, but may not always reach.

max_num_csa_counters Number of supported csa_counters in beacons and probe responses.
This value should be set if the driver wishes to limit the number of
csa counters. Default (0) means infinite.

max_adj_channel_rssi_comp max offset of between the channel on which the frame was sent and
the channel on which the frame was heard for which the reported
rssi is still valid. If a driver is able to compensate the low rssi when a
frame is heard on different channel, then it should set this variable to
the maximal offset for which it can compensate. This value should
be set in MHz.

priv[0] driver private data (sized according to wiphy_new parameter)

19

Device registration

Name
struct wireless_dev — wireless device state

Synopsis

struct wireless_dev {
 struct wiphy * wiphy;
 enum nl80211_iftype iftype;
 struct list_head list;
 struct net_device * netdev;
 u32 identifier;
 struct list_head mgmt_registrations;
 spinlock_t mgmt_registrations_lock;
 struct mutex mtx;
 bool use_4addr;
 bool p2p_started;
 u8 address[ETH_ALEN];
 u8 ssid[IEEE80211_MAX_SSID_LEN];
 u8 ssid_len;
 u8 mesh_id_len;
 u8 mesh_id_up_len;
 struct cfg80211_conn * conn;
 struct cfg80211_cached_keys * connect_keys;
 struct list_head event_list;
 spinlock_t event_lock;
 struct cfg80211_internal_bss * current_bss;
 struct cfg80211_chan_def preset_chandef;
 struct cfg80211_chan_def chandef;
 bool ibss_fixed;
 bool ibss_dfs_possible;
 bool ps;
 int ps_timeout;
 int beacon_interval;
 u32 ap_unexpected_nlportid;
 bool cac_started;
 unsigned long cac_start_time;
 unsigned int cac_time_ms;
 u32 owner_nlportid;
#ifdef CONFIG_CFG80211_WEXT
 struct wext;
#endif
};

Members
wiphy pointer to hardware description

iftype interface type

list (private) Used to collect the interfaces

netdev (private) Used to reference back to the netdev, may be NULL

20

Device registration

identifier (private) Identifier used in nl80211 to identify this wireless device
if it has no netdev

mgmt_registrations list of registrations for management frames

mgmt_registrations_lock lock for the list

mtx mutex used to lock data in this struct, may be used by drivers and
some API functions require it held

use_4addr indicates 4addr mode is used on this interface, must be set by dri-
ver (if supported) on add_interface BEFORE registering the netdev
and may otherwise be used by driver read-only, will be update by
cfg80211 on change_interface

p2p_started true if this is a P2P Device that has been started

address[ETH_ALEN] The address for this device, valid only if netdev is NULL

ssid[IEEE80211_MAX_SSID_LEN] (private) Used by the internal configuration code

ssid_len (private) Used by the internal configuration code

mesh_id_len (private) Used by the internal configuration code

mesh_id_up_len (private) Used by the internal configuration code

conn (private) cfg80211 software SME connection state machine data

connect_keys (private) keys to set after connection is established

event_list (private) list for internal event processing

event_lock (private) lock for event list

current_bss (private) Used by the internal configuration code

preset_chandef (private) Used by the internal configuration code to track the chan-
nel to be used for AP later

chandef (private) Used by the internal configuration code to track the user-
set channel definition.

ibss_fixed (private) IBSS is using fixed BSSID

ibss_dfs_possible (private) IBSS may change to a DFS channel

ps powersave mode is enabled

ps_timeout dynamic powersave timeout

beacon_interval beacon interval used on this device for transmitting beacons, 0 when
not valid

ap_unexpected_nlportid (private) netlink port ID of application registered for unexpected
class 3 frames (AP mode)

cac_started true if DFS channel availability check has been started

21

Device registration

cac_start_time timestamp (jiffies) when the dfs state was entered.

cac_time_ms CAC time in ms

owner_nlportid (private) owner socket port ID

wext (private) Used by the internal wireless extensions compat code

Description

For netdevs, this structure must be allocated by the driver that uses the ieee80211_ptr field in struct net_de-
vice (this is intentional so it can be allocated along with the netdev.) It need not be registered then as netdev
registration will be intercepted by cfg80211 to see the new wireless device.

For non-netdev uses, it must also be allocated by the driver in response to the cfg80211 callbacks that
require it, as there's no netdev registration in that case it may not be allocated outside of callback operations
that return it.

22

Device registration

Name
wiphy_new — create a new wiphy for use with cfg80211

Synopsis
struct wiphy * wiphy_new (const struct cfg80211_ops * ops, int size-
of_priv);

Arguments
ops The configuration operations for this device

sizeof_priv The size of the private area to allocate

Description
Create a new wiphy and associate the given operations with it. sizeof_priv bytes are allocated for
private use.

Return
A pointer to the new wiphy. This pointer must be assigned to each netdev's ieee80211_ptr for proper
operation.

23

Device registration

Name
wiphy_register — register a wiphy with cfg80211

Synopsis
int wiphy_register (struct wiphy * wiphy);

Arguments
wiphy The wiphy to register.

Return
A non-negative wiphy index or a negative error code.

24

Device registration

Name
wiphy_unregister — deregister a wiphy from cfg80211

Synopsis
void wiphy_unregister (struct wiphy * wiphy);

Arguments
wiphy The wiphy to unregister.

Description
After this call, no more requests can be made with this priv pointer, but the call may sleep to wait for an
outstanding request that is being handled.

25

Device registration

Name
wiphy_free — free wiphy

Synopsis
void wiphy_free (struct wiphy * wiphy);

Arguments
wiphy The wiphy to free

26

Device registration

Name
wiphy_name — get wiphy name

Synopsis
const char * wiphy_name (const struct wiphy * wiphy);

Arguments
wiphy The wiphy whose name to return

Return
The name of wiphy.

27

Device registration

Name
wiphy_dev — get wiphy dev pointer

Synopsis
struct device * wiphy_dev (struct wiphy * wiphy);

Arguments
wiphy The wiphy whose device struct to look up

Return
The dev of wiphy.

28

Device registration

Name
wiphy_priv — return priv from wiphy

Synopsis
void * wiphy_priv (struct wiphy * wiphy);

Arguments
wiphy the wiphy whose priv pointer to return

Return
The priv of wiphy.

29

Device registration

Name
priv_to_wiphy — return the wiphy containing the priv

Synopsis
struct wiphy * priv_to_wiphy (void * priv);

Arguments
priv a pointer previously returned by wiphy_priv

Return
The wiphy of priv.

30

Device registration

Name
set_wiphy_dev — set device pointer for wiphy

Synopsis
void set_wiphy_dev (struct wiphy * wiphy, struct device * dev);

Arguments
wiphy The wiphy whose device to bind

dev The device to parent it to

31

Device registration

Name
wdev_priv — return wiphy priv from wireless_dev

Synopsis
void * wdev_priv (struct wireless_dev * wdev);

Arguments
wdev The wireless device whose wiphy's priv pointer to return

Return
The wiphy priv of wdev.

32

Device registration

Name
struct ieee80211_iface_limit — limit on certain interface types

Synopsis

struct ieee80211_iface_limit {
 u16 max;
 u16 types;
};

Members
max maximum number of interfaces of these types

types interface types (bits)

33

Device registration

Name
struct ieee80211_iface_combination — possible interface combination

Synopsis

struct ieee80211_iface_combination {
 const struct ieee80211_iface_limit * limits;
 u32 num_different_channels;
 u16 max_interfaces;
 u8 n_limits;
 bool beacon_int_infra_match;
 u8 radar_detect_widths;
 u8 radar_detect_regions;
};

Members
limits limits for the given interface types

num_different_channels can use up to this many different channels

max_interfaces maximum number of interfaces in total allowed in this group

n_limits number of limitations

beacon_int_infra_match In this combination, the beacon intervals between infrastructure and
AP types must match. This is required only in special cases.

radar_detect_widths bitmap of channel widths supported for radar detection

radar_detect_regions bitmap of regions supported for radar detection

Description
With this structure the driver can describe which interface combinations it supports concurrently.

Examples

 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:

 struct ieee80211_iface_limit limits1[] = {
 { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
 { .max = 1, .types = BIT(NL80211_IFTYPE_AP}, },
 };
 struct ieee80211_iface_combination combination1 = {
 .limits = limits1,
 .n_limits = ARRAY_SIZE(limits1),
 .max_interfaces = 2,
 .beacon_int_infra_match = true,
 };

34

Device registration

 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:

 struct ieee80211_iface_limit limits2[] = {
 { .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
 BIT(NL80211_IFTYPE_P2P_GO), },
 };
 struct ieee80211_iface_combination combination2 = {
 .limits = limits2,
 .n_limits = ARRAY_SIZE(limits2),
 .max_interfaces = 8,
 .num_different_channels = 1,
 };

 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.

 This allows for an infrastructure connection and three P2P connections.

 struct ieee80211_iface_limit limits3[] = {
 { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
 { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
 BIT(NL80211_IFTYPE_P2P_CLIENT), },
 };
 struct ieee80211_iface_combination combination3 = {
 .limits = limits3,
 .n_limits = ARRAY_SIZE(limits3),
 .max_interfaces = 4,
 .num_different_channels = 2,
 };

35

Device registration

Name
cfg80211_check_combinations — check interface combinations

Synopsis
int cfg80211_check_combinations (struct wiphy * wiphy, const int num_d-
ifferent_channels, const u8 radar_detect, const int iftype_num[NUM_N-
L80211_IFTYPES]);

Arguments
wiphy the wiphy

num_different_channels the number of different channels we want to use for verification

radar_detect a bitmap where each bit corresponds to a channel width where
radar detection is needed, as in the definition of struct ieee80211_i-
face_combination.radar_detect_widths

iftype_num[NUM_N-
L80211_IFTYPES]

array with the numbers of interfaces of each interface type. The
index is the interface type as specified in enum nl80211_iftype.

Description
This function can be called by the driver to check whether a combination of interfaces and their types are
allowed according to the interface combinations.

36

Chapter 2. Actions and configuration
Each wireless device and each virtual interface offer a set of configuration operations and other actions that
are invoked by userspace. Each of these actions is described in the operations structure, and the parameters
these operations use are described separately.

Additionally, some operations are asynchronous and expect to get status information via some functions
that drivers need to call.

Scanning and BSS list handling with its associated functionality is described in a separate chapter.

37

Actions and configuration

Name
struct cfg80211_ops — backend description for wireless configuration

Synopsis

struct cfg80211_ops {
 int (* suspend) (struct wiphy *wiphy, struct cfg80211_wowlan *wow);
 int (* resume) (struct wiphy *wiphy);
 void (* set_wakeup) (struct wiphy *wiphy, bool enabled);
 struct wireless_dev * (* add_virtual_intf) (struct wiphy *wiphy,const char *name,unsigned char name_assign_type,enum nl80211_iftype type,u32 *flags,struct vif_params *params);
 int (* del_virtual_intf) (struct wiphy *wiphy,struct wireless_dev *wdev);
 int (* change_virtual_intf) (struct wiphy *wiphy,struct net_device *dev,enum nl80211_iftype type, u32 *flags,struct vif_params *params);
 int (* add_key) (struct wiphy *wiphy, struct net_device *netdev,u8 key_index, bool pairwise, const u8 *mac_addr,struct key_params *params);
 int (* get_key) (struct wiphy *wiphy, struct net_device *netdev,u8 key_index, bool pairwise, const u8 *mac_addr,void *cookie,void (*callback);
 int (* del_key) (struct wiphy *wiphy, struct net_device *netdev,u8 key_index, bool pairwise, const u8 *mac_addr);
 int (* set_default_key) (struct wiphy *wiphy,struct net_device *netdev,u8 key_index, bool unicast, bool multicast);
 int (* set_default_mgmt_key) (struct wiphy *wiphy,struct net_device *netdev,u8 key_index);
 int (* start_ap) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_ap_settings *settings);
 int (* change_beacon) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_beacon_data *info);
 int (* stop_ap) (struct wiphy *wiphy, struct net_device *dev);
 int (* add_station) (struct wiphy *wiphy, struct net_device *dev,const u8 *mac,struct station_parameters *params);
 int (* del_station) (struct wiphy *wiphy, struct net_device *dev,struct station_del_parameters *params);
 int (* change_station) (struct wiphy *wiphy, struct net_device *dev,const u8 *mac,struct station_parameters *params);
 int (* get_station) (struct wiphy *wiphy, struct net_device *dev,const u8 *mac, struct station_info *sinfo);
 int (* dump_station) (struct wiphy *wiphy, struct net_device *dev,int idx, u8 *mac, struct station_info *sinfo);
 int (* add_mpath) (struct wiphy *wiphy, struct net_device *dev,const u8 *dst, const u8 *next_hop);
 int (* del_mpath) (struct wiphy *wiphy, struct net_device *dev,const u8 *dst);
 int (* change_mpath) (struct wiphy *wiphy, struct net_device *dev,const u8 *dst, const u8 *next_hop);
 int (* get_mpath) (struct wiphy *wiphy, struct net_device *dev,u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
 int (* dump_mpath) (struct wiphy *wiphy, struct net_device *dev,int idx, u8 *dst, u8 *next_hop,struct mpath_info *pinfo);
 int (* get_mpp) (struct wiphy *wiphy, struct net_device *dev,u8 *dst, u8 *mpp, struct mpath_info *pinfo);
 int (* dump_mpp) (struct wiphy *wiphy, struct net_device *dev,int idx, u8 *dst, u8 *mpp,struct mpath_info *pinfo);
 int (* get_mesh_config) (struct wiphy *wiphy,struct net_device *dev,struct mesh_config *conf);
 int (* update_mesh_config) (struct wiphy *wiphy,struct net_device *dev, u32 mask,const struct mesh_config *nconf);
 int (* join_mesh) (struct wiphy *wiphy, struct net_device *dev,const struct mesh_config *conf,const struct mesh_setup *setup);
 int (* leave_mesh) (struct wiphy *wiphy, struct net_device *dev);
 int (* join_ocb) (struct wiphy *wiphy, struct net_device *dev,struct ocb_setup *setup);
 int (* leave_ocb) (struct wiphy *wiphy, struct net_device *dev);
 int (* change_bss) (struct wiphy *wiphy, struct net_device *dev,struct bss_parameters *params);
 int (* set_txq_params) (struct wiphy *wiphy, struct net_device *dev,struct ieee80211_txq_params *params);
 int (* libertas_set_mesh_channel) (struct wiphy *wiphy,struct net_device *dev,struct ieee80211_channel *chan);
 int (* set_monitor_channel) (struct wiphy *wiphy,struct cfg80211_chan_def *chandef);
 int (* scan) (struct wiphy *wiphy,struct cfg80211_scan_request *request);
 int (* auth) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_auth_request *req);
 int (* assoc) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_assoc_request *req);
 int (* deauth) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_deauth_request *req);
 int (* disassoc) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_disassoc_request *req);
 int (* connect) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_connect_params *sme);
 int (* disconnect) (struct wiphy *wiphy, struct net_device *dev,u16 reason_code);
 int (* join_ibss) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_ibss_params *params);
 int (* leave_ibss) (struct wiphy *wiphy, struct net_device *dev);
 int (* set_mcast_rate) (struct wiphy *wiphy, struct net_device *dev,int rate[IEEE80211_NUM_BANDS]);

38

Actions and configuration

 int (* set_wiphy_params) (struct wiphy *wiphy, u32 changed);
 int (* set_tx_power) (struct wiphy *wiphy, struct wireless_dev *wdev,enum nl80211_tx_power_setting type, int mbm);
 int (* get_tx_power) (struct wiphy *wiphy, struct wireless_dev *wdev,int *dbm);
 int (* set_wds_peer) (struct wiphy *wiphy, struct net_device *dev,const u8 *addr);
 void (* rfkill_poll) (struct wiphy *wiphy);
#ifdef CONFIG_NL80211_TESTMODE
 int (* testmode_cmd) (struct wiphy *wiphy, struct wireless_dev *wdev,void *data, int len);
 int (* testmode_dump) (struct wiphy *wiphy, struct sk_buff *skb,struct netlink_callback *cb,void *data, int len);
#endif
 int (* set_bitrate_mask) (struct wiphy *wiphy,struct net_device *dev,const u8 *peer,const struct cfg80211_bitrate_mask *mask);
 int (* dump_survey) (struct wiphy *wiphy, struct net_device *netdev,int idx, struct survey_info *info);
 int (* set_pmksa) (struct wiphy *wiphy, struct net_device *netdev,struct cfg80211_pmksa *pmksa);
 int (* del_pmksa) (struct wiphy *wiphy, struct net_device *netdev,struct cfg80211_pmksa *pmksa);
 int (* flush_pmksa) (struct wiphy *wiphy, struct net_device *netdev);
 int (* remain_on_channel) (struct wiphy *wiphy,struct wireless_dev *wdev,struct ieee80211_channel *chan,unsigned int duration,u64 *cookie);
 int (* cancel_remain_on_channel) (struct wiphy *wiphy,struct wireless_dev *wdev,u64 cookie);
 int (* mgmt_tx) (struct wiphy *wiphy, struct wireless_dev *wdev,struct cfg80211_mgmt_tx_params *params,u64 *cookie);
 int (* mgmt_tx_cancel_wait) (struct wiphy *wiphy,struct wireless_dev *wdev,u64 cookie);
 int (* set_power_mgmt) (struct wiphy *wiphy, struct net_device *dev,bool enabled, int timeout);
 int (* set_cqm_rssi_config) (struct wiphy *wiphy,struct net_device *dev,s32 rssi_thold, u32 rssi_hyst);
 int (* set_cqm_txe_config) (struct wiphy *wiphy,struct net_device *dev,u32 rate, u32 pkts, u32 intvl);
 void (* mgmt_frame_register) (struct wiphy *wiphy,struct wireless_dev *wdev,u16 frame_type, bool reg);
 int (* set_antenna) (struct wiphy *wiphy, u32 tx_ant, u32 rx_ant);
 int (* get_antenna) (struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant);
 int (* sched_scan_start) (struct wiphy *wiphy,struct net_device *dev,struct cfg80211_sched_scan_request *request);
 int (* sched_scan_stop) (struct wiphy *wiphy, struct net_device *dev);
 int (* set_rekey_data) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_gtk_rekey_data *data);
 int (* tdls_mgmt) (struct wiphy *wiphy, struct net_device *dev,const u8 *peer, u8 action_code, u8 dialog_token,u16 status_code, u32 peer_capability,bool initiator, const u8 *buf, size_t len);
 int (* tdls_oper) (struct wiphy *wiphy, struct net_device *dev,const u8 *peer, enum nl80211_tdls_operation oper);
 int (* probe_client) (struct wiphy *wiphy, struct net_device *dev,const u8 *peer, u64 *cookie);
 int (* set_noack_map) (struct wiphy *wiphy,struct net_device *dev,u16 noack_map);
 int (* get_channel) (struct wiphy *wiphy,struct wireless_dev *wdev,struct cfg80211_chan_def *chandef);
 int (* start_p2p_device) (struct wiphy *wiphy,struct wireless_dev *wdev);
 void (* stop_p2p_device) (struct wiphy *wiphy,struct wireless_dev *wdev);
 int (* set_mac_acl) (struct wiphy *wiphy, struct net_device *dev,const struct cfg80211_acl_data *params);
 int (* start_radar_detection) (struct wiphy *wiphy,struct net_device *dev,struct cfg80211_chan_def *chandef,u32 cac_time_ms);
 int (* update_ft_ies) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_update_ft_ies_params *ftie);
 int (* crit_proto_start) (struct wiphy *wiphy,struct wireless_dev *wdev,enum nl80211_crit_proto_id protocol,u16 duration);
 void (* crit_proto_stop) (struct wiphy *wiphy,struct wireless_dev *wdev);
 int (* set_coalesce) (struct wiphy *wiphy,struct cfg80211_coalesce *coalesce);
 int (* channel_switch) (struct wiphy *wiphy,struct net_device *dev,struct cfg80211_csa_settings *params);
 int (* set_qos_map) (struct wiphy *wiphy,struct net_device *dev,struct cfg80211_qos_map *qos_map);
 int (* set_ap_chanwidth) (struct wiphy *wiphy, struct net_device *dev,struct cfg80211_chan_def *chandef);
 int (* add_tx_ts) (struct wiphy *wiphy, struct net_device *dev,u8 tsid, const u8 *peer, u8 user_prio,u16 admitted_time);
 int (* del_tx_ts) (struct wiphy *wiphy, struct net_device *dev,u8 tsid, const u8 *peer);
 int (* tdls_channel_switch) (struct wiphy *wiphy,struct net_device *dev,const u8 *addr, u8 oper_class,struct cfg80211_chan_def *chandef);
 void (* tdls_cancel_channel_switch) (struct wiphy *wiphy,struct net_device *dev,const u8 *addr);
};

39

Actions and configuration

Members
suspend wiphy device needs to be suspended. The variable wow will be

NULL or contain the enabled Wake-on-Wireless triggers that are
configured for the device.

resume wiphy device needs to be resumed

set_wakeup Called when WoWLAN is enabled/disabled, use this callback to
call device_set_wakeup_enable to enable/disable wakeup
from the device.

add_virtual_intf create a new virtual interface with the given name, must set the
struct wireless_dev's iftype. Beware: You must create the new net-
dev in the wiphy's network namespace! Returns the struct wire-
less_dev, or an ERR_PTR. For P2P device wdevs, the driver must
also set the address member in the wdev.

del_virtual_intf remove the virtual interface

change_virtual_intf change type/configuration of virtual interface, keep the struct wire-
less_dev's iftype updated.

add_key add a key with the given parameters. mac_addr will be NULL
when adding a group key.

get_key get information about the key with the given parameters. mac_ad-
dr will be NULL when requesting information for a group key. All
pointers given to the callback function need not be valid after it
returns. This function should return an error if it is not possible to
retrieve the key, -ENOENT if it doesn't exist.

del_key remove a key given the mac_addr (NULL for a group key) and
key_index, return -ENOENT if the key doesn't exist.

set_default_key set the default key on an interface

set_default_mgmt_key set the default management frame key on an interface

start_ap Start acting in AP mode defined by the parameters.

change_beacon Change the beacon parameters for an access point mode interface.
This should reject the call when AP mode wasn't started.

stop_ap Stop being an AP, including stopping beaconing.

add_station Add a new station.

del_station Remove a station

change_station Modify a given station. Note that flags changes are not much val-
idated in cfg80211, in particular the auth/assoc/authorized flags
might come to the driver in invalid combinations -- make sure
to check them, also against the existing state! Drivers must call
cfg80211_check_station_change to validate the infor-
mation.

40

Actions and configuration

get_station get station information for the station identified by mac

dump_station dump station callback -- resume dump at index idx

add_mpath add a fixed mesh path

del_mpath delete a given mesh path

change_mpath change a given mesh path

get_mpath get a mesh path for the given parameters

dump_mpath dump mesh path callback -- resume dump at index idx

get_mpp get a mesh proxy path for the given parameters

dump_mpp dump mesh proxy path callback -- resume dump at index idx

get_mesh_config Get the current mesh configuration

update_mesh_config Update mesh parameters on a running mesh. The mask is a bitfield
which tells us which parameters to set, and which to leave alone.

join_mesh join the mesh network with the specified parameters (invoked with
the wireless_dev mutex held)

leave_mesh leave the current mesh network (invoked with the wireless_dev mu-
tex held)

join_ocb join the OCB network with the specified parameters (invoked with
the wireless_dev mutex held)

leave_ocb leave the current OCB network (invoked with the wireless_dev mu-
tex held)

change_bss Modify parameters for a given BSS.

set_txq_params Set TX queue parameters

libertas_set_mesh_channel Only for backward compatibility for libertas, as it doesn't imple-
ment join_mesh and needs to set the channel to join the mesh in-
stead.

set_monitor_channel Set the monitor mode channel for the device. If other interfaces are
active this callback should reject the configuration. If no interfaces
are active or the device is down, the channel should be stored for
when a monitor interface becomes active.

scan Request to do a scan. If returning zero, the scan request is given the
driver, and will be valid until passed to cfg80211_scan_done.
For scan results, call cfg80211_inform_bss; you can call this
outside the scan/scan_done bracket too.

auth Request to authenticate with the specified peer (invoked with the
wireless_dev mutex held)

assoc Request to (re)associate with the specified peer (invoked with the
wireless_dev mutex held)

41

Actions and configuration

deauth Request to deauthenticate from the specified peer (invoked with the
wireless_dev mutex held)

disassoc Request to disassociate from the specified peer (invoked with the
wireless_dev mutex held)

connect Connect to the ESS with the specified parameters. When connected,
call cfg80211_connect_result with status code WLAN_S-
TATUS_SUCCESS. If the connection fails for some reason, call
cfg80211_connect_result with the status from the AP. (in-
voked with the wireless_dev mutex held)

disconnect Disconnect from the BSS/ESS. (invoked with the wireless_dev mu-
tex held)

join_ibss Join the specified IBSS (or create if necessary). Once done, call
cfg80211_ibss_joined, also call that function when chang-
ing BSSID due to a merge. (invoked with the wireless_dev mutex
held)

leave_ibss Leave the IBSS. (invoked with the wireless_dev mutex held)

set_mcast_rate Set the specified multicast rate (only if vif is in ADHOC or MESH
mode)

set_wiphy_params Notify that wiphy parameters have changed; changed bitfield (see
enum wiphy_params_flags) describes which values have changed.
The actual parameter values are available in struct wiphy. If return-
ing an error, no value should be changed.

set_tx_power set the transmit power according to the parameters, the power
passed is in mBm, to get dBm use MBM_TO_DBM. The wdev may
be NULL if power was set for the wiphy, and will always be NULL
unless the driver supports per-vif TX power (as advertised by the
nl80211 feature flag.)

get_tx_power store the current TX power into the dbm variable; return 0 if suc-
cessful

set_wds_peer set the WDS peer for a WDS interface

rfkill_poll polls the hw rfkill line, use cfg80211 reporting functions to adjust
rfkill hw state

testmode_cmd run a test mode command; wdev may be NULL

testmode_dump Implement a test mode dump. The cb->args[2] and up may be used
by the function, but 0 and 1 must not be touched. Additionally, re-
turn error codes other than -ENOBUFS and -ENOENT will termi-
nate the dump and return to userspace with an error, so be careful. If
any data was passed in from userspace then the data/len arguments
will be present and point to the data contained in NL80211_AT-
TR_TESTDATA.

set_bitrate_mask set the bitrate mask configuration

dump_survey get site survey information.

42

Actions and configuration

set_pmksa Cache a PMKID for a BSSID. This is mostly useful for fullmac de-
vices running firmwares capable of generating the (re) association
RSN IE. It allows for faster roaming between WPA2 BSSIDs.

del_pmksa Delete a cached PMKID.

flush_pmksa Flush all cached PMKIDs.

remain_on_channel Request the driver to remain awake on the specified channel for the
specified duration to complete an off-channel operation (e.g., public
action frame exchange). When the driver is ready on the requested
channel, it must indicate this with an event notification by calling
cfg80211_ready_on_channel.

cancel_remain_on_channel Cancel an on-going remain-on-channel operation. This allows the
operation to be terminated prior to timeout based on the duration
value.

mgmt_tx Transmit a management frame.

mgmt_tx_cancel_wait Cancel the wait time from transmitting a management frame on an-
other channel

set_power_mgmt Configure WLAN power management. A timeout value of -1 al-
lows the driver to adjust the dynamic ps timeout value.

set_cqm_rssi_config Configure connection quality monitor RSSI threshold. After con-
figuration, the driver should (soon) send an event indicating the cur-
rent level is above/below the configured threshold; this may need
some care when the configuration is changed (without first being
disabled.)

set_cqm_txe_config Configure connection quality monitor TX error thresholds.

mgmt_frame_register Notify driver that a management frame type was registered. The
callback is allowed to sleep.

set_antenna Set antenna configuration (tx_ant, rx_ant) on the device. Para-
meters are bitmaps of allowed antennas to use for TX/RX. Dri-
vers may reject TX/RX mask combinations they cannot support
by returning -EINVAL (also see nl80211.h NL80211_ATTR_WI-
PHY_ANTENNA_TX).

get_antenna Get current antenna configuration from device (tx_ant, rx_ant).

sched_scan_start Tell the driver to start a scheduled scan.

sched_scan_stop Tell the driver to stop an ongoing scheduled scan. This call must
stop the scheduled scan and be ready for starting a new one before
it returns, i.e. sched_scan_start may be called immediately
after that again and should not fail in that case. The driver should not
call cfg80211_sched_scan_stopped for a requested stop
(when this method returns 0.)

set_rekey_data give the data necessary for GTK rekeying to the driver

tdls_mgmt Transmit a TDLS management frame.

43

Actions and configuration

tdls_oper Perform a high-level TDLS operation (e.g. TDLS link setup).

probe_client probe an associated client, must return a cookie that it later passes
to cfg80211_probe_status.

set_noack_map Set the NoAck Map for the TIDs.

get_channel Get the current operating channel for the virtual interface. For mon-
itor interfaces, it should return NULL unless there's a single current
monitoring channel.

start_p2p_device Start the given P2P device.

stop_p2p_device Stop the given P2P device.

set_mac_acl Sets MAC address control list in AP and P2P GO mode. Parameters
include ACL policy, an array of MAC address of stations and the
number of MAC addresses. If there is already a list in driver this
new list replaces the existing one. Driver has to clear its ACL when
number of MAC addresses entries is passed as 0. Drivers which
advertise the support for MAC based ACL have to implement this
callback.

start_radar_detection Start radar detection in the driver.

update_ft_ies Provide updated Fast BSS Transition information to the driver. If
the SME is in the driver/firmware, this information can be used in
building Authentication and Reassociation Request frames.

crit_proto_start Indicates a critical protocol needs more link reliability for a given
duration (milliseconds). The protocol is provided so the driver can
take the most appropriate actions.

crit_proto_stop Indicates critical protocol no longer needs increased link reliability.
This operation can not fail.

set_coalesce Set coalesce parameters.

channel_switch initiate channel-switch procedure (with CSA). Driver is responsi-
ble for veryfing if the switch is possible. Since this is inherent-
ly tricky driver may decide to disconnect an interface later with
cfg80211_stop_iface. This doesn't mean driver can accept
everything. It should do it's best to verify requests and reject them
as soon as possible.

set_qos_map Set QoS mapping information to the driver

set_ap_chanwidth Set the AP (including P2P GO) mode channel width for the giv-
en interface This is used e.g. for dynamic HT 20/40 MHz channel
width changes during the lifetime of the BSS.

add_tx_ts validate (if admitted_time is 0) or add a TX TS to the device with
the given parameters; action frame exchange has been handled by
userspace so this just has to modify the TX path to take the TS into
account. If the admitted time is 0 just validate the parameters to
make sure the session can be created at all; it is valid to just always

44

Actions and configuration

return success for that but that may result in inefficient behaviour
(handshake with the peer followed by immediate teardown when
the addition is later rejected)

del_tx_ts remove an existing TX TS

tdls_channel_switch Start channel-switching with a TDLS peer. The driver is responsi-
ble for continually initiating channel-switching operations and re-
turning to the base channel for communication with the AP.

tdls_cancel_channel_switch Stop channel-switching with a TDLS peer. Both peers must be on
the base channel when the call completes.

Description

This struct is registered by fullmac card drivers and/or wireless stacks in order to handle configuration
requests on their interfaces.

All callbacks except where otherwise noted should return 0 on success or a negative error code.

All operations are currently invoked under rtnl for consistency with the wireless extensions but this is
subject to reevaluation as soon as this code is used more widely and we have a first user without wext.

45

Actions and configuration

Name
struct vif_params — describes virtual interface parameters

Synopsis

struct vif_params {
 int use_4addr;
 u8 macaddr[ETH_ALEN];
};

Members
use_4addr use 4-address frames

macaddr[ETH_ALEN] address to use for this virtual interface. If this parameter is set to zero address
the driver may determine the address as needed. This feature is only fully sup-
ported by drivers that enable the NL80211_FEATURE_MAC_ON_CREATE
flag. Others may support creating * only p2p devices with specified MAC.

46

Actions and configuration

Name
struct key_params — key information

Synopsis

struct key_params {
 const u8 * key;
 const u8 * seq;
 int key_len;
 int seq_len;
 u32 cipher;
};

Members
key key material

seq sequence counter (IV/PN) for TKIP and CCMP keys, only used with the get_key callback,
must be in little endian, length given by seq_len.

key_len length of key material

seq_len length of seq.

cipher cipher suite selector

Description

Information about a key

47

Actions and configuration

Name
enum survey_info_flags — survey information flags

Synopsis

enum survey_info_flags {
 SURVEY_INFO_NOISE_DBM,
 SURVEY_INFO_IN_USE,
 SURVEY_INFO_TIME,
 SURVEY_INFO_TIME_BUSY,
 SURVEY_INFO_TIME_EXT_BUSY,
 SURVEY_INFO_TIME_RX,
 SURVEY_INFO_TIME_TX,
 SURVEY_INFO_TIME_SCAN
};

Constants
SURVEY_INFO_NOISE_DBM noise (in dBm) was filled in

SURVEY_INFO_IN_USE channel is currently being used

SURVEY_INFO_TIME active time (in ms) was filled in

SURVEY_INFO_TIME_BUSY busy time was filled in

SURVEY_INFO_TIME_EX-
T_BUSY

extension channel busy time was filled in

SURVEY_INFO_TIME_RX receive time was filled in

SURVEY_INFO_TIME_TX transmit time was filled in

SURVEY_INFO_TIME_SCAN scan time was filled in

Description
Used by the driver to indicate which info in struct survey_info it has filled in during the get_survey.

48

Actions and configuration

Name
struct survey_info — channel survey response

Synopsis

struct survey_info {
 struct ieee80211_channel * channel;
 u64 time;
 u64 time_busy;
 u64 time_ext_busy;
 u64 time_rx;
 u64 time_tx;
 u64 time_scan;
 u32 filled;
 s8 noise;
};

Members
channel the channel this survey record reports, may be NULL for a single record to report

global statistics

time amount of time in ms the radio was turn on (on the channel)

time_busy amount of time the primary channel was sensed busy

time_ext_busy amount of time the extension channel was sensed busy

time_rx amount of time the radio spent receiving data

time_tx amount of time the radio spent transmitting data

time_scan amount of time the radio spent for scanning

filled bitflag of flags from enum survey_info_flags

noise channel noise in dBm. This and all following fields are optional

Description
Used by dump_survey to report back per-channel survey information.

This structure can later be expanded with things like channel duty cycle etc.

49

Actions and configuration

Name
struct cfg80211_beacon_data — beacon data

Synopsis

struct cfg80211_beacon_data {
 const u8 * head;
 const u8 * tail;
 const u8 * beacon_ies;
 const u8 * proberesp_ies;
 const u8 * assocresp_ies;
 const u8 * probe_resp;
 size_t head_len;
 size_t tail_len;
 size_t beacon_ies_len;
 size_t proberesp_ies_len;
 size_t assocresp_ies_len;
 size_t probe_resp_len;
};

Members
head head portion of beacon (before TIM IE) or NULL if not changed

tail tail portion of beacon (after TIM IE) or NULL if not changed

beacon_ies extra information element(s) to add into Beacon frames or NULL

proberesp_ies extra information element(s) to add into Probe Response frames or NULL

assocresp_ies extra information element(s) to add into (Re)Association Response frames or
NULL

probe_resp probe response template (AP mode only)

head_len length of head

tail_len length of tail

beacon_ies_len length of beacon_ies in octets

proberesp_ies_len length of proberesp_ies in octets

assocresp_ies_len length of assocresp_ies in octets

probe_resp_len length of probe response template (probe_resp)

50

Actions and configuration

Name
struct cfg80211_ap_settings — AP configuration

Synopsis

struct cfg80211_ap_settings {
 struct cfg80211_chan_def chandef;
 struct cfg80211_beacon_data beacon;
 int beacon_interval;
 int dtim_period;
 const u8 * ssid;
 size_t ssid_len;
 enum nl80211_hidden_ssid hidden_ssid;
 struct cfg80211_crypto_settings crypto;
 bool privacy;
 enum nl80211_auth_type auth_type;
 enum nl80211_smps_mode smps_mode;
 int inactivity_timeout;
 u8 p2p_ctwindow;
 bool p2p_opp_ps;
 const struct cfg80211_acl_data * acl;
};

Members
chandef defines the channel to use

beacon beacon data

beacon_interval beacon interval

dtim_period DTIM period

ssid SSID to be used in the BSS (note: may be NULL if not provided from user
space)

ssid_len length of ssid

hidden_ssid whether to hide the SSID in Beacon/Probe Response frames

crypto crypto settings

privacy the BSS uses privacy

auth_type Authentication type (algorithm)

smps_mode SMPS mode

inactivity_timeout time in seconds to determine station's inactivity.

p2p_ctwindow P2P CT Window

p2p_opp_ps P2P opportunistic PS

51

Actions and configuration

acl ACL configuration used by the drivers which has support for MAC address
based access control

Description

Used to configure an AP interface.

52

Actions and configuration

Name
struct station_parameters — station parameters

Synopsis

struct station_parameters {
 const u8 * supported_rates;
 struct net_device * vlan;
 u32 sta_flags_mask;
 u32 sta_flags_set;
 u32 sta_modify_mask;
 int listen_interval;
 u16 aid;
 u8 supported_rates_len;
 u8 plink_action;
 u8 plink_state;
 const struct ieee80211_ht_cap * ht_capa;
 const struct ieee80211_vht_cap * vht_capa;
 u8 uapsd_queues;
 u8 max_sp;
 enum nl80211_mesh_power_mode local_pm;
 u16 capability;
 const u8 * ext_capab;
 u8 ext_capab_len;
 const u8 * supported_channels;
 u8 supported_channels_len;
 const u8 * supported_oper_classes;
 u8 supported_oper_classes_len;
 u8 opmode_notif;
 bool opmode_notif_used;
};

Members
supported_rates supported rates in IEEE 802.11 format (or NULL for no change)

vlan vlan interface station should belong to

sta_flags_mask station flags that changed (bitmask of BIT(NL80211_S-
TA_FLAG_...))

sta_flags_set station flags values (bitmask of BIT(NL80211_STA_FLAG_...))

sta_modify_mask bitmap indicating which parameters changed (for those that don't
have a natural “no change” value), see enum station_parameter-
s_apply_mask

listen_interval listen interval or -1 for no change

aid AID or zero for no change

supported_rates_len number of supported rates

53

Actions and configuration

plink_action plink action to take

plink_state set the peer link state for a station

ht_capa HT capabilities of station

vht_capa VHT capabilities of station

uapsd_queues bitmap of queues configured for uapsd. same format as the AC
bitmap in the QoS info field

max_sp max Service Period. same format as the MAX_SP in the QoS info
field (but already shifted down)

local_pm local link-specific mesh power save mode (no change when set to
unknown)

capability station capability

ext_capab extended capabilities of the station

ext_capab_len number of extended capabilities

supported_channels supported channels in IEEE 802.11 format

supported_channels_len number of supported channels

supported_oper_classes supported oper classes in IEEE 802.11 format

supported_oper_classes_len number of supported operating classes

opmode_notif operating mode field from Operating Mode Notification

opmode_notif_used information if operating mode field is used

Description

Used to change and create a new station.

54

Actions and configuration

Name
enum rate_info_flags — bitrate info flags

Synopsis

enum rate_info_flags {
 RATE_INFO_FLAGS_MCS,
 RATE_INFO_FLAGS_VHT_MCS,
 RATE_INFO_FLAGS_SHORT_GI,
 RATE_INFO_FLAGS_60G
};

Constants
RATE_INFO_FLAGS_MCS mcs field filled with HT MCS

RATE_INFO_FLAGS_VHT_MCS mcs field filled with VHT MCS

RATE_IN-
FO_FLAGS_SHORT_GI

400ns guard interval

RATE_INFO_FLAGS_60G 60GHz MCS

Description

Used by the driver to indicate the specific rate transmission type for 802.11n transmissions.

55

Actions and configuration

Name
struct rate_info — bitrate information

Synopsis

struct rate_info {
 u8 flags;
 u8 mcs;
 u16 legacy;
 u8 nss;
 u8 bw;
};

Members
flags bitflag of flags from enum rate_info_flags

mcs mcs index if struct describes a 802.11n bitrate

legacy bitrate in 100kbit/s for 802.11abg

nss number of streams (VHT only)

bw bandwidth (from enum rate_info_bw)

Description

Information about a receiving or transmitting bitrate

56

Actions and configuration

Name
struct station_info — station information

Synopsis

struct station_info {
 u32 filled;
 u32 connected_time;
 u32 inactive_time;
 u64 rx_bytes;
 u64 tx_bytes;
 u16 llid;
 u16 plid;
 u8 plink_state;
 s8 signal;
 s8 signal_avg;
 u8 chains;
 s8 chain_signal[IEEE80211_MAX_CHAINS];
 s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
 struct rate_info txrate;
 struct rate_info rxrate;
 u32 rx_packets;
 u32 tx_packets;
 u32 tx_retries;
 u32 tx_failed;
 u32 rx_dropped_misc;
 struct sta_bss_parameters bss_param;
 struct nl80211_sta_flag_update sta_flags;
 int generation;
 const u8 * assoc_req_ies;
 size_t assoc_req_ies_len;
 u32 beacon_loss_count;
 s64 t_offset;
 enum nl80211_mesh_power_mode local_pm;
 enum nl80211_mesh_power_mode peer_pm;
 enum nl80211_mesh_power_mode nonpeer_pm;
 u32 expected_throughput;
 u64 rx_beacon;
 u8 rx_beacon_signal_avg;
 struct cfg80211_tid_stats pertid[IEEE80211_NUM_TIDS + 1];
};

Members
filled bitflag of flags using the bits of enum nl80211_sta_info to indicate

the relevant values in this struct for them

connected_time time(in secs) since a station is last connected

inactive_time time since last station activity (tx/rx) in milliseconds

rx_bytes bytes (size of MPDUs) received from this station

57

Actions and configuration

tx_bytes bytes (size of MPDUs) transmitted to this station

llid mesh local link id

plid mesh peer link id

plink_state mesh peer link state

signal The signal strength, type depends on the wiphy's signal_type. For
CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.

signal_avg Average signal strength, type depends on the wiphy's signal_type.
For CFG80211_SIGNAL_TYPE_MBM, value is expressed in
dBm.

chains bitmask for filled values in chain_signal, chain_sig-
nal_avg

chain_sig-
nal[IEEE80211_MAX_CHAINS]

per-chain signal strength of last received packet in dBm

chain_sig-
nal_avg[IEEE80211_MAX_CHAINS]

per-chain signal strength average in dBm

txrate current unicast bitrate from this station

rxrate current unicast bitrate to this station

rx_packets packets (MSDUs & MMPDUs) received from this station

tx_packets packets (MSDUs & MMPDUs) transmitted to this station

tx_retries cumulative retry counts (MPDUs)

tx_failed number of failed transmissions (MPDUs) (retries exceeded, no
ACK)

rx_dropped_misc Dropped for un-specified reason.

bss_param current BSS parameters

sta_flags station flags mask & values

generation generation number for nl80211 dumps. This number should in-
crease every time the list of stations changes, i.e. when a station is
added or removed, so that userspace can tell whether it got a con-
sistent snapshot.

assoc_req_ies IEs from (Re)Association Request. This is used only when in
AP mode with drivers that do not use user space MLME/
SME implementation. The information is provided for the
cfg80211_new_sta calls to notify user space of the IEs.

assoc_req_ies_len Length of assoc_req_ies buffer in octets.

beacon_loss_count Number of times beacon loss event has triggered.

t_offset Time offset of the station relative to this host.

58

Actions and configuration

local_pm local mesh STA power save mode

peer_pm peer mesh STA power save mode

nonpeer_pm non-peer mesh STA power save mode

expected_throughput expected throughput in kbps (including 802.11 headers) towards
this station.

rx_beacon number of beacons received from this peer

rx_beacon_signal_avg signal strength average (in dBm) for beacons received from this
peer

pertid[IEEE80211_NUM_TIDS +
1]

per-TID statistics, see struct cfg80211_tid_stats, using the last
(IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in
QoS-MPDUs.

Description

Station information filled by driver for get_station and dump_station.

59

Actions and configuration

Name
enum monitor_flags — monitor flags

Synopsis

enum monitor_flags {
 MONITOR_FLAG_FCSFAIL,
 MONITOR_FLAG_PLCPFAIL,
 MONITOR_FLAG_CONTROL,
 MONITOR_FLAG_OTHER_BSS,
 MONITOR_FLAG_COOK_FRAMES,
 MONITOR_FLAG_ACTIVE
};

Constants
MONITOR_FLAG_FCSFAIL pass frames with bad FCS

MONITOR_FLAG_PLCPFAIL pass frames with bad PLCP

MONITOR_FLAG_CONTROL pass control frames

MONITOR_FLAG_OTHER_BSS disable BSSID filtering

MONI-
TOR_FLAG_COOK_FRAMES

report frames after processing

MONITOR_FLAG_ACTIVE active monitor, ACKs frames on its MAC address

Description

Monitor interface configuration flags. Note that these must be the bits according to the nl80211 flags.

60

Actions and configuration

Name
enum mpath_info_flags — mesh path information flags

Synopsis

enum mpath_info_flags {
 MPATH_INFO_FRAME_QLEN,
 MPATH_INFO_SN,
 MPATH_INFO_METRIC,
 MPATH_INFO_EXPTIME,
 MPATH_INFO_DISCOVERY_TIMEOUT,
 MPATH_INFO_DISCOVERY_RETRIES,
 MPATH_INFO_FLAGS
};

Constants
MPATH_INFO_FRAME_QLEN frame_qlen filled

MPATH_INFO_SN sn filled

MPATH_INFO_METRIC metric filled

MPATH_INFO_EXPTIME exptime filled

MPATH_INFO_DISCOV-
ERY_TIMEOUT

discovery_timeout filled

MPATH_INFO_DISCOV-
ERY_RETRIES

discovery_retries filled

MPATH_INFO_FLAGS flags filled

Description

Used by the driver to indicate which info in struct mpath_info it has filled in during get_station or
dump_station.

61

Actions and configuration

Name
struct mpath_info — mesh path information

Synopsis

struct mpath_info {
 u32 filled;
 u32 frame_qlen;
 u32 sn;
 u32 metric;
 u32 exptime;
 u32 discovery_timeout;
 u8 discovery_retries;
 u8 flags;
 int generation;
};

Members
filled bitfield of flags from enum mpath_info_flags

frame_qlen number of queued frames for this destination

sn target sequence number

metric metric (cost) of this mesh path

exptime expiration time for the mesh path from now, in msecs

discovery_timeout total mesh path discovery timeout, in msecs

discovery_retries mesh path discovery retries

flags mesh path flags

generation generation number for nl80211 dumps. This number should increase every
time the list of mesh paths changes, i.e. when a station is added or removed,
so that userspace can tell whether it got a consistent snapshot.

Description

Mesh path information filled by driver for get_mpath and dump_mpath.

62

Actions and configuration

Name
struct bss_parameters — BSS parameters

Synopsis

struct bss_parameters {
 int use_cts_prot;
 int use_short_preamble;
 int use_short_slot_time;
 const u8 * basic_rates;
 u8 basic_rates_len;
 int ap_isolate;
 int ht_opmode;
 s8 p2p_ctwindow;
 s8 p2p_opp_ps;
};

Members
use_cts_prot Whether to use CTS protection (0 = no, 1 = yes, -1 = do not change)

use_short_preamble Whether the use of short preambles is allowed (0 = no, 1 = yes, -1 = do
not change)

use_short_slot_time Whether the use of short slot time is allowed (0 = no, 1 = yes, -1 = do not
change)

basic_rates basic rates in IEEE 802.11 format (or NULL for no change)

basic_rates_len number of basic rates

ap_isolate do not forward packets between connected stations

ht_opmode HT Operation mode (u16 = opmode, -1 = do not change)

p2p_ctwindow P2P CT Window (-1 = no change)

p2p_opp_ps P2P opportunistic PS (-1 = no change)

Description

Used to change BSS parameters (mainly for AP mode).

63

Actions and configuration

Name
struct ieee80211_txq_params — TX queue parameters

Synopsis

struct ieee80211_txq_params {
 enum nl80211_ac ac;
 u16 txop;
 u16 cwmin;
 u16 cwmax;
 u8 aifs;
};

Members
ac AC identifier

txop Maximum burst time in units of 32 usecs, 0 meaning disabled

cwmin Minimum contention window [a value of the form 2^n-1 in the range 1..32767]

cwmax Maximum contention window [a value of the form 2^n-1 in the range 1..32767]

aifs Arbitration interframe space [0..255]

64

Actions and configuration

Name
struct cfg80211_crypto_settings — Crypto settings

Synopsis

struct cfg80211_crypto_settings {
 u32 wpa_versions;
 u32 cipher_group;
 int n_ciphers_pairwise;
 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
 int n_akm_suites;
 u32 akm_suites[NL80211_MAX_NR_AKM_SUITES];
 bool control_port;
 __be16 control_port_ethertype;
 bool control_port_no_encrypt;
};

Members
wpa_versions indicates which, if any, WPA versions are enabled (from enum

nl80211_wpa_versions)

cipher_group group key cipher suite (or 0 if unset)

n_ciphers_pairwise number of AP supported unicast ciphers

ciphers_pairwise[N-
L80211_MAX_N-
R_CIPHER_SUITES]

unicast key cipher suites

n_akm_suites number of AKM suites

akm_suites[NL80211_MAX_N-
R_AKM_SUITES]

AKM suites

control_port Whether user space controls IEEE 802.1X port, i.e., sets/clears
NL80211_STA_FLAG_AUTHORIZED. If true, the driver is re-
quired to assume that the port is unauthorized until authorized by
user space. Otherwise, port is marked authorized by default.

control_port_ethertype the control port protocol that should be allowed through even on
unauthorized ports

control_port_no_encrypt TRUE to prevent encryption of control port protocol frames.

65

Actions and configuration

Name
struct cfg80211_auth_request — Authentication request data

Synopsis

struct cfg80211_auth_request {
 struct cfg80211_bss * bss;
 const u8 * ie;
 size_t ie_len;
 enum nl80211_auth_type auth_type;
 const u8 * key;
 u8 key_len;
 u8 key_idx;
 const u8 * sae_data;
 size_t sae_data_len;
};

Members
bss The BSS to authenticate with, the callee must obtain a reference to it if it needs to

keep it.

ie Extra IEs to add to Authentication frame or NULL

ie_len Length of ie buffer in octets

auth_type Authentication type (algorithm)

key WEP key for shared key authentication

key_len length of WEP key for shared key authentication

key_idx index of WEP key for shared key authentication

sae_data Non-IE data to use with SAE or NULL. This starts with Authentication transaction
sequence number field.

sae_data_len Length of sae_data buffer in octets

Description

This structure provides information needed to complete IEEE 802.11 authentication.

66

Actions and configuration

Name
struct cfg80211_assoc_request — (Re)Association request data

Synopsis

struct cfg80211_assoc_request {
 struct cfg80211_bss * bss;
 const u8 * ie;
 const u8 * prev_bssid;
 size_t ie_len;
 struct cfg80211_crypto_settings crypto;
 bool use_mfp;
 u32 flags;
 struct ieee80211_ht_cap ht_capa;
 struct ieee80211_ht_cap ht_capa_mask;
 struct ieee80211_vht_cap vht_capa;
 struct ieee80211_vht_cap vht_capa_mask;
};

Members
bss The BSS to associate with. If the call is successful the driver is given a reference

that it must give back to cfg80211_send_rx_assoc or to cfg80211_as-
soc_timeout. To ensure proper refcounting, new association requests while al-
ready associating must be rejected.

ie Extra IEs to add to (Re)Association Request frame or NULL

prev_bssid previous BSSID, if not NULL use reassociate frame

ie_len Length of ie buffer in octets

crypto crypto settings

use_mfp Use management frame protection (IEEE 802.11w) in this association

flags See enum cfg80211_assoc_req_flags

ht_capa HT Capabilities over-rides. Values set in ht_capa_mask will be used in ht_capa. Un-
supported values will be ignored.

ht_capa_mask The bits of ht_capa which are to be used.

vht_capa VHT capability override

vht_capa_mask VHT capability mask indicating which fields to use

Description

This structure provides information needed to complete IEEE 802.11 (re)association.

67

Actions and configuration

Name
struct cfg80211_deauth_request — Deauthentication request data

Synopsis

struct cfg80211_deauth_request {
 const u8 * bssid;
 const u8 * ie;
 size_t ie_len;
 u16 reason_code;
 bool local_state_change;
};

Members
bssid the BSSID of the BSS to deauthenticate from

ie Extra IEs to add to Deauthentication frame or NULL

ie_len Length of ie buffer in octets

reason_code The reason code for the deauthentication

local_state_change if set, change local state only and do not set a deauth frame

Description

This structure provides information needed to complete IEEE 802.11 deauthentication.

68

Actions and configuration

Name
struct cfg80211_disassoc_request — Disassociation request data

Synopsis

struct cfg80211_disassoc_request {
 struct cfg80211_bss * bss;
 const u8 * ie;
 size_t ie_len;
 u16 reason_code;
 bool local_state_change;
};

Members
bss the BSS to disassociate from

ie Extra IEs to add to Disassociation frame or NULL

ie_len Length of ie buffer in octets

reason_code The reason code for the disassociation

local_state_change This is a request for a local state only, i.e., no Disassociation frame is to be
transmitted.

Description

This structure provides information needed to complete IEEE 802.11 disassocation.

69

Actions and configuration

Name
struct cfg80211_ibss_params — IBSS parameters

Synopsis

struct cfg80211_ibss_params {
 const u8 * ssid;
 const u8 * bssid;
 struct cfg80211_chan_def chandef;
 const u8 * ie;
 u8 ssid_len;
 u8 ie_len;
 u16 beacon_interval;
 u32 basic_rates;
 bool channel_fixed;
 bool privacy;
 bool control_port;
 bool userspace_handles_dfs;
 int mcast_rate[IEEE80211_NUM_BANDS];
 struct ieee80211_ht_cap ht_capa;
 struct ieee80211_ht_cap ht_capa_mask;
};

Members
ssid The SSID, will always be non-null.

bssid Fixed BSSID requested, maybe be NULL, if set do not search for
IBSSs with a different BSSID.

chandef defines the channel to use if no other IBSS to join can be found

ie information element(s) to include in the beacon

ssid_len The length of the SSID, will always be non-zero.

ie_len length of that

beacon_interval beacon interval to use

basic_rates bitmap of basic rates to use when creating the IBSS

channel_fixed The channel should be fixed -- do not search for IBSSs to join on
other channels.

privacy this is a protected network, keys will be configured after joining

control_port whether user space controls IEEE 802.1X port, i.e., sets/clears
NL80211_STA_FLAG_AUTHORIZED. If true, the driver is re-
quired to assume that the port is unauthorized until authorized by
user space. Otherwise, port is marked authorized by default.

userspace_handles_dfs whether user space controls DFS operation, i.e. changes the chan-
nel when a radar is detected. This is required to operate on DFS
channels.

70

Actions and configuration

mcast_rate[IEEE80211_NUM_BANDS]per-band multicast rate index + 1 (0: disabled)

ht_capa HT Capabilities over-rides. Values set in ht_capa_mask will be
used in ht_capa. Un-supported values will be ignored.

ht_capa_mask The bits of ht_capa which are to be used.

Description

This structure defines the IBSS parameters for the join_ibss method.

71

Actions and configuration

Name
struct cfg80211_connect_params — Connection parameters

Synopsis

struct cfg80211_connect_params {
 struct ieee80211_channel * channel;
 struct ieee80211_channel * channel_hint;
 const u8 * bssid;
 const u8 * bssid_hint;
 const u8 * ssid;
 size_t ssid_len;
 enum nl80211_auth_type auth_type;
 const u8 * ie;
 size_t ie_len;
 bool privacy;
 enum nl80211_mfp mfp;
 struct cfg80211_crypto_settings crypto;
 const u8 * key;
 u8 key_len;
 u8 key_idx;
 u32 flags;
 int bg_scan_period;
 struct ieee80211_ht_cap ht_capa;
 struct ieee80211_ht_cap ht_capa_mask;
 struct ieee80211_vht_cap vht_capa;
 struct ieee80211_vht_cap vht_capa_mask;
};

Members
channel The channel to use or NULL if not specified (auto-select based on scan results)

channel_hint The channel of the recommended BSS for initial connection or NULL if not spec-
ified

bssid The AP BSSID or NULL if not specified (auto-select based on scan results)

bssid_hint The recommended AP BSSID for initial connection to the BSS or NULL if
not specified. Unlike the bssid parameter, the driver is allowed to ignore this
bssid_hint if it has knowledge of a better BSS to use.

ssid SSID

ssid_len Length of ssid in octets

auth_type Authentication type (algorithm)

ie IEs for association request

ie_len Length of assoc_ie in octets

privacy indicates whether privacy-enabled APs should be used

72

Actions and configuration

mfp indicate whether management frame protection is used

crypto crypto settings

key WEP key for shared key authentication

key_len length of WEP key for shared key authentication

key_idx index of WEP key for shared key authentication

flags See enum cfg80211_assoc_req_flags

bg_scan_period Background scan period in seconds or -1 to indicate that default value is to be used.

ht_capa HT Capabilities over-rides. Values set in ht_capa_mask will be used in ht_capa.
Un-supported values will be ignored.

ht_capa_mask The bits of ht_capa which are to be used.

vht_capa VHT Capability overrides

vht_capa_mask The bits of vht_capa which are to be used.

Description

This structure provides information needed to complete IEEE 802.11 authentication and association.

73

Actions and configuration

Name
struct cfg80211_pmksa — PMK Security Association

Synopsis

struct cfg80211_pmksa {
 const u8 * bssid;
 const u8 * pmkid;
};

Members
bssid The AP's BSSID.

pmkid The PMK material itself.

Description

This structure is passed to the set/del_pmksa method for PMKSA caching.

74

Actions and configuration

Name
cfg80211_rx_mlme_mgmt — notification of processed MLME management frame

Synopsis
void cfg80211_rx_mlme_mgmt (struct net_device * dev, const u8 * buf,
size_t len);

Arguments
dev network device

buf authentication frame (header + body)

len length of the frame data

Description
This function is called whenever an authentication, disassociation or deauthentication frame has been
received and processed in station mode.

After being asked to authenticate via cfg80211_ops
:auth the driver must call either this function or cfg80211_auth_timeout.

After being asked to associate via cfg80211_ops
:assoc the driver must call either this function or cfg80211_auth_timeout. While connected, the
driver must calls this for received and processed disassociation and deauthentication frames. If the frame
couldn't be used because it was unprotected, the driver must call the function cfg80211_rx_unpro-
t_mlme_mgmt instead.

This function may sleep. The caller must hold the corresponding wdev's mutex.

75

Actions and configuration

Name
cfg80211_auth_timeout — notification of timed out authentication

Synopsis
void cfg80211_auth_timeout (struct net_device * dev, const u8 * addr);

Arguments
dev network device

addr The MAC address of the device with which the authentication timed out

Description
This function may sleep. The caller must hold the corresponding wdev's mutex.

76

Actions and configuration

Name
cfg80211_rx_assoc_resp — notification of processed association response

Synopsis
void cfg80211_rx_assoc_resp (struct net_device * dev, struct cfg80211_b-
ss * bss, const u8 * buf, size_t len, int uapsd_queues);

Arguments
dev network device

bss the BSS that association was requested with, ownership of the pointer moves to
cfg80211 in this call

buf authentication frame (header + body)

len length of the frame data

uapsd_queues bitmap of ACs configured to uapsd. -1 if n/a.

After being asked to associate via cfg80211_ops
:assoc the driver must call either this function or cfg80211_auth_timeout.

This function may sleep. The caller must hold the corresponding wdev's mutex.

77

Actions and configuration

Name
cfg80211_assoc_timeout — notification of timed out association

Synopsis
void cfg80211_assoc_timeout (struct net_device * dev, struct cfg80211_b-
ss * bss);

Arguments
dev network device

bss The BSS entry with which association timed out.

Description
This function may sleep. The caller must hold the corresponding wdev's mutex.

78

Actions and configuration

Name
cfg80211_tx_mlme_mgmt — notification of transmitted deauth/disassoc frame

Synopsis
void cfg80211_tx_mlme_mgmt (struct net_device * dev, const u8 * buf,
size_t len);

Arguments
dev network device

buf 802.11 frame (header + body)

len length of the frame data

Description
This function is called whenever deauthentication has been processed in station mode. This includes both
received deauthentication frames and locally generated ones. This function may sleep. The caller must
hold the corresponding wdev's mutex.

79

Actions and configuration

Name
cfg80211_ibss_joined — notify cfg80211 that device joined an IBSS

Synopsis
void cfg80211_ibss_joined (struct net_device * dev, const u8 * bssid,
struct ieee80211_channel * channel, gfp_t gfp);

Arguments
dev network device

bssid the BSSID of the IBSS joined

channel the channel of the IBSS joined

gfp allocation flags

Description
This function notifies cfg80211 that the device joined an IBSS or switched to a different BSSID. Be-
fore this function can be called, either a beacon has to have been received from the IBSS, or one of the
cfg80211_inform_bss{,_frame} functions must have been called with the locally generated beacon -- this
guarantees that there is always a scan result for this IBSS. cfg80211 will handle the rest.

80

Actions and configuration

Name
cfg80211_connect_result — notify cfg80211 of connection result

Synopsis
void cfg80211_connect_result (struct net_device * dev, const u8 * bssid,
const u8 * req_ie, size_t req_ie_len, const u8 * resp_ie, size_t re-
sp_ie_len, u16 status, gfp_t gfp);

Arguments
dev network device

bssid the BSSID of the AP

req_ie association request IEs (maybe be NULL)

req_ie_len association request IEs length

resp_ie association response IEs (may be NULL)

resp_ie_len assoc response IEs length

status status code, 0 for successful connection, use WLAN_S-
TATUS_UNSPECIFIED_FAILURE if your device cannot give you the real status
code for failures.

gfp allocation flags

Description
It should be called by the underlying driver whenever connect has succeeded.

81

Actions and configuration

Name
cfg80211_roamed — notify cfg80211 of roaming

Synopsis
void cfg80211_roamed (struct net_device * dev, struct ieee80211_channel
* channel, const u8 * bssid, const u8 * req_ie, size_t req_ie_len, const
u8 * resp_ie, size_t resp_ie_len, gfp_t gfp);

Arguments
dev network device

channel the channel of the new AP

bssid the BSSID of the new AP

req_ie association request IEs (maybe be NULL)

req_ie_len association request IEs length

resp_ie association response IEs (may be NULL)

resp_ie_len assoc response IEs length

gfp allocation flags

Description
It should be called by the underlying driver whenever it roamed from one AP to another while connected.

82

Actions and configuration

Name
cfg80211_disconnected — notify cfg80211 that connection was dropped

Synopsis
void cfg80211_disconnected (struct net_device * dev, u16 reason, const
u8 * ie, size_t ie_len, bool locally_generated, gfp_t gfp);

Arguments
dev network device

reason reason code for the disconnection, set it to 0 if unknown

ie information elements of the deauth/disassoc frame (may be NULL)

ie_len length of IEs

locally_generated disconnection was requested locally

gfp allocation flags

Description
After it calls this function, the driver should enter an idle state and not try to connect to any AP any more.

83

Actions and configuration

Name
cfg80211_ready_on_channel — notification of remain_on_channel start

Synopsis
void cfg80211_ready_on_channel (struct wireless_dev * wdev, u64 cookie,
struct ieee80211_channel * chan, unsigned int duration, gfp_t gfp);

Arguments
wdev wireless device

cookie the request cookie

chan The current channel (from remain_on_channel request)

duration Duration in milliseconds that the driver intents to remain on the channel

gfp allocation flags

84

Actions and configuration

Name
cfg80211_remain_on_channel_expired — remain_on_channel duration expired

Synopsis
void cfg80211_remain_on_channel_expired (struct wireless_dev * wdev,
u64 cookie, struct ieee80211_channel * chan, gfp_t gfp);

Arguments
wdev wireless device

cookie the request cookie

chan The current channel (from remain_on_channel request)

gfp allocation flags

85

Actions and configuration

Name
cfg80211_new_sta — notify userspace about station

Synopsis
void cfg80211_new_sta (struct net_device * dev, const u8 * mac_addr,
struct station_info * sinfo, gfp_t gfp);

Arguments
dev the netdev

mac_addr the station's address

sinfo the station information

gfp allocation flags

86

Actions and configuration

Name
cfg80211_rx_mgmt — notification of received, unprocessed management frame

Synopsis
bool cfg80211_rx_mgmt (struct wireless_dev * wdev, int freq, int sig_dbm,
const u8 * buf, size_t len, u32 flags);

Arguments
wdev wireless device receiving the frame

freq Frequency on which the frame was received in MHz

sig_dbm signal strength in mBm, or 0 if unknown

buf Management frame (header + body)

len length of the frame data

flags flags, as defined in enum nl80211_rxmgmt_flags

Description
This function is called whenever an Action frame is received for a station mode interface, but is not
processed in kernel.

Return
true if a user space application has registered for this frame. For action frames, that makes it responsible
for rejecting unrecognized action frames; false otherwise, in which case for action frames the driver is
responsible for rejecting the frame.

87

Actions and configuration

Name
cfg80211_mgmt_tx_status — notification of TX status for management frame

Synopsis
void cfg80211_mgmt_tx_status (struct wireless_dev * wdev, u64 cookie,
const u8 * buf, size_t len, bool ack, gfp_t gfp);

Arguments
wdev wireless device receiving the frame

cookie Cookie returned by cfg80211_ops::mgmt_tx

buf Management frame (header + body)

len length of the frame data

ack Whether frame was acknowledged

gfp context flags

Description
This function is called whenever a management frame was requested to be

transmitted with cfg80211_ops
:mgmt_tx to report the TX status of the transmission attempt.

88

Actions and configuration

Name
cfg80211_cqm_rssi_notify — connection quality monitoring rssi event

Synopsis
void cfg80211_cqm_rssi_notify (struct net_device * dev, enum nl80211_c-
qm_rssi_threshold_event rssi_event, gfp_t gfp);

Arguments
dev network device

rssi_event the triggered RSSI event

gfp context flags

Description
This function is called when a configured connection quality monitoring rssi threshold reached event oc-
curs.

89

Actions and configuration

Name
cfg80211_cqm_pktloss_notify — notify userspace about packetloss to peer

Synopsis
void cfg80211_cqm_pktloss_notify (struct net_device * dev, const u8 *
peer, u32 num_packets, gfp_t gfp);

Arguments
dev network device

peer peer's MAC address

num_packets how many packets were lost -- should be a fixed threshold but probably no less than
maybe 50, or maybe a throughput dependent threshold (to account for temporary in-
terference)

gfp context flags

90

Actions and configuration

Name
cfg80211_michael_mic_failure — notification of Michael MIC failure (TKIP)

Synopsis
void cfg80211_michael_mic_failure (struct net_device * dev, const u8
* addr, enum nl80211_key_type key_type, int key_id, const u8 * tsc,
gfp_t gfp);

Arguments
dev network device

addr The source MAC address of the frame

key_type The key type that the received frame used

key_id Key identifier (0..3). Can be -1 if missing.

tsc The TSC value of the frame that generated the MIC failure (6 octets)

gfp allocation flags

Description
This function is called whenever the local MAC detects a MIC failure in a received frame. This matches
with MLME-MICHAELMICFAILURE.indication primitive.

91

Chapter 3. Scanning and BSS list
handling

The scanning process itself is fairly simple, but cfg80211 offers quite a bit of helper functionality. To
start a scan, the scan operation will be invoked with a scan definition. This scan definition contains the
channels to scan, and the SSIDs to send probe requests for (including the wildcard, if desired). A passive
scan is indicated by having no SSIDs to probe. Additionally, a scan request may contain extra information
elements that should be added to the probe request. The IEs are guaranteed to be well-formed, and will
not exceed the maximum length the driver advertised in the wiphy structure.

When scanning finds a BSS, cfg80211 needs to be notified of that, because it is responsible for maintaining
the BSS list; the driver should not maintain a list itself. For this notification, various functions exist.

Since drivers do not maintain a BSS list, there are also a number of functions to search for a BSS and
obtain information about it from the BSS structure cfg80211 maintains. The BSS list is also made available
to userspace.

92

Scanning and BSS list handling

Name
struct cfg80211_ssid — SSID description

Synopsis

struct cfg80211_ssid {
 u8 ssid[IEEE80211_MAX_SSID_LEN];
 u8 ssid_len;
};

Members
ssid[IEEE80211_MAX_SSID_LEN] the SSID

ssid_len length of the ssid

93

Scanning and BSS list handling

Name
struct cfg80211_scan_request — scan request description

Synopsis

struct cfg80211_scan_request {
 struct cfg80211_ssid * ssids;
 int n_ssids;
 u32 n_channels;
 enum nl80211_bss_scan_width scan_width;
 const u8 * ie;
 size_t ie_len;
 u32 flags;
 u32 rates[IEEE80211_NUM_BANDS];
 struct wireless_dev * wdev;
 u8 mac_addr[ETH_ALEN];
 u8 mac_addr_mask[ETH_ALEN];
 struct wiphy * wiphy;
 unsigned long scan_start;
 bool aborted;
 bool notified;
 bool no_cck;
 struct ieee80211_channel * channels[0];
};

Members
ssids SSIDs to scan for (active scan only)

n_ssids number of SSIDs

n_channels total number of channels to scan

scan_width channel width for scanning

ie optional information element(s) to add into Probe Request or NULL

ie_len length of ie in octets

flags bit field of flags controlling operation

rates[IEEE80211_NUM_BANDS] bitmap of rates to advertise for each band

wdev the wireless device to scan for

mac_addr[ETH_ALEN] MAC address used with randomisation

mac_addr_mask[ETH_ALEN] MAC address mask used with randomisation, bits that are 0 in the
mask should be randomised, bits that are 1 should be taken from
the mac_addr

wiphy the wiphy this was for

scan_start time (in jiffies) when the scan started

94

Scanning and BSS list handling

aborted (internal) scan request was notified as aborted

notified (internal) scan request was notified as done or aborted

no_cck used to send probe requests at non CCK rate in 2GHz band

channels[0] channels to scan on.

95

Scanning and BSS list handling

Name
cfg80211_scan_done — notify that scan finished

Synopsis
void cfg80211_scan_done (struct cfg80211_scan_request * request, bool
aborted);

Arguments
request the corresponding scan request

aborted set to true if the scan was aborted for any reason, userspace will be notified of that

96

Scanning and BSS list handling

Name
struct cfg80211_bss — BSS description

Synopsis

struct cfg80211_bss {
 struct ieee80211_channel * channel;
 enum nl80211_bss_scan_width scan_width;
 const struct cfg80211_bss_ies __rcu * ies;
 const struct cfg80211_bss_ies __rcu * beacon_ies;
 const struct cfg80211_bss_ies __rcu * proberesp_ies;
 struct cfg80211_bss * hidden_beacon_bss;
 s32 signal;
 u16 beacon_interval;
 u16 capability;
 u8 bssid[ETH_ALEN];
 u8 priv[0];
};

Members
channel channel this BSS is on

scan_width width of the control channel

ies the information elements (Note that there is no guarantee that these are well-
formed!); this is a pointer to either the beacon_ies or proberesp_ies depending
on whether Probe Response frame has been received. It is always non-NULL.

beacon_ies the information elements from the last Beacon frame (implementation note:
if hidden_beacon_bss is set this struct doesn't own the beacon_ies, but
they're just pointers to the ones from the hidden_beacon_bss struct)

proberesp_ies the information elements from the last Probe Response frame

hidden_beacon_bss in case this BSS struct represents a probe response from a BSS that hides
the SSID in its beacon, this points to the BSS struct that holds the beacon
data. beacon_ies is still valid, of course, and points to the same data as
hidden_beacon_bss->beacon_ies in that case.

signal signal strength value (type depends on the wiphy's signal_type)

beacon_interval the beacon interval as from the frame

capability the capability field in host byte order

bssid[ETH_ALEN] BSSID of the BSS

priv[0] private area for driver use, has at least wiphy->bss_priv_size bytes

Description

97

Scanning and BSS list handling

This structure describes a BSS (which may also be a mesh network) for use in scan results and similar.

98

Scanning and BSS list handling

Name
struct cfg80211_inform_bss — BSS inform data

Synopsis

struct cfg80211_inform_bss {
 struct ieee80211_channel * chan;
 enum nl80211_bss_scan_width scan_width;
 s32 signal;
 u64 boottime_ns;
};

Members
chan channel the frame was received on

scan_width scan width that was used

signal signal strength value, according to the wiphy's signal type

boottime_ns timestamp (CLOCK_BOOTTIME) when the information was received; should match
the time when the frame was actually received by the device (not just by the host, in case
it was buffered on the device) and be accurate to about 10ms. If the frame isn't buffered,
just passing the return value of ktime_get_boot_ns is likely appropriate.

99

Scanning and BSS list handling

Name
cfg80211_inform_bss_frame_data — inform cfg80211 of a received BSS frame

Synopsis
struct cfg80211_bss * cfg80211_inform_bss_frame_data (struct wiphy *
wiphy, struct cfg80211_inform_bss * data, struct ieee80211_mgmt * mgmt,
size_t len, gfp_t gfp);

Arguments
wiphy the wiphy reporting the BSS

data the BSS metadata

mgmt the management frame (probe response or beacon)

len length of the management frame

gfp context flags

Description
This informs cfg80211 that BSS information was found and the BSS should be updated/added.

Return
A referenced struct, must be released with cfg80211_put_bss! Or NULL on error.

100

Scanning and BSS list handling

Name
cfg80211_inform_bss_data — inform cfg80211 of a new BSS

Synopsis
struct cfg80211_bss * cfg80211_inform_bss_data (struct wiphy * wiphy,
struct cfg80211_inform_bss * data, enum cfg80211_bss_frame_type ftype,
const u8 * bssid, u64 tsf, u16 capability, u16 beacon_interval, const
u8 * ie, size_t ielen, gfp_t gfp);

Arguments
wiphy the wiphy reporting the BSS

data the BSS metadata

ftype frame type (if known)

bssid the BSSID of the BSS

tsf the TSF sent by the peer in the beacon/probe response (or 0)

capability the capability field sent by the peer

beacon_interval the beacon interval announced by the peer

ie additional IEs sent by the peer

ielen length of the additional IEs

gfp context flags

Description
This informs cfg80211 that BSS information was found and the BSS should be updated/added.

Return
A referenced struct, must be released with cfg80211_put_bss! Or NULL on error.

101

Scanning and BSS list handling

Name
cfg80211_unlink_bss — unlink BSS from internal data structures

Synopsis
void cfg80211_unlink_bss (struct wiphy * wiphy, struct cfg80211_bss *
bss);

Arguments
wiphy the wiphy

bss the bss to remove

Description
This function removes the given BSS from the internal data structures thereby making it no longer show
up in scan results etc. Use this function when you detect a BSS is gone. Normally BSSes will also time
out, so it is not necessary to use this function at all.

102

Scanning and BSS list handling

Name
cfg80211_find_ie — find information element in data

Synopsis
const u8 * cfg80211_find_ie (u8 eid, const u8 * ies, int len);

Arguments
eid element ID

ies data consisting of IEs

len length of data

Return
NULL if the element ID could not be found or if the element is invalid (claims to be longer than the given
data), or a pointer to the first byte of the requested element, that is the byte containing the element ID.

Note
There are no checks on the element length other than having to fit into the given data.

103

Scanning and BSS list handling

Name
ieee80211_bss_get_ie — find IE with given ID

Synopsis
const u8 * ieee80211_bss_get_ie (struct cfg80211_bss * bss, u8 ie);

Arguments
bss the bss to search

ie the IE ID

Description
Note that the return value is an RCU-protected pointer, so rcu_read_lock must be held when calling
this function.

Return
NULL if not found.

104

Chapter 4. Utility functions
cfg80211 offers a number of utility functions that can be useful.

105

Utility functions

Name
ieee80211_channel_to_frequency — convert channel number to frequency

Synopsis
int ieee80211_channel_to_frequency (int chan, enum ieee80211_band band);

Arguments
chan channel number

band band, necessary due to channel number overlap

Return
The corresponding frequency (in MHz), or 0 if the conversion failed.

106

Utility functions

Name
ieee80211_frequency_to_channel — convert frequency to channel number

Synopsis
int ieee80211_frequency_to_channel (int freq);

Arguments
freq center frequency

Return
The corresponding channel, or 0 if the conversion failed.

107

Utility functions

Name
ieee80211_get_channel — get channel struct from wiphy for specified frequency

Synopsis
struct ieee80211_channel * ieee80211_get_channel (struct wiphy * wiphy,
int freq);

Arguments
wiphy the struct wiphy to get the channel for

freq the center frequency of the channel

Return
The channel struct from wiphy at freq.

108

Utility functions

Name
ieee80211_get_response_rate — get basic rate for a given rate

Synopsis
struct ieee80211_rate * ieee80211_get_response_rate (struct
ieee80211_supported_band * sband, u32 basic_rates, int bitrate);

Arguments
sband the band to look for rates in

basic_rates bitmap of basic rates

bitrate the bitrate for which to find the basic rate

Return
The basic rate corresponding to a given bitrate, that is the next lower bitrate contained in the basic rate
map, which is, for this function, given as a bitmap of indices of rates in the band's bitrate table.

109

Utility functions

Name
ieee80211_hdrlen — get header length in bytes from frame control

Synopsis
unsigned int __attribute_const__ ieee80211_hdrlen (__le16 fc);

Arguments
fc frame control field in little-endian format

Return
The header length in bytes.

110

Utility functions

Name
ieee80211_get_hdrlen_from_skb — get header length from data

Synopsis
unsigned int ieee80211_get_hdrlen_from_skb (const struct sk_buff * skb);

Arguments
skb the frame

Description
Given an skb with a raw 802.11 header at the data pointer this function returns the 802.11 header length.

Return
The 802.11 header length in bytes (not including encryption headers). Or 0 if the data in the sk_buff is
too short to contain a valid 802.11 header.

111

Utility functions

Name
struct ieee80211_radiotap_iterator — tracks walk thru present radiotap args

Synopsis

struct ieee80211_radiotap_iterator {
 struct ieee80211_radiotap_header * _rtheader;
 const struct ieee80211_radiotap_vendor_namespaces * _vns;
 const struct ieee80211_radiotap_namespace * current_namespace;
 unsigned char * _arg;
 unsigned char * _next_ns_data;
 __le32 * _next_bitmap;
 unsigned char * this_arg;
 int this_arg_index;
 int this_arg_size;
 int is_radiotap_ns;
 int _max_length;
 int _arg_index;
 uint32_t _bitmap_shifter;
 int _reset_on_ext;
};

Members
_rtheader pointer to the radiotap header we are walking through

_vns vendor namespace definitions

current_namespace pointer to the current namespace definition (or internally NULL if the current
namespace is unknown)

_arg next argument pointer

_next_ns_data beginning of the next namespace's data

_next_bitmap internal pointer to next present u32

this_arg pointer to current radiotap arg; it is valid after each call to ieee80211_ra-
diotap_iterator_next but also after ieee80211_radiotap_it-
erator_init where it will point to the beginning of the actual data portion

this_arg_index index of current arg, valid after each successful call to ieee80211_radio-
tap_iterator_next

this_arg_size length of the current arg, for convenience

is_radiotap_ns indicates whether the current namespace is the default radiotap namespace or
not

_max_length length of radiotap header in cpu byte ordering

_arg_index next argument index

_bitmap_shifter internal shifter for curr u32 bitmap, b0 set == arg present

112

Utility functions

_reset_on_ext internal; reset the arg index to 0 when going to the next bitmap word

Description
Describes the radiotap parser state. Fields prefixed with an underscore must not be used by users of the
parser, only by the parser internally.

113

Chapter 5. Data path helpers
In addition to generic utilities, cfg80211 also offers functions that help implement the data path for devices
that do not do the 802.11/802.3 conversion on the device.

114

Data path helpers

Name
ieee80211_data_to_8023 — convert an 802.11 data frame to 802.3

Synopsis
int ieee80211_data_to_8023 (struct sk_buff * skb, const u8 * addr, enum
nl80211_iftype iftype);

Arguments
skb the 802.11 data frame

addr the device MAC address

iftype the virtual interface type

Return
0 on success. Non-zero on error.

115

Data path helpers

Name
ieee80211_data_from_8023 — convert an 802.3 frame to 802.11

Synopsis
int ieee80211_data_from_8023 (struct sk_buff * skb, const u8 * addr,
enum nl80211_iftype iftype, const u8 * bssid, bool qos);

Arguments
skb the 802.3 frame

addr the device MAC address

iftype the virtual interface type

bssid the network bssid (used only for iftype STATION and ADHOC)

qos build 802.11 QoS data frame

Return
0 on success, or a negative error code.

116

Data path helpers

Name
ieee80211_amsdu_to_8023s — decode an IEEE 802.11n A-MSDU frame

Synopsis
void ieee80211_amsdu_to_8023s (struct sk_buff * skb, struct sk_buff_head
* list, const u8 * addr, enum nl80211_iftype iftype, const unsigned int
extra_headroom, bool has_80211_header);

Arguments
skb The input IEEE 802.11n A-MSDU frame.

list The output list of 802.3 frames. It must be allocated and initialized by by the
caller.

addr The device MAC address.

iftype The device interface type.

extra_headroom The hardware extra headroom for SKBs in the list.

has_80211_header Set it true if SKB is with IEEE 802.11 header.

Description

Decode an IEEE 802.11n A-MSDU frame and convert it to a list of 802.3 frames. The list will be empty
if the decode fails. The skb is consumed after the function returns.

117

Data path helpers

Name
cfg80211_classify8021d — determine the 802.1p/1d tag for a data frame

Synopsis
unsigned int cfg80211_classify8021d (struct sk_buff * skb, struct
cfg80211_qos_map * qos_map);

Arguments
skb the data frame

qos_map Interworking QoS mapping or NULL if not in use

Return
The 802.1p/1d tag.

118

Chapter 6. Regulatory enforcement
infrastructure

TODO

119

Regulatory enforcement infrastructure

Name
regulatory_hint — driver hint to the wireless core a regulatory domain

Synopsis
int regulatory_hint (struct wiphy * wiphy, const char * alpha2);

Arguments
wiphy the wireless device giving the hint (used only for reporting conflicts)

alpha2 the ISO/IEC 3166 alpha2 the driver claims its regulatory domain should be in. If rd is set this
should be NULL. Note that if you set this to NULL you should still set rd->alpha2 to some
accepted alpha2.

Description
Wireless drivers can use this function to hint to the wireless core what it believes should be the current
regulatory domain by giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory domain should
be in or by providing a completely build regulatory domain. If the driver provides an ISO/IEC 3166 alpha2
userspace will be queried for a regulatory domain structure for the respective country.

The wiphy must have been registered to cfg80211 prior to this call. For cfg80211 drivers this means
you must first use wiphy_register, for mac80211 drivers you must first use ieee80211_regis-
ter_hw.

Drivers should check the return value, its possible you can get an -ENOMEM.

Return
0 on success. -ENOMEM.

120

Regulatory enforcement infrastructure

Name
wiphy_apply_custom_regulatory — apply a custom driver regulatory domain

Synopsis
void wiphy_apply_custom_regulatory (struct wiphy * wiphy, const struct
ieee80211_regdomain * regd);

Arguments
wiphy the wireless device we want to process the regulatory domain on

regd the custom regulatory domain to use for this wiphy

Description
Drivers can sometimes have custom regulatory domains which do not apply to a specific country. Drivers
can use this to apply such custom regulatory domains. This routine must be called prior to wiphy regis-
tration. The custom regulatory domain will be trusted completely and as such previous default channel
settings will be disregarded. If no rule is found for a channel on the regulatory domain the channel will be
disabled. Drivers using this for a wiphy should also set the wiphy flag REGULATORY_CUSTOM_REG
or cfg80211 will set it for the wiphy that called this helper.

121

Regulatory enforcement infrastructure

Name
freq_reg_info — get regulatory information for the given frequency

Synopsis
const struct ieee80211_reg_rule * freq_reg_info (struct wiphy * wiphy,
u32 center_freq);

Arguments
wiphy the wiphy for which we want to process this rule for

center_freq Frequency in KHz for which we want regulatory information for

Description
Use this function to get the regulatory rule for a specific frequency on a given wireless device. If the device
has a specific regulatory domain it wants to follow we respect that unless a country IE has been received
and processed already.

Return
A valid pointer, or, when an error occurs, for example if no rule can be found, the return value is encoded
using ERR_PTR. Use IS_ERR to check and PTR_ERR to obtain the numeric return value. The numeric
return value will be -ERANGE if we determine the given center_freq does not even have a regulatory rule
for a frequency range in the center_freq's band. See freq_in_rule_band for our current definition of
a band -- this is purely subjective and right now it's 802.11 specific.

122

Chapter 7. RFkill integration
RFkill integration in cfg80211 is almost invisible to drivers, as cfg80211 automatically registers an rfkill
instance for each wireless device it knows about. Soft kill is also translated into disconnecting and turning
all interfaces off, drivers are expected to turn off the device when all interfaces are down.

However, devices may have a hard RFkill line, in which case they also need to interact with the rfkill
subsystem, via cfg80211. They can do this with a few helper functions documented here.

123

RFkill integration

Name
wiphy_rfkill_set_hw_state — notify cfg80211 about hw block state

Synopsis
void wiphy_rfkill_set_hw_state (struct wiphy * wiphy, bool blocked);

Arguments
wiphy the wiphy

blocked block status

124

RFkill integration

Name
wiphy_rfkill_start_polling — start polling rfkill

Synopsis
void wiphy_rfkill_start_polling (struct wiphy * wiphy);

Arguments
wiphy the wiphy

125

RFkill integration

Name
wiphy_rfkill_stop_polling — stop polling rfkill

Synopsis
void wiphy_rfkill_stop_polling (struct wiphy * wiphy);

Arguments
wiphy the wiphy

126

Chapter 8. Test mode
Test mode is a set of utility functions to allow drivers to interact with driver-specific tools to aid, for
instance, factory programming.

This chapter describes how drivers interact with it, for more information see the nl80211 book's chapter
on it.

127

Test mode

Name
cfg80211_testmode_alloc_reply_skb — allocate testmode reply

Synopsis
struct sk_buff * cfg80211_testmode_alloc_reply_skb (struct wiphy *
wiphy, int approxlen);

Arguments
wiphy the wiphy

approxlen an upper bound of the length of the data that will be put into the skb

Description
This function allocates and pre-fills an skb for a reply to the testmode command. Since it is intended for
a reply, calling it outside of the testmode_cmd operation is invalid.

The returned skb is pre-filled with the wiphy index and set up in a way that any data that is put into the
skb (with skb_put, nla_put or similar) will end up being within the NL80211_ATTR_TESTDATA
attribute, so all that needs to be done with the skb is adding data for the corresponding userspace tool which
can then read that data out of the testdata attribute. You must not modify the skb in any other way.

When done, call cfg80211_testmode_reply with the skb and return its error code as the result of
the testmode_cmd operation.

Return
An allocated and pre-filled skb. NULL if any errors happen.

128

Test mode

Name
cfg80211_testmode_reply — send the reply skb

Synopsis
int cfg80211_testmode_reply (struct sk_buff * skb);

Arguments
skb The skb, must have been allocated with cfg80211_testmode_alloc_reply_skb

Description
Since calling this function will usually be the last thing before returning from the testmode_cmd you
should return the error code. Note that this function consumes the skb regardless of the return value.

Return
An error code or 0 on success.

129

Test mode

Name
cfg80211_testmode_alloc_event_skb — allocate testmode event

Synopsis
struct sk_buff * cfg80211_testmode_alloc_event_skb (struct wiphy *
wiphy, int approxlen, gfp_t gfp);

Arguments
wiphy the wiphy

approxlen an upper bound of the length of the data that will be put into the skb

gfp allocation flags

Description
This function allocates and pre-fills an skb for an event on the testmode multicast group.

The returned skb is set up in the same way as with cfg80211_testmode_alloc_reply_skb but
prepared for an event. As there, you should simply add data to it that will then end up in the NL80211_AT-
TR_TESTDATA attribute. Again, you must not modify the skb in any other way.

When done filling the skb, call cfg80211_testmode_event with the skb to send the event.

Return
An allocated and pre-filled skb. NULL if any errors happen.

130

Test mode

Name
cfg80211_testmode_event — send the event

Synopsis
void cfg80211_testmode_event (struct sk_buff * skb, gfp_t gfp);

Arguments
skb The skb, must have been allocated with cfg80211_testmode_alloc_event_skb

gfp allocation flags

Description
This function sends the given skb, which must have been allocated by cfg80211_testmode_al-
loc_event_skb, as an event. It always consumes it.

131

The mac80211 subsystem

The mac80211 subsystem

Abstract

mac80211 is the Linux stack for 802.11 hardware that implements only partial functionality in hard- or firmware. This
document defines the interface between mac80211 and low-level hardware drivers.

If you're reading this document and not the header file itself, it will be incomplete because not all documentation has
been converted yet.

Table of Contents
I. The basic mac80211 driver interface ... 1

1. Basic hardware handling ... 3
struct ieee80211_hw .. 4
enum ieee80211_hw_flags .. 7
SET_IEEE80211_DEV ... 11
SET_IEEE80211_PERM_ADDR .. 12
struct ieee80211_ops .. 13
ieee80211_alloc_hw ... 24
ieee80211_register_hw ... 25
ieee80211_unregister_hw .. 26
ieee80211_free_hw .. 27

2. PHY configuration ... 28
struct ieee80211_conf ... 29
enum ieee80211_conf_flags ... 31

3. Virtual interfaces ... 32
struct ieee80211_vif ... 33

4. Receive and transmit processing ... 35
what should be here ... 35
Frame format .. 35
Packet alignment ... 35
Calling into mac80211 from interrupts .. 35
functions/definitions ... 36

5. Frame filtering .. 67
enum ieee80211_filter_flags .. 68

6. The mac80211 workqueue ... 69
ieee80211_queue_work ... 70
ieee80211_queue_delayed_work ... 71

II. Advanced driver interface ... 72
7. LED support ... 74

ieee80211_get_tx_led_name .. 75
ieee80211_get_rx_led_name .. 76
ieee80211_get_assoc_led_name .. 77
ieee80211_get_radio_led_name .. 78
struct ieee80211_tpt_blink ... 79
enum ieee80211_tpt_led_trigger_flags ... 80
ieee80211_create_tpt_led_trigger .. 81

8. Hardware crypto acceleration ... 82
enum set_key_cmd .. 83
struct ieee80211_key_conf .. 84
enum ieee80211_key_flags .. 85
ieee80211_get_tkip_p1k .. 87
ieee80211_get_tkip_p1k_iv ... 88
ieee80211_get_tkip_p2k .. 89

9. Powersave support ... 90
10. Beacon filter support .. 91

ieee80211_beacon_loss ... 92
11. Multiple queues and QoS support ... 93

struct ieee80211_tx_queue_params ... 94
12. Access point mode support .. 95

support for powersaving clients .. 95
13. Supporting multiple virtual interfaces ... 105

cxxxiv

The mac80211 subsystem

ieee80211_iterate_active_interfaces ... 106
ieee80211_iterate_active_interfaces_atomic .. 107

14. Station handling ... 108
struct ieee80211_sta ... 109
enum sta_notify_cmd .. 111
ieee80211_find_sta ... 112
ieee80211_find_sta_by_ifaddr .. 113

15. Hardware scan offload ... 114
ieee80211_scan_completed .. 115

16. Aggregation ... 116
TX A-MPDU aggregation ... 116
RX A-MPDU aggregation ... 116

17. Spatial Multiplexing Powersave (SMPS) ... 118
ieee80211_request_smps ... 119
enum ieee80211_smps_mode ... 120

III. Rate control interface .. 121
18. Rate Control API .. 123

ieee80211_start_tx_ba_session ... 124
ieee80211_start_tx_ba_cb_irqsafe ... 125
ieee80211_stop_tx_ba_session .. 126
ieee80211_stop_tx_ba_cb_irqsafe ... 127
enum ieee80211_rate_control_changed .. 128
struct ieee80211_tx_rate_control ... 129
rate_control_send_low .. 130

IV. Internals .. 131
19. Key handling ... 133

Key handling basics ... 133
MORE TBD ... 133

20. Receive processing ... 134
21. Transmit processing .. 135
22. Station info handling ... 136

Programming information .. 136
STA information lifetime rules ... 141

23. Aggregation ... 143
struct sta_ampdu_mlme ... 144
struct tid_ampdu_tx .. 145
struct tid_ampdu_rx .. 147

24. Synchronisation .. 149

cxxxv

Part I. The basic
mac80211 driver interface

You should read and understand the information contained within this part of the book while implementing a driver.
In some chapters, advanced usage is noted, that may be skipped at first.

This part of the book only covers station and monitor mode functionality, additional information required to implement
the other modes is covered in the second part of the book.

Table of Contents
1. Basic hardware handling ... 3

struct ieee80211_hw .. 4
enum ieee80211_hw_flags .. 7
SET_IEEE80211_DEV ... 11
SET_IEEE80211_PERM_ADDR .. 12
struct ieee80211_ops .. 13
ieee80211_alloc_hw ... 24
ieee80211_register_hw ... 25
ieee80211_unregister_hw .. 26
ieee80211_free_hw .. 27

2. PHY configuration ... 28
struct ieee80211_conf ... 29
enum ieee80211_conf_flags ... 31

3. Virtual interfaces ... 32
struct ieee80211_vif ... 33

4. Receive and transmit processing ... 35
what should be here ... 35
Frame format .. 35
Packet alignment ... 35
Calling into mac80211 from interrupts .. 35
functions/definitions ... 36

5. Frame filtering .. 67
enum ieee80211_filter_flags .. 68

6. The mac80211 workqueue ... 69
ieee80211_queue_work ... 70
ieee80211_queue_delayed_work ... 71

2

Chapter 1. Basic hardware handling
TBD

This chapter shall contain information on getting a hw struct allocated and registered with mac80211.

Since it is required to allocate rates/modes before registering a hw struct, this chapter shall also contain
information on setting up the rate/mode structs.

Additionally, some discussion about the callbacks and the general programming model should be in here,
including the definition of ieee80211_ops which will be referred to a lot.

Finally, a discussion of hardware capabilities should be done with references to other parts of the book.

3

Basic hardware handling

Name
struct ieee80211_hw — hardware information and state

Synopsis

struct ieee80211_hw {
 struct ieee80211_conf conf;
 struct wiphy * wiphy;
 const char * rate_control_algorithm;
 void * priv;
 unsigned long flags[BITS_TO_LONGS(NUM_IEEE80211_HW_FLAGS)];
 unsigned int extra_tx_headroom;
 unsigned int extra_beacon_tailroom;
 int vif_data_size;
 int sta_data_size;
 int chanctx_data_size;
 int txq_data_size;
 u16 queues;
 u16 max_listen_interval;
 s8 max_signal;
 u8 max_rates;
 u8 max_report_rates;
 u8 max_rate_tries;
 u8 max_rx_aggregation_subframes;
 u8 max_tx_aggregation_subframes;
 u8 offchannel_tx_hw_queue;
 u8 radiotap_mcs_details;
 u16 radiotap_vht_details;
 netdev_features_t netdev_features;
 u8 uapsd_queues;
 u8 uapsd_max_sp_len;
 u8 n_cipher_schemes;
 const struct ieee80211_cipher_scheme * cipher_schemes;
 int txq_ac_max_pending;
};

Members
conf struct ieee80211_conf, device configuration, don't use.

wiphy This points to the struct wiphy allocated for this 802.11 PHY. You
must fill in the perm_addr and dev members of this structure
using SET_IEEE80211_DEV and SET_IEEE80211_PER-
M_ADDR. Additionally, all supported bands (with channels, bi-
trates) are registered here.

rate_control_algorithm rate control algorithm for this hardware. If unset (NULL), the
default algorithm will be used. Must be set before calling
ieee80211_register_hw.

priv pointer to private area that was allocated for driver use along with
this structure.

4

Basic hardware handling

flags[BITS_TO_LONGS(NUM_IEEE80211_H-
W_FLAGS)]

hardware flags, see enum ieee80211_hw_flags.

extra_tx_headroom headroom to reserve in each transmit skb for use by the driver (e.g.
for transmit headers.)

extra_beacon_tailroom tailroom to reserve in each beacon tx skb. Can be used by drivers
to add extra IEs.

vif_data_size size (in bytes) of the drv_priv data area within struct ieee80211_vif.

sta_data_size size (in bytes) of the drv_priv data area within struct ieee80211_sta.

chanctx_data_size size (in bytes) of the drv_priv data area within struct
ieee80211_chanctx_conf.

txq_data_size size (in bytes) of the drv_priv data area within struct
ieee80211_txq.

queues number of available hardware transmit queues for data packets.
WMM/QoS requires at least four, these queues need to have con-
figurable access parameters.

max_listen_interval max listen interval in units of beacon interval that HW supports

max_signal Maximum value for signal (rssi) in RX information, used only
when IEEE80211_HW_SIGNAL_UNSPEC or IEEE80211_H-
W_SIGNAL_DB

max_rates maximum number of alternate rate retry stages the hw can handle.

max_report_rates maximum number of alternate rate retry stages the hw can report
back.

max_rate_tries maximum number of tries for each stage

max_rx_aggregation_subframes maximum buffer size (number of sub-frames) to be used for A-
MPDU block ack receiver aggregation. This is only relevant if the
device has restrictions on the number of subframes, if it relies on
mac80211 to do reordering it shouldn't be set.

max_tx_aggregation_subframes maximum number of subframes in an aggregate an HT driver will
transmit. Though ADDBA will advertise a constant value of 64 as
some older APs can crash if the window size is smaller (an example
is LinkSys WRT120N with FW v1.0.07 build 002 Jun 18 2012).

offchannel_tx_hw_queue HW queue ID to use for offchannel TX (if IEEE80211_H-
W_QUEUE_CONTROL is set)

radiotap_mcs_details lists which MCS information can the HW reports, by default it
is set to _MCS, _GI and _BW but doesn't include _FMT. Use
IEEE80211_RADIOTAP_MCS_HAVE_* values, only adding
_BW is supported today.

radiotap_vht_details lists which VHT MCS information the HW reports, the de-
fault is _GI | _BANDWIDTH. Use the IEEE80211_RADIO-
TAP_VHT_KNOWN_* values.

5

Basic hardware handling

netdev_features netdev features to be set in each netdev created from this HW. Note
that not all features are usable with mac80211, other features will
be rejected during HW registration.

uapsd_queues This bitmap is included in (re)association frame to indicate for each
access category if it is uAPSD trigger-enabled and delivery- en-
abled. Use IEEE80211_WMM_IE_STA_QOSINFO_AC_* to set
this bitmap. Each bit corresponds to different AC. Value '1' in spe-
cific bit means that corresponding AC is both trigger- and deliv-
ery-enabled. '0' means neither enabled.

uapsd_max_sp_len maximum number of total buffered frames the WMM AP may de-
liver to a WMM STA during any Service Period triggered by the
WMM STA. Use IEEE80211_WMM_IE_STA_QOSINFO_SP_*
for correct values.

n_cipher_schemes a size of an array of cipher schemes definitions.

cipher_schemes a pointer to an array of cipher scheme definitions supported by HW.

txq_ac_max_pending maximum number of frames per AC pending in all txq entries for
a vif.

Description

This structure contains the configuration and hardware information for an 802.11 PHY.

6

Basic hardware handling

Name
enum ieee80211_hw_flags — hardware flags

Synopsis

enum ieee80211_hw_flags {
 IEEE80211_HW_HAS_RATE_CONTROL,
 IEEE80211_HW_RX_INCLUDES_FCS,
 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING,
 IEEE80211_HW_SIGNAL_UNSPEC,
 IEEE80211_HW_SIGNAL_DBM,
 IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC,
 IEEE80211_HW_SPECTRUM_MGMT,
 IEEE80211_HW_AMPDU_AGGREGATION,
 IEEE80211_HW_SUPPORTS_PS,
 IEEE80211_HW_PS_NULLFUNC_STACK,
 IEEE80211_HW_SUPPORTS_DYNAMIC_PS,
 IEEE80211_HW_MFP_CAPABLE,
 IEEE80211_HW_WANT_MONITOR_VIF,
 IEEE80211_HW_NO_AUTO_VIF,
 IEEE80211_HW_SW_CRYPTO_CONTROL,
 IEEE80211_HW_SUPPORT_FAST_XMIT,
 IEEE80211_HW_REPORTS_TX_ACK_STATUS,
 IEEE80211_HW_CONNECTION_MONITOR,
 IEEE80211_HW_QUEUE_CONTROL,
 IEEE80211_HW_SUPPORTS_PER_STA_GTK,
 IEEE80211_HW_AP_LINK_PS,
 IEEE80211_HW_TX_AMPDU_SETUP_IN_HW,
 IEEE80211_HW_SUPPORTS_RC_TABLE,
 IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF,
 IEEE80211_HW_TIMING_BEACON_ONLY,
 IEEE80211_HW_SUPPORTS_HT_CCK_RATES,
 IEEE80211_HW_CHANCTX_STA_CSA,
 IEEE80211_HW_SUPPORTS_CLONED_SKBS,
 IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS,
 IEEE80211_HW_TDLS_WIDER_BW,
 IEEE80211_HW_SUPPORTS_AMSDU_IN_AMPDU,
 IEEE80211_HW_BEACON_TX_STATUS,
 NUM_IEEE80211_HW_FLAGS
};

Constants

IEEE80211_H-
W_HAS_RATE_CONTROL

The hardware or firmware includes rate control, and cannot be con-
trolled by the stack. As such, no rate control algorithm should be in-
stantiated, and the TX rate reported to userspace will be taken from
the TX status instead of the rate control algorithm. Note that this
requires that the driver implement a number of callbacks so it has
the correct information, it needs to have the set_rts_thresh-
old callback and must look at the BSS config use_cts_prot

7

Basic hardware handling

for G/N protection, use_short_slot for slot timing in 2.4 GHz
and use_short_preamble for preambles for CCK frames.

IEEE80211_HW_RX_IN-
CLUDES_FCS

Indicates that received frames passed to the stack include the FCS
at the end.

IEEE80211_HW_HOST_BROAD-
CAST_PS_BUFFERING

Some wireless LAN chipsets buffer broadcast/multicast frames for
power saving stations in the hardware/firmware and others rely on
the host system for such buffering. This option is used to config-
ure the IEEE 802.11 upper layer to buffer broadcast and multicast
frames when there are power saving stations so that the driver can
fetch them with ieee80211_get_buffered_bc.

IEEE80211_HW_SIG-
NAL_UNSPEC

Hardware can provide signal values but we don't know its units.
We expect values between 0 and max_signal. If possible please
provide dB or dBm instead.

IEEE80211_HW_SIGNAL_DBM Hardware gives signal values in dBm, decibel difference from one
milliwatt. This is the preferred method since it is standardized be-
tween different devices. max_signal does not need to be set.

IEEE80211_H-
W_NEED_DTIM_BE-
FORE_ASSOC

This device needs to get data from beacon before association (i.e.
dtim_period).

IEEE80211_HW_SPEC-
TRUM_MGMT

Hardware supports spectrum management defined in 802.11h Mea-
surement, Channel Switch, Quieting, TPC

IEEE80211_HW_AMPDU_AG-
GREGATION

Hardware supports 11n A-MPDU aggregation.

IEEE80211_HW_SUPPORTS_PS Hardware has power save support (i.e. can go to sleep).

IEEE80211_HW_PS_NULL-
FUNC_STACK

Hardware requires nullfunc frame handling in stack, implies stack
support for dynamic PS.

IEEE80211_HW_SUPPORT-
S_DYNAMIC_PS

Hardware has support for dynamic PS.

IEEE80211_HW_MFP_CAPABLE Hardware supports management frame protection (MFP, IEEE
802.11w).

IEEE80211_HW_WANT_MONI-
TOR_VIF

The driver would like to be informed of a virtual monitor interface
when monitor interfaces are the only active interfaces.

IEEE80211_HW_NO_AUTO_VIF The driver would like for no wlanX to be created. It is expected
user-space will create vifs as desired (and thus have them named
as desired).

IEEE80211_HW_SW_CRYP-
TO_CONTROL

The driver wants to control which of the crypto algorithms can be
done in software - so don't automatically try to fall back to it if
hardware crypto fails, but do so only if the driver returns 1. This
also forces the driver to advertise its supported cipher suites.

IEEE80211_HW_SUP-
PORT_FAST_XMIT

The driver/hardware supports fast-xmit, this currently requires only
the ability to calculate the duration for frames.

8

Basic hardware handling

IEEE80211_HW_RE-
PORTS_TX_ACK_STATUS

Hardware can provide ack status reports of Tx frames to the stack.

IEEE80211_HW_CONNEC-
TION_MONITOR

The hardware performs its own connection monitoring, including
periodic keep-alives to the AP and probing the AP on beacon loss.

IEEE80211_HW_QUEUE_CON-
TROL

The driver wants to control per-interface queue mapping in order to
use different queues (not just one per AC) for different virtual in-
terfaces. See the doc section on HW queue control for more details.

IEEE80211_HW_SUPPORT-
S_PER_STA_GTK

The device's crypto engine supports per-station GTKs as used by
IBSS RSN or during fast transition. If the device doesn't support
per-station GTKs, but can be asked not to decrypt group addressed
frames, then IBSS RSN support is still possible but software crypto
will be used. Advertise the wiphy flag only in that case.

IEEE80211_HW_AP_LINK_PS When operating in AP mode the device autonomously man-
ages the PS status of connected stations. When this flag is set
mac80211 will not trigger PS mode for connected stations based
on the PM bit of incoming frames. Use ieee80211_start_ps/
ieee8021_end_ps to manually configure the PS mode of con-
nected stations.

IEEE80211_HW_TX_AMP-
DU_SETUP_IN_HW

The device handles TX A-MPDU session setup strictly in HW.
mac80211 should not attempt to do this in software.

IEEE80211_HW_SUPPORTS_R-
C_TABLE

The driver supports using a rate selection table provided by the rate
control algorithm.

IEEE80211_HW_P2P_DEV_AD-
DR_FOR_INTF

Use the P2P Device address for any P2P Interface. This will be
honoured even if more than one interface is supported.

IEEE80211_HW_TIMING_BEA-
CON_ONLY

Use sync timing from beacon frames only, to allow getting TBTT
of a DTIM beacon.

IEEE80211_HW_SUPPORT-
S_HT_CCK_RATES

Hardware supports mixing HT/CCK rates and can cope with CCK
rates in an aggregation session (e.g. by not using aggregation for
such frames.)

IEEE80211_HW_CHANCTX_S-
TA_CSA

Support 802.11h based channel-switch (CSA) for a single active
channel while using channel contexts. When support is not enabled
the default action is to disconnect when getting the CSA frame.

IEEE80211_HW_SUPPORT-
S_CLONED_SKBS

The driver will never modify the payload or tailroom of TX skbs
without copying them first.

IEEE80211_HW_SINGLE_S-
CAN_ON_ALL_BANDS

The HW supports scanning on all bands in one command,
mac80211 doesn't have to run separate scans per band.

IEEE80211_HW_T-
DLS_WIDER_BW

The device/driver supports wider bandwidth than then BSS band-
width for a TDLS link on the base channel.

IEEE80211_HW_SUPPORT-
S_AMSDU_IN_AMPDU

The driver supports receiving A-MSDUs within A-MPDU.

IEEE80211_HW_BEA-
CON_TX_STATUS

The device/driver provides TX status for sent beacons.

9

Basic hardware handling

NUM_IEEE80211_HW_FLAGS number of hardware flags, used for sizing arrays

Description

These flags are used to indicate hardware capabilities to the stack. Generally, flags here should have their
meaning done in a way that the simplest hardware doesn't need setting any particular flags. There are some
exceptions to this rule, however, so you are advised to review these flags carefully.

10

Basic hardware handling

Name
SET_IEEE80211_DEV — set device for 802.11 hardware

Synopsis
void SET_IEEE80211_DEV (struct ieee80211_hw * hw, struct device * dev);

Arguments
hw the struct ieee80211_hw to set the device for

dev the struct device of this 802.11 device

11

Basic hardware handling

Name
SET_IEEE80211_PERM_ADDR — set the permanent MAC address for 802.11 hardware

Synopsis
void SET_IEEE80211_PERM_ADDR (struct ieee80211_hw * hw, u8 * addr);

Arguments
hw the struct ieee80211_hw to set the MAC address for

addr the address to set

12

Basic hardware handling

Name
struct ieee80211_ops — callbacks from mac80211 to the driver

Synopsis

struct ieee80211_ops {
 void (* tx) (struct ieee80211_hw *hw,struct ieee80211_tx_control *control,struct sk_buff *skb);
 int (* start) (struct ieee80211_hw *hw);
 void (* stop) (struct ieee80211_hw *hw);
#ifdef CONFIG_PM
 int (* suspend) (struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan);
 int (* resume) (struct ieee80211_hw *hw);
 void (* set_wakeup) (struct ieee80211_hw *hw, bool enabled);
#endif
 int (* add_interface) (struct ieee80211_hw *hw,struct ieee80211_vif *vif);
 int (* change_interface) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,enum nl80211_iftype new_type, bool p2p);
 void (* remove_interface) (struct ieee80211_hw *hw,struct ieee80211_vif *vif);
 int (* config) (struct ieee80211_hw *hw, u32 changed);
 void (* bss_info_changed) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_bss_conf *info,u32 changed);
 int (* start_ap) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
 void (* stop_ap) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
 u64 (* prepare_multicast) (struct ieee80211_hw *hw,struct netdev_hw_addr_list *mc_list);
 void (* configure_filter) (struct ieee80211_hw *hw,unsigned int changed_flags,unsigned int *total_flags,u64 multicast);
 void (* config_iface_filter) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,unsigned int filter_flags,unsigned int changed_flags);
 int (* set_tim) (struct ieee80211_hw *hw, struct ieee80211_sta *sta,bool set);
 int (* set_key) (struct ieee80211_hw *hw, enum set_key_cmd cmd,struct ieee80211_vif *vif, struct ieee80211_sta *sta,struct ieee80211_key_conf *key);
 void (* update_tkip_key) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_key_conf *conf,struct ieee80211_sta *sta,u32 iv32, u16 *phase1key);
 void (* set_rekey_data) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct cfg80211_gtk_rekey_data *data);
 void (* set_default_unicast_key) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, int idx);
 int (* hw_scan) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,struct ieee80211_scan_request *req);
 void (* cancel_hw_scan) (struct ieee80211_hw *hw,struct ieee80211_vif *vif);
 int (* sched_scan_start) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct cfg80211_sched_scan_request *req,struct ieee80211_scan_ies *ies);
 int (* sched_scan_stop) (struct ieee80211_hw *hw,struct ieee80211_vif *vif);
 void (* sw_scan_start) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,const u8 *mac_addr);
 void (* sw_scan_complete) (struct ieee80211_hw *hw,struct ieee80211_vif *vif);
 int (* get_stats) (struct ieee80211_hw *hw,struct ieee80211_low_level_stats *stats);
 void (* get_key_seq) (struct ieee80211_hw *hw,struct ieee80211_key_conf *key,struct ieee80211_key_seq *seq);
 int (* set_frag_threshold) (struct ieee80211_hw *hw, u32 value);
 int (* set_rts_threshold) (struct ieee80211_hw *hw, u32 value);
 int (* sta_add) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,struct ieee80211_sta *sta);
 int (* sta_remove) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,struct ieee80211_sta *sta);
#ifdef CONFIG_MAC80211_DEBUGFS
 void (* sta_add_debugfs) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_sta *sta,struct dentry *dir);
 void (* sta_remove_debugfs) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_sta *sta,struct dentry *dir);
#endif
 void (* sta_notify) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,enum sta_notify_cmd, struct ieee80211_sta *sta);
 int (* sta_state) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,struct ieee80211_sta *sta,enum ieee80211_sta_state old_state,enum ieee80211_sta_state new_state);
 void (* sta_pre_rcu_remove) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_sta *sta);
 void (* sta_rc_update) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_sta *sta,u32 changed);
 void (* sta_rate_tbl_update) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_sta *sta);
 void (* sta_statistics) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_sta *sta,struct station_info *sinfo);
 int (* conf_tx) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, u16 ac,const struct ieee80211_tx_queue_params *params);

13

Basic hardware handling

 u64 (* get_tsf) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
 void (* set_tsf) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,u64 tsf);
 void (* reset_tsf) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
 int (* tx_last_beacon) (struct ieee80211_hw *hw);
 int (* ampdu_action) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_ampdu_params *params);
 int (* get_survey) (struct ieee80211_hw *hw, int idx,struct survey_info *survey);
 void (* rfkill_poll) (struct ieee80211_hw *hw);
 void (* set_coverage_class) (struct ieee80211_hw *hw, s16 coverage_class);
#ifdef CONFIG_NL80211_TESTMODE
 int (* testmode_cmd) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,void *data, int len);
 int (* testmode_dump) (struct ieee80211_hw *hw, struct sk_buff *skb,struct netlink_callback *cb,void *data, int len);
#endif
 void (* flush) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,u32 queues, bool drop);
 void (* channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_channel_switch *ch_switch);
 int (* set_antenna) (struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
 int (* get_antenna) (struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
 int (* remain_on_channel) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_channel *chan,int duration,enum ieee80211_roc_type type);
 int (* cancel_remain_on_channel) (struct ieee80211_hw *hw);
 int (* set_ringparam) (struct ieee80211_hw *hw, u32 tx, u32 rx);
 void (* get_ringparam) (struct ieee80211_hw *hw,u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
 bool (* tx_frames_pending) (struct ieee80211_hw *hw);
 int (* set_bitrate_mask) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,const struct cfg80211_bitrate_mask *mask);
 void (* event_callback) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,const struct ieee80211_event *event);
 void (* allow_buffered_frames) (struct ieee80211_hw *hw,struct ieee80211_sta *sta,u16 tids, int num_frames,enum ieee80211_frame_release_type reason,bool more_data);
 void (* release_buffered_frames) (struct ieee80211_hw *hw,struct ieee80211_sta *sta,u16 tids, int num_frames,enum ieee80211_frame_release_type reason,bool more_data);
 int (* get_et_sset_count) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, int sset);
 void (* get_et_stats) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ethtool_stats *stats, u64 *data);
 void (* get_et_strings) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,u32 sset, u8 *data);
 void (* mgd_prepare_tx) (struct ieee80211_hw *hw,struct ieee80211_vif *vif);
 void (* mgd_protect_tdls_discover) (struct ieee80211_hw *hw,struct ieee80211_vif *vif);
 int (* add_chanctx) (struct ieee80211_hw *hw,struct ieee80211_chanctx_conf *ctx);
 void (* remove_chanctx) (struct ieee80211_hw *hw,struct ieee80211_chanctx_conf *ctx);
 void (* change_chanctx) (struct ieee80211_hw *hw,struct ieee80211_chanctx_conf *ctx,u32 changed);
 int (* assign_vif_chanctx) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_chanctx_conf *ctx);
 void (* unassign_vif_chanctx) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_chanctx_conf *ctx);
 int (* switch_vif_chanctx) (struct ieee80211_hw *hw,struct ieee80211_vif_chanctx_switch *vifs,int n_vifs,enum ieee80211_chanctx_switch_mode mode);
 void (* reconfig_complete) (struct ieee80211_hw *hw,enum ieee80211_reconfig_type reconfig_type);
#if IS_ENABLED(CONFIG_IPV6)
 void (* ipv6_addr_change) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct inet6_dev *idev);
#endif
 void (* channel_switch_beacon) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct cfg80211_chan_def *chandef);
 int (* pre_channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_channel_switch *ch_switch);
 int (* post_channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif);
 int (* join_ibss) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
 void (* leave_ibss) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
 u32 (* get_expected_throughput) (struct ieee80211_sta *sta);
 int (* get_txpower) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,int *dbm);
 int (* tdls_channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_sta *sta, u8 oper_class,struct cfg80211_chan_def *chandef,struct sk_buff *tmpl_skb, u32 ch_sw_tm_ie);
 void (* tdls_cancel_channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_sta *sta);
 void (* tdls_recv_channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_tdls_ch_sw_params *params);
 void (* wake_tx_queue) (struct ieee80211_hw *hw,struct ieee80211_txq *txq);
};

14

Basic hardware handling

Members
tx Handler that 802.11 module calls for each transmitted frame. skb

contains the buffer starting from the IEEE 802.11 header. The low-
level driver should send the frame out based on configuration in
the TX control data. This handler should, preferably, never fail and
stop queues appropriately. Must be atomic.

start Called before the first netdevice attached to the hardware is enabled.
This should turn on the hardware and must turn on frame reception
(for possibly enabled monitor interfaces.) Returns negative error
codes, these may be seen in userspace, or zero. When the device is
started it should not have a MAC address to avoid acknowledging
frames before a non-monitor device is added. Must be implemented
and can sleep.

stop Called after last netdevice attached to the hardware is disabled. This
should turn off the hardware (at least it must turn off frame recep-
tion.) May be called right after add_interface if that rejects an in-
terface. If you added any work onto the mac80211 workqueue you
should ensure to cancel it on this callback. Must be implemented
and can sleep.

suspend Suspend the device; mac80211 itself will quiesce before and stop
transmitting and doing any other configuration, and then ask the
device to suspend. This is only invoked when WoWLAN is config-
ured, otherwise the device is deconfigured completely and recon-
figured at resume time. The driver may also impose special condi-
tions under which it wants to use the “normal” suspend (deconfig-
ure), say if it only supports WoWLAN when the device is associat-
ed. In this case, it must return 1 from this function.

resume If WoWLAN was configured, this indicates that mac80211 is now
resuming its operation, after this the device must be fully functional
again. If this returns an error, the only way out is to also unregister
the device. If it returns 1, then mac80211 will also go through the
regular complete restart on resume.

set_wakeup Enable or disable wakeup when WoWLAN configuration is modi-
fied. The reason is that device_set_wakeup_enable is sup-
posed to be called when the configuration changes, not only in
suspend.

add_interface Called when a netdevice attached to the hardware is enabled. Be-
cause it is not called for monitor mode devices, start and stop
must be implemented. The driver should perform any initialization
it needs before the device can be enabled. The initial configuration
for the interface is given in the conf parameter. The callback may
refuse to add an interface by returning a negative error code (which
will be seen in userspace.) Must be implemented and can sleep.

change_interface Called when a netdevice changes type. This callback is optional,
but only if it is supported can interface types be switched while the
interface is UP. The callback may sleep. Note that while an inter-

15

Basic hardware handling

face is being switched, it will not be found by the interface iteration
callbacks.

remove_interface Notifies a driver that an interface is going down. The stop callback
is called after this if it is the last interface and no monitor interfaces
are present. When all interfaces are removed, the MAC address in
the hardware must be cleared so the device no longer acknowledges
packets, the mac_addr member of the conf structure is, however, set
to the MAC address of the device going away. Hence, this callback
must be implemented. It can sleep.

config Handler for configuration requests. IEEE 802.11 code calls this
function to change hardware configuration, e.g., channel. This func-
tion should never fail but returns a negative error code if it does.
The callback can sleep.

bss_info_changed Handler for configuration requests related to BSS parameters that
may vary during BSS's lifespan, and may affect low level driver
(e.g. assoc/disassoc status, erp parameters). This function should
not be used if no BSS has been set, unless for association indication.
The changed parameter indicates which of the bss parameters has
changed when a call is made. The callback can sleep.

start_ap Start operation on the AP interface, this is called after all the infor-
mation in bss_conf is set and beacon can be retrieved. A channel
context is bound before this is called. Note that if the driver uses
software scan or ROC, this (and stop_ap) isn't called when the
AP is just “paused” for scanning/ROC, which is indicated by the
beacon being disabled/enabled via bss_info_changed.

stop_ap Stop operation on the AP interface.

prepare_multicast Prepare for multicast filter configuration. This callback is optional,
and its return value is passed to configure_filter. This call-
back must be atomic.

configure_filter Configure the device's RX filter. See the section “Frame filtering”
for more information. This callback must be implemented and can
sleep.

config_iface_filter Configure the interface's RX filter. This callback is optional and is
used to configure which frames should be passed to mac80211. The
filter_flags is the combination of FIF_* flags. The changed_flags
is a bit mask that indicates which flags are changed. This callback
can sleep.

set_tim Set TIM bit. mac80211 calls this function when a TIM bit must be
set or cleared for a given STA. Must be atomic.

set_key See the section “Hardware crypto acceleration” This callback is
only called between add_interface and remove_interface calls, i.e.
while the given virtual interface is enabled. Returns a negative error
code if the key can't be added. The callback can sleep.

update_tkip_key See the section “Hardware crypto acceleration” This callback
will be called in the context of Rx. Called for drivers which set

16

Basic hardware handling

IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. The call-
back must be atomic.

set_rekey_data If the device supports GTK rekeying, for example while the host
is suspended, it can assign this callback to retrieve the data nec-
essary to do GTK rekeying, this is the KEK, KCK and replay
counter. After rekeying was done it should (for example dur-
ing resume) notify userspace of the new replay counter using
ieee80211_gtk_rekey_notify.

set_default_unicast_key Set the default (unicast) key index, useful for WEP when the device
sends data packets autonomously, e.g. for ARP offloading. The in-
dex can be 0-3, or -1 for unsetting it.

hw_scan Ask the hardware to service the scan request, no need to start the
scan state machine in stack. The scan must honour the channel con-
figuration done by the regulatory agent in the wiphy's registered
bands. The hardware (or the driver) needs to make sure that pow-
er save is disabled. The req ie/ie_len members are rewritten by
mac80211 to contain the entire IEs after the SSID, so that drivers
need not look at these at all but just send them after the SSID --
mac80211 includes the (extended) supported rates and HT informa-
tion (where applicable). When the scan finishes, ieee80211_s-
can_completed must be called; note that it also must be called
when the scan cannot finish due to any error unless this callback
returned a negative error code. The callback can sleep.

cancel_hw_scan Ask the low-level tp cancel the active hw scan. The driver should
ask the hardware to cancel the scan (if possible), but the scan
will be completed only after the driver will call ieee80211_s-
can_completed. This callback is needed for wowlan, to prevent
enqueueing a new scan_work after the low-level driver was already
suspended. The callback can sleep.

sched_scan_start Ask the hardware to start scanning repeatedly at specific intervals.
The driver must call the ieee80211_sched_scan_results
function whenever it finds results. This process will continue until
sched_scan_stop is called.

sched_scan_stop Tell the hardware to stop an ongoing scheduled scan. In this case,
ieee80211_sched_scan_stopped must not be called.

sw_scan_start Notifier function that is called just before a software
scan is started. Can be NULL, if the driver doesn't need
this notification. The mac_addr parameter allows supporting
NL80211_SCAN_FLAG_RANDOM_ADDR, the driver may set
the NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR flag
if it can use this parameter. The callback can sleep.

sw_scan_complete Notifier function that is called just after a software scan finished.
Can be NULL, if the driver doesn't need this notification. The call-
back can sleep.

get_stats Return low-level statistics. Returns zero if statistics are available.
The callback can sleep.

17

Basic hardware handling

get_key_seq If your device implements encryption in hardware and does IV/PN
assignment then this callback should be provided to read the IV/PN
for the given key from hardware. The callback must be atomic.

set_frag_threshold Configuration of fragmentation threshold. Assign this if the device
does fragmentation by itself; if this callback is implemented then
the stack will not do fragmentation. The callback can sleep.

set_rts_threshold Configuration of RTS threshold (if device needs it) The callback
can sleep.

sta_add Notifies low level driver about addition of an associated station,
AP, IBSS/WDS/mesh peer etc. This callback can sleep.

sta_remove Notifies low level driver about removal of an associated station,
AP, IBSS/WDS/mesh peer etc. Note that after the callback returns it
isn't safe to use the pointer, not even RCU protected; no RCU grace
period is guaranteed between returning here and freeing the station.
See sta_pre_rcu_remove if needed. This callback can sleep.

sta_add_debugfs Drivers can use this callback to add debugfs files when a station
is added to mac80211's station list. This callback and sta_re-
move_debugfs should be within a CONFIG_MAC80211_DE-
BUGFS conditional. This callback can sleep.

sta_remove_debugfs Remove the debugfs files which were added using sta_add_de-
bugfs. This callback can sleep.

sta_notify Notifies low level driver about power state transition of an asso-
ciated station, AP, IBSS/WDS/mesh peer etc. For a VIF operat-
ing in AP mode, this callback will not be called when the flag
IEEE80211_HW_AP_LINK_PS is set. Must be atomic.

sta_state Notifies low level driver about state transition of a station (which
can be the AP, a client, IBSS/WDS/mesh peer etc.) This callback is
mutually exclusive with sta_add/sta_remove. It must not fail
for down transitions but may fail for transitions up the list of states.
Also note that after the callback returns it isn't safe to use the point-
er, not even RCU protected - no RCU grace period is guaranteed
between returning here and freeing the station. See sta_pre_r-
cu_remove if needed. The callback can sleep.

sta_pre_rcu_remove Notify driver about station removal before RCU synchronisation.
This is useful if a driver needs to have station pointers protected
using RCU, it can then use this call to clear the pointers instead of
waiting for an RCU grace period to elapse in sta_state. The
callback can sleep.

sta_rc_update Notifies the driver of changes to the bitrates that can be used
to transmit to the station. The changes are advertised with bits
from enum ieee80211_rate_control_changed and the values are
reflected in the station data. This callback should only be used
when the driver uses hardware rate control (IEEE80211_H-
W_HAS_RATE_CONTROL) since otherwise the rate control algo-
rithm is notified directly. Must be atomic.

18

Basic hardware handling

sta_rate_tbl_update Notifies the driver that the rate table changed. This is only used
if the configured rate control algorithm actually uses the new rate
table API, and is therefore optional. Must be atomic.

sta_statistics Get statistics for this station. For example with beacon filtering,
the statistics kept by mac80211 might not be accurate, so let the
driver pre-fill the statistics. The driver can fill most of the values
(indicating which by setting the filled bitmap), but not all of them
make sense - see the source for which ones are possible. Statistics
that the driver doesn't fill will be filled by mac80211. The callback
can sleep.

conf_tx Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
bursting) for a hardware TX queue. Returns a negative error code
on failure. The callback can sleep.

get_tsf Get the current TSF timer value from firmware/hardware. Current-
ly, this is only used for IBSS mode BSSID merging and debugging.
Is not a required function. The callback can sleep.

set_tsf Set the TSF timer to the specified value in the firmware/hardware.
Currently, this is only used for IBSS mode debugging. Is not a re-
quired function. The callback can sleep.

reset_tsf Reset the TSF timer and allow firmware/hardware to synchronize
with other STAs in the IBSS. This is only used in IBSS mode. This
function is optional if the firmware/hardware takes full care of TSF
synchronization. The callback can sleep.

tx_last_beacon Determine whether the last IBSS beacon was sent by us. This is
needed only for IBSS mode and the result of this function is used
to determine whether to reply to Probe Requests. Returns non-zero
if this device sent the last beacon. The callback can sleep.

ampdu_action Perform a certain A-MPDU action The RA/TID combination de-
termines the destination and TID we want the ampdu action to
be performed for. The action is defined through ieee80211_amp-
du_mlme_action. When the action is set to IEEE80211_AMP-
DU_TX_OPERATIONAL the driver may neither send aggregates
containing more subframes than buf_size nor send aggregates in
a way that lost frames would exceed the buffer size. If just limiting
the aggregate size, this would be

get_survey Return per-channel survey information

rfkill_poll Poll rfkill hardware state. If you need this, you also need to set
wiphy->rfkill_poll to true before registration, and need to call
wiphy_rfkill_set_hw_state in the callback. The callback
can sleep.

set_coverage_class Set slot time for given coverage class as specified in IEEE
802.11-2007 section 17.3.8.6 and modify ACK timeout according-
ly; coverage class equals to -1 to enable ACK timeout estimation
algorithm (dynack). To disable dynack set valid value for coverage
class. This callback is not required and may sleep.

19

Basic hardware handling

testmode_cmd Implement a cfg80211 test mode command. The passed vif may
be NULL. The callback can sleep.

testmode_dump Implement a cfg80211 test mode dump. The callback can sleep.

flush Flush all pending frames from the hardware queue, making sure that
the hardware queues are empty. The queues parameter is a bitmap
of queues to flush, which is useful if different virtual interfaces use
different hardware queues; it may also indicate all queues. If the
parameter drop is set to true, pending frames may be dropped.
Note that vif can be NULL. The callback can sleep.

channel_switch Drivers that need (or want) to offload the channel switch operation
for CSAs received from the AP may implement this callback. They
must then call ieee80211_chswitch_done to indicate com-
pletion of the channel switch.

set_antenna Set antenna configuration (tx_ant, rx_ant) on the device. Para-
meters are bitmaps of allowed antennas to use for TX/RX. Dri-
vers may reject TX/RX mask combinations they cannot support
by returning -EINVAL (also see nl80211.h NL80211_ATTR_WI-
PHY_ANTENNA_TX).

get_antenna Get current antenna configuration from device (tx_ant, rx_ant).

remain_on_channel Starts an off-channel period on the given channel, must call back to
ieee80211_ready_on_channel when on that channel. Note
that normal channel traffic is not stopped as this is intended for hw
offload. Frames to transmit on the off-channel channel are trans-
mitted normally except for the IEEE80211_TX_CTL_TX_OF-
FCHAN flag. When the duration (which will always be non-zero)
expires, the driver must call ieee80211_remain_on_chan-
nel_expired. Note that this callback may be called while the
device is in IDLE and must be accepted in this case. This callback
may sleep.

cancel_remain_on_channel Requests that an ongoing off-channel period is aborted before it
expires. This callback may sleep.

set_ringparam Set tx and rx ring sizes.

get_ringparam Get tx and rx ring current and maximum sizes.

tx_frames_pending Check if there is any pending frame in the hardware queues before
entering power save.

set_bitrate_mask Set a mask of rates to be used for rate control selection when trans-
mitting a frame. Currently only legacy rates are handled. The call-
back can sleep.

event_callback Notify driver about any event in mac80211. See enum
ieee80211_event_type for the different types. The callback must be
atomic.

allow_buffered_frames Prepare device to allow the given number of frames to go out to the
given station. The frames will be sent by mac80211 via the usual
TX path after this call. The TX information for frames released will

20

Basic hardware handling

also have the IEEE80211_TX_CTL_NO_PS_BUFFER flag set
and the last one will also have IEEE80211_TX_STATUS_EOSP
set. In case frames from multiple TIDs are released and the
driver might reorder them between the TIDs, it must set the
IEEE80211_TX_STATUS_EOSP flag on the last frame and clear
it on all others and also handle the EOSP bit in the QoS header cor-
rectly. Alternatively, it can also call the ieee80211_sta_eosp
function. The tids parameter is a bitmap and tells the driver which
TIDs the frames will be on; it will at most have two bits set. This
callback must be atomic.

release_buffered_frames Release buffered frames according to the given parameters. In the
case where the driver buffers some frames for sleeping stations
mac80211 will use this callback to tell the driver to release some
frames, either for PS-poll or uAPSD. Note that if the more_da-
ta parameter is false the driver must check if there are more
frames on the given TIDs, and if there are more than the frames
being released then it must still set the more-data bit in the frame. If
the more_data parameter is true, then of course the more-data
bit must always be set. The tids parameter tells the driver which
TIDs to release frames from, for PS-poll it will always have only
a single bit set. In the case this is used for a PS-poll initiated re-
lease, the num_frames parameter will always be 1 so code can be
shared. In this case the driver must also set IEEE80211_TX_S-
TATUS_EOSP flag on the TX status (and must report TX status) so
that the PS-poll period is properly ended. This is used to avoid send-
ing multiple responses for a retried PS-poll frame. In the case this is
used for uAPSD, the num_frames parameter may be bigger than
one, but the driver may send fewer frames (it must send at least one,
however). In this case it is also responsible for setting the EOSP
flag in the QoS header of the frames. Also, when the service pe-
riod ends, the driver must set IEEE80211_TX_STATUS_EOSP
on the last frame in the SP. Alternatively, it may call the function
ieee80211_sta_eosp to inform mac80211 of the end of the
SP. This callback must be atomic.

get_et_sset_count Ethtool API to get string-set count.

get_et_stats Ethtool API to get a set of u64 stats.

get_et_strings Ethtool API to get a set of strings to describe stats and perhaps other
supported types of ethtool data-sets.

mgd_prepare_tx Prepare for transmitting a management frame for association before
associated. In multi-channel scenarios, a virtual interface is bound
to a channel before it is associated, but as it isn't associated yet it
need not necessarily be given airtime, in particular since any trans-
mission to a P2P GO needs to be synchronized against the GO's
powersave state. mac80211 will call this function before transmit-
ting a management frame prior to having successfully associated to
allow the driver to give it channel time for the transmission, to get
a response and to be able to synchronize with the GO. The callback
will be called before each transmission and upon return mac80211
will transmit the frame right away. The callback is optional and can
(should!) sleep.

21

Basic hardware handling

mgd_protect_tdls_discover Protect a TDLS discovery session. After sending a TDLS discov-
ery-request, we expect a reply to arrive on the AP's channel. We
must stay on the channel (no PSM, scan, etc.), since a TDLS set-
up-response is a direct packet not buffered by the AP. mac80211
will call this function just before the transmission of a TDLS dis-
covery-request. The recommended period of protection is at least 2
* (DTIM period). The callback is optional and can sleep.

add_chanctx Notifies device driver about new channel context creation. This
callback may sleep.

remove_chanctx Notifies device driver about channel context destruction. This call-
back may sleep.

change_chanctx Notifies device driver about channel context changes that may hap-
pen when combining different virtual interfaces on the same chan-
nel context with different settings This callback may sleep.

assign_vif_chanctx Notifies device driver about channel context being bound to vif.
Possible use is for hw queue remapping. This callback may sleep.

unassign_vif_chanctx Notifies device driver about channel context being unbound from
vif. This callback may sleep.

switch_vif_chanctx switch a number of vifs from one chanctx to another, as speci-
fied in the list of ieee80211_vif_chanctx_switch passed
to the driver, according to the mode defined in ieee80211_chanc-
tx_switch_mode. This callback may sleep.

reconfig_complete Called after a call to ieee80211_restart_hw and during re-
sume, when the reconfiguration has completed. This can help the
driver implement the reconfiguration step (and indicate mac80211
is ready to receive frames). This callback may sleep.

ipv6_addr_change IPv6 address assignment on the given interface changed. Currently,
this is only called for managed or P2P client interfaces. This call-
back is optional; it must not sleep.

channel_switch_beacon Starts a channel switch to a new channel. Beacons are modified
to include CSA or ECSA IEs before calling this function. The cor-
responding count fields in these IEs must be decremented, and
when they reach 1 the driver must call ieee80211_csa_fin-
ish. Drivers which use ieee80211_beacon_get get the csa
counter decremented by mac80211, but must check if it is 1 us-
ing ieee80211_csa_is_complete after the beacon has been
transmitted and then call ieee80211_csa_finish. If the CSA
count starts as zero or 1, this function will not be called, since there
won't be any time to beacon before the switch anyway.

pre_channel_switch This is an optional callback that is called before a channel switch
procedure is started (ie. when a STA gets a CSA or an userspace ini-
tiated channel-switch), allowing the driver to prepare for the chan-
nel switch.

post_channel_switch This is an optional callback that is called after a channel switch
procedure is completed, allowing the driver to go back to a normal
configuration.

22

Basic hardware handling

join_ibss Join an IBSS (on an IBSS interface); this is called after all informa-
tion in bss_conf is set up and the beacon can be retrieved. A channel
context is bound before this is called.

leave_ibss Leave the IBSS again.

get_expected_throughput extract the expected throughput towards the specified station. The
returned value is expressed in Kbps. It returns 0 if the RC algorithm
does not have proper data to provide.

get_txpower get current maximum tx power (in dBm) based on configuration
and hardware limits.

tdls_channel_switch Start channel-switching with a TDLS peer. The driver is responsi-
ble for continually initiating channel-switching operations and re-
turning to the base channel for communication with the AP. The
driver receives a channel-switch request template and the location
of the switch-timing IE within the template as part of the invoca-
tion. The template is valid only within the call, and the driver can
optionally copy the skb for further re-use.

tdls_cancel_channel_switch Stop channel-switching with a TDLS peer. Both peers must be on
the base channel when the call completes.

tdls_recv_channel_switch a TDLS channel-switch related frame (request or response) has
been received from a remote peer. The driver gets parameters
parsed from the incoming frame and may use them to continue an
ongoing channel-switch operation. In addition, a channel-switch
response template is provided, together with the location of the
switch-timing IE within the template. The skb can only be used
within the function call.

wake_tx_queue Called when new packets have been added to the queue.

Description

This structure contains various callbacks that the driver may handle or, in some cases, must handle, for
example to configure the hardware to a new channel or to transmit a frame.

possible with a buf_size of 8
- TX: 1.....7 - RX: 2....7 (lost frame #1) - TX: 8..1... which is invalid since #1 was now re-transmitted well
past the buffer size of 8. Correct ways to retransmit #1 would be: - TX: 1 or 18 or 81 Even “189” would
be wrong since 1 could be lost again.

Returns a negative error code on failure. The callback can sleep.

23

Basic hardware handling

Name
ieee80211_alloc_hw — Allocate a new hardware device

Synopsis
struct ieee80211_hw * ieee80211_alloc_hw (size_t priv_data_len, const
struct ieee80211_ops * ops);

Arguments
priv_data_len length of private data

ops callbacks for this device

Description

This must be called once for each hardware device. The returned pointer must be used to refer to this
device when calling other functions. mac80211 allocates a private data area for the driver pointed to by
priv in struct ieee80211_hw, the size of this area is given as priv_data_len.

Return
A pointer to the new hardware device, or NULL on error.

24

Basic hardware handling

Name
ieee80211_register_hw — Register hardware device

Synopsis
int ieee80211_register_hw (struct ieee80211_hw * hw);

Arguments
hw the device to register as returned by ieee80211_alloc_hw

Description

You must call this function before any other functions in mac80211. Note that before a hardware can be
registered, you need to fill the contained wiphy's information.

Return
0 on success. An error code otherwise.

25

Basic hardware handling

Name
ieee80211_unregister_hw — Unregister a hardware device

Synopsis
void ieee80211_unregister_hw (struct ieee80211_hw * hw);

Arguments
hw the hardware to unregister

Description

This function instructs mac80211 to free allocated resources and unregister netdevices from the networking
subsystem.

26

Basic hardware handling

Name
ieee80211_free_hw — free hardware descriptor

Synopsis
void ieee80211_free_hw (struct ieee80211_hw * hw);

Arguments
hw the hardware to free

Description

This function frees everything that was allocated, including the private data for the driver. You must call
ieee80211_unregister_hw before calling this function.

27

Chapter 2. PHY configuration
TBD

This chapter should describe PHY handling including start/stop callbacks and the various structures used.

28

PHY configuration

Name
struct ieee80211_conf — configuration of the device

Synopsis

struct ieee80211_conf {
 u32 flags;
 int power_level;
 int dynamic_ps_timeout;
 u16 listen_interval;
 u8 ps_dtim_period;
 u8 long_frame_max_tx_count;
 u8 short_frame_max_tx_count;
 struct cfg80211_chan_def chandef;
 bool radar_enabled;
 enum ieee80211_smps_mode smps_mode;
};

Members
flags configuration flags defined above

power_level requested transmit power (in dBm), backward compatibility value
only that is set to the minimum of all interfaces

dynamic_ps_timeout The dynamic powersave timeout (in ms), see the powersave docu-
mentation below. This variable is valid only when the CONF_PS
flag is set.

listen_interval listen interval in units of beacon interval

ps_dtim_period The DTIM period of the AP we're connected to, for use in power
saving. Power saving will not be enabled until a beacon has been
received and the DTIM period is known.

long_frame_max_tx_count Maximum number of transmissions for a “long” frame (a frame not
RTS protected), called “dot11LongRetryLimit” in 802.11, but ac-
tually means the number of transmissions not the number of retries

short_frame_max_tx_count Maximum number of transmissions for a “short” frame, called
“dot11ShortRetryLimit” in 802.11, but actually means the number
of transmissions not the number of retries

chandef the channel definition to tune to

radar_enabled whether radar detection is enabled

smps_mode spatial multiplexing powersave mode; note that IEEE80211_SM-
PS_STATIC is used when the device is not configured for an HT
channel. Note that this is only valid if channel contexts are not used,
otherwise each channel context has the number of chains listed.

Description

29

PHY configuration

This struct indicates how the driver shall configure the hardware.

30

PHY configuration

Name
enum ieee80211_conf_flags — configuration flags

Synopsis

enum ieee80211_conf_flags {
 IEEE80211_CONF_MONITOR,
 IEEE80211_CONF_PS,
 IEEE80211_CONF_IDLE,
 IEEE80211_CONF_OFFCHANNEL
};

Constants
IEEE80211_CONF_MONITOR there's a monitor interface present -- use this to determine for ex-

ample whether to calculate timestamps for packets or not, do not
use instead of filter flags!

IEEE80211_CONF_PS Enable 802.11 power save mode (managed mode only). This is the
power save mode defined by IEEE 802.11-2007 section 11.2, mean-
ing that the hardware still wakes up for beacons, is able to transmit
frames and receive the possible acknowledgment frames. Not to be
confused with hardware specific wakeup/sleep states, driver is re-
sponsible for that. See the section “Powersave support” for more.

IEEE80211_CONF_IDLE The device is running, but idle; if the flag is set the driver should be
prepared to handle configuration requests but may turn the device
off as much as possible. Typically, this flag will be set when an
interface is set UP but not associated or scanning, but it can also be
unset in that case when monitor interfaces are active.

IEEE80211_CONF_OFFCHAN-
NEL

The device is currently not on its main operating channel.

Description

Flags to define PHY configuration options

31

Chapter 3. Virtual interfaces
TBD

This chapter should describe virtual interface basics that are relevant to the driver (VLANs, MGMT etc
are not.) It should explain the use of the add_iface/remove_iface callbacks as well as the interface config-
uration callbacks.

Things related to AP mode should be discussed there.

Things related to supporting multiple interfaces should be in the appropriate chapter, a BIG FAT note
should be here about this though and the recommendation to allow only a single interface in STA mode
at first!

32

Virtual interfaces

Name
struct ieee80211_vif — per-interface data

Synopsis

struct ieee80211_vif {
 enum nl80211_iftype type;
 struct ieee80211_bss_conf bss_conf;
 u8 addr[ETH_ALEN];
 bool p2p;
 bool csa_active;
 u8 cab_queue;
 u8 hw_queue[IEEE80211_NUM_ACS];
 struct ieee80211_txq * txq;
 struct ieee80211_chanctx_conf __rcu * chanctx_conf;
 u32 driver_flags;
#ifdef CONFIG_MAC80211_DEBUGFS
 struct dentry * debugfs_dir;
#endif
 unsigned int probe_req_reg;
 u8 drv_priv[0];
};

Members
type type of this virtual interface

bss_conf BSS configuration for this interface, either our own or the BSS
we're associated to

addr[ETH_ALEN] address of this interface

p2p indicates whether this AP or STA interface is a p2p interface, i.e.
a GO or p2p-sta respectively

csa_active marks whether a channel switch is going on. Internally it is write-
protected by sdata_lock and local->mtx so holding either is fine for
read access.

cab_queue content-after-beacon (DTIM beacon really) queue, AP mode only

hw_queue[IEEE80211_NUM_ACS] hardware queue for each AC

txq the multicast data TX queue (if driver uses the TXQ abstraction)

chanctx_conf The channel context this interface is assigned to, or NULL when it
is not assigned. This pointer is RCU-protected due to the TX path
needing to access it; even though the netdev carrier will always be
off when it is NULL there can still be races and packets could be
processed after it switches back to NULL.

driver_flags flags/capabilities the driver has for this interface, these need to be
set (or cleared) when the interface is added or, if supported by the

33

Virtual interfaces

driver, the interface type is changed at runtime, mac80211 will nev-
er touch this field

debugfs_dir debugfs dentry, can be used by drivers to create own per interface
debug files. Note that it will be NULL for the virtual monitor inter-
face (if that is requested.)

probe_req_reg probe requests should be reported to mac80211 for this interface.

drv_priv[0] data area for driver use, will always be aligned to sizeof(void *).

Description

Data in this structure is continually present for driver use during the life of a virtual interface.

34

Chapter 4. Receive and transmit
processing
what should be here

TBD

This should describe the receive and transmit paths in mac80211/the drivers as well as transmit status
handling.

Frame format

As a general rule, when frames are passed between mac80211 and the driver, they start with the IEEE
802.11 header and include the same octets that are sent over the air except for the FCS which should be
calculated by the hardware.

There are, however, various exceptions to this rule for advanced features:

The first exception is for hardware encryption and decryption offload where the IV/ICV may or may not
be generated in hardware.

Secondly, when the hardware handles fragmentation, the frame handed to the driver from mac80211 is
the MSDU, not the MPDU.

Packet alignment

Drivers always need to pass packets that are aligned to two-byte boundaries to the stack.

Additionally, should, if possible, align the payload data in a way that guarantees that the contained IP
header is aligned to a four-byte boundary. In the case of regular frames, this simply means aligning the
payload to a four-byte boundary (because either the IP header is directly contained, or IV/RFC1042 headers
that have a length divisible by four are in front of it). If the payload data is not properly aligned and the
architecture doesn't support efficient unaligned operations, mac80211 will align the data.

With A-MSDU frames, however, the payload data address must yield two modulo four because there are
14-byte 802.3 headers within the A-MSDU frames that push the IP header further back to a multiple of
four again. Thankfully, the specs were sane enough this time around to require padding each A-MSDU
subframe to a length that is a multiple of four.

Padding like Atheros hardware adds which is between the 802.11 header and the payload is not supported,
the driver is required to move the 802.11 header to be directly in front of the payload in that case.

Calling into mac80211 from interrupts

Only ieee80211_tx_status_irqsafe and ieee80211_rx_irqsafe can be called in hard-
ware interrupt context. The low-level driver must not call any other functions in hardware interrupt con-

35

Receive and transmit processing

text. If there is a need for such call, the low-level driver should first ACK the interrupt and perform the
IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even tasklet function.

NOTE: If the driver opts to use the _irqsafe functions, it may not also use the non-IRQ-safe functions!

functions/definitions

36

Receive and transmit processing

Name
struct ieee80211_rx_status — receive status

Synopsis

struct ieee80211_rx_status {
 u64 mactime;
 u32 device_timestamp;
 u32 ampdu_reference;
 u32 flag;
 u16 freq;
 u8 vht_flag;
 u8 rate_idx;
 u8 vht_nss;
 u8 rx_flags;
 u8 band;
 u8 antenna;
 s8 signal;
 u8 chains;
 s8 chain_signal[IEEE80211_MAX_CHAINS];
 u8 ampdu_delimiter_crc;
};

Members

mactime value in microseconds of the 64-bit Time Synchronization Func-
tion (TSF) timer when the first data symbol (MPDU) arrived at the
hardware.

device_timestamp arbitrary timestamp for the device, mac80211 doesn't use it but can
store it and pass it back to the driver for synchronisation

ampdu_reference A-MPDU reference number, must be a different value for each A-
MPDU but the same for each subframe within one A-MPDU

flag RX_FLAG_*

freq frequency the radio was tuned to when receiving this frame, in MHz

vht_flag RX_VHT_FLAG_*

rate_idx index of data rate into band's supported rates or MCS index if HT
or VHT is used (RX_FLAG_HT/RX_FLAG_VHT)

vht_nss number of streams (VHT only)

rx_flags internal RX flags for mac80211

band the active band when this frame was received

antenna antenna used

signal signal strength when receiving this frame, either in dBm, in
dB or unspecified depending on the hardware capabilities flags
IEEE80211_HW_SIGNAL_*

37

Receive and transmit processing

chains bitmask of receive chains for which separate signal strength values
were filled.

chain_sig-
nal[IEEE80211_MAX_CHAINS]

per-chain signal strength, in dBm (unlike signal, doesn't support
dB or unspecified units)

ampdu_delimiter_crc A-MPDU delimiter CRC

Description

The low-level driver should provide this information (the subset supported by hardware) to the 802.11
code with each received frame, in the skb's control buffer (cb).

38

Receive and transmit processing

Name
enum mac80211_rx_flags — receive flags

Synopsis

enum mac80211_rx_flags {
 RX_FLAG_MMIC_ERROR,
 RX_FLAG_DECRYPTED,
 RX_FLAG_MMIC_STRIPPED,
 RX_FLAG_IV_STRIPPED,
 RX_FLAG_FAILED_FCS_CRC,
 RX_FLAG_FAILED_PLCP_CRC,
 RX_FLAG_MACTIME_START,
 RX_FLAG_SHORTPRE,
 RX_FLAG_HT,
 RX_FLAG_40MHZ,
 RX_FLAG_SHORT_GI,
 RX_FLAG_NO_SIGNAL_VAL,
 RX_FLAG_HT_GF,
 RX_FLAG_AMPDU_DETAILS,
 RX_FLAG_PN_VALIDATED,
 RX_FLAG_AMPDU_LAST_KNOWN,
 RX_FLAG_AMPDU_IS_LAST,
 RX_FLAG_AMPDU_DELIM_CRC_ERROR,
 RX_FLAG_AMPDU_DELIM_CRC_KNOWN,
 RX_FLAG_MACTIME_END,
 RX_FLAG_VHT,
 RX_FLAG_LDPC,
 RX_FLAG_STBC_MASK,
 RX_FLAG_10MHZ,
 RX_FLAG_5MHZ,
 RX_FLAG_AMSDU_MORE,
 RX_FLAG_RADIOTAP_VENDOR_DATA
};

Constants

RX_FLAG_MMIC_ERROR Michael MIC error was reported on this frame. Use together with
RX_FLAG_MMIC_STRIPPED.

RX_FLAG_DECRYPTED This frame was decrypted in hardware.

RX_FLAG_MMIC_STRIPPED the Michael MIC is stripped off this frame, verification has been
done by the hardware.

RX_FLAG_IV_STRIPPED The IV/ICV are stripped from this frame. If this flag is set, the stack
cannot do any replay detection hence the driver or hardware will
have to do that.

RX_FLAG_FAILED_FCS_CRC Set this flag if the FCS check failed on the frame.

RX_FLAG_FAILED_PLCP_CRC Set this flag if the PCLP check failed on the frame.

39

Receive and transmit processing

RX_FLAG_MACTIME_START The timestamp passed in the RX status (mactime field) is valid
and contains the time the first symbol of the MPDU was received.
This is useful in monitor mode and for proper IBSS merging.

RX_FLAG_SHORTPRE Short preamble was used for this frame

RX_FLAG_HT HT MCS was used and rate_idx is MCS index

RX_FLAG_40MHZ HT40 (40 MHz) was used

RX_FLAG_SHORT_GI Short guard interval was used

RX_FLAG_NO_SIGNAL_VAL The signal strength value is not present. Valid only for data frames
(mainly A-MPDU)

RX_FLAG_HT_GF This frame was received in a HT-greenfield transmission, if the
driver fills this value it should add IEEE80211_RADIOTAP_M-
CS_HAVE_FMT to hw.radiotap_mcs_details to advertise that fact

RX_FLAG_AMPDU_DETAILS A-MPDU details are known, in particular the reference number
(ampdu_reference) must be populated and be a distinct num-
ber for each A-MPDU

RX_FLAG_PN_VALIDATED Currently only valid for CCMP/GCMP frames, this flag indicates
that the PN was verified for replay protection. Note that this flag is
also currently only supported when a frame is also decrypted (ie.
RX_FLAG_DECRYPTED must be set)

RX_FLAG_AMP-
DU_LAST_KNOWN

last subframe is known, should be set on all subframes of a single
A-MPDU

RX_FLAG_AMPDU_IS_LAST this subframe is the last subframe of the A-MPDU

RX_FLAG_AMP-
DU_DELIM_CRC_ERROR

A delimiter CRC error has been detected on this subframe

RX_FLAG_AMP-
DU_DELIM_CRC_KNOWN

The delimiter CRC field is known (the CRC is stored in the amp-
du_delimiter_crc field)

RX_FLAG_MACTIME_END The timestamp passed in the RX status (mactime field) is valid
and contains the time the last symbol of the MPDU (including FCS)
was received.

RX_FLAG_VHT VHT MCS was used and rate_index is MCS index

RX_FLAG_LDPC LDPC was used

RX_FLAG_STBC_MASK STBC 2 bit bitmask. 1 - Nss=1, 2 - Nss=2, 3 - Nss=3

RX_FLAG_10MHZ 10 MHz (half channel) was used

RX_FLAG_5MHZ 5 MHz (quarter channel) was used

RX_FLAG_AMSDU_MORE Some drivers may prefer to report separate A-MSDU subframes
instead of a one huge frame for performance reasons. All, but the
last MSDU from an A-MSDU should have this flag set. E.g. if an
A-MSDU has 3 frames, the first 2 must have the flag set, while the

40

Receive and transmit processing

3rd (last) one must not have this flag set. The flag is used to deal
with retransmission/duplication recovery properly since A-MSDU
subframes share the same sequence number. Reported subframes
can be either regular MSDU or singly A-MSDUs. Subframes must
not be interleaved with other frames.

RX_FLAG_RADIOTAP_VEN-
DOR_DATA

This frame contains vendor-specific radiotap data in the skb->data
(before the frame) as described by the struct ieee80211_vendor_ra-
diotap.

Description

These flags are used with the flag member of struct ieee80211_rx_status.

41

Receive and transmit processing

Name
enum mac80211_tx_info_flags — flags to describe transmission information/status

Synopsis

enum mac80211_tx_info_flags {
 IEEE80211_TX_CTL_REQ_TX_STATUS,
 IEEE80211_TX_CTL_ASSIGN_SEQ,
 IEEE80211_TX_CTL_NO_ACK,
 IEEE80211_TX_CTL_CLEAR_PS_FILT,
 IEEE80211_TX_CTL_FIRST_FRAGMENT,
 IEEE80211_TX_CTL_SEND_AFTER_DTIM,
 IEEE80211_TX_CTL_AMPDU,
 IEEE80211_TX_CTL_INJECTED,
 IEEE80211_TX_STAT_TX_FILTERED,
 IEEE80211_TX_STAT_ACK,
 IEEE80211_TX_STAT_AMPDU,
 IEEE80211_TX_STAT_AMPDU_NO_BACK,
 IEEE80211_TX_CTL_RATE_CTRL_PROBE,
 IEEE80211_TX_INTFL_OFFCHAN_TX_OK,
 IEEE80211_TX_INTFL_NEED_TXPROCESSING,
 IEEE80211_TX_INTFL_RETRIED,
 IEEE80211_TX_INTFL_DONT_ENCRYPT,
 IEEE80211_TX_CTL_NO_PS_BUFFER,
 IEEE80211_TX_CTL_MORE_FRAMES,
 IEEE80211_TX_INTFL_RETRANSMISSION,
 IEEE80211_TX_INTFL_MLME_CONN_TX,
 IEEE80211_TX_INTFL_NL80211_FRAME_TX,
 IEEE80211_TX_CTL_LDPC,
 IEEE80211_TX_CTL_STBC,
 IEEE80211_TX_CTL_TX_OFFCHAN,
 IEEE80211_TX_INTFL_TKIP_MIC_FAILURE,
 IEEE80211_TX_CTL_NO_CCK_RATE,
 IEEE80211_TX_STATUS_EOSP,
 IEEE80211_TX_CTL_USE_MINRATE,
 IEEE80211_TX_CTL_DONTFRAG,
 IEEE80211_TX_STAT_NOACK_TRANSMITTED
};

Constants

IEEE80211_TX_CTL_RE-
Q_TX_STATUS

require TX status callback for this frame.

IEEE80211_TX_CTL_ASSIGN_SEQThe driver has to assign a sequence number to this
frame, taking care of not overwriting the fragment num-
ber and increasing the sequence number only when the
IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211
will properly assign sequence numbers to QoS-data frames but can-
not do so correctly for non-QoS-data and management frames be-
cause beacons need them from that counter as well and mac80211
cannot guarantee proper sequencing. If this flag is set, the driver

42

Receive and transmit processing

should instruct the hardware to assign a sequence number to the
frame or assign one itself. Cf. IEEE 802.11-2007 7.1.3.4.1 para-
graph 3. This flag will always be set for beacons and always be clear
for frames without a sequence number field.

IEEE80211_TX_CTL_NO_ACK tell the low level not to wait for an ack

IEEE80211_TX_CTL_CLEAR_PS_FILTclear powersave filter for destination station

IEEE80211_TX_CTL_FIRST_FRAG-
MENT

this is a first fragment of the frame

IEEE80211_TX_CTL_SEND_AF-
TER_DTIM

send this frame after DTIM beacon

IEEE80211_TX_CTL_AMPDU this frame should be sent as part of an A-MPDU

IEEE80211_TX_CTL_INJECTED Frame was injected, internal to mac80211.

IEEE80211_TX_STAT_TX_FIL-
TERED

The frame was not transmitted because the destination STA was
in powersave mode. Note that to avoid race conditions, the fil-
ter must be set by the hardware or firmware upon receiving a
frame that indicates that the station went to sleep (must be done
on device to filter frames already on the queue) and may on-
ly be unset after mac80211 gives the OK for that by setting the
IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), since only
then is it guaranteed that no more frames are in the hardware queue.

IEEE80211_TX_STAT_ACK Frame was acknowledged

IEEE80211_TX_STAT_AMPDU The frame was aggregated, so status is for the whole aggregation.

IEEE80211_TX_STAT_AMP-
DU_NO_BACK

no block ack was returned, so consider using block ack request
(BAR).

IEEE80211_TX_CTL_RATE_C-
TRL_PROBE

internal to mac80211, can be set by rate control algorithms to indi-
cate probe rate, will be cleared for fragmented frames (except on
the last fragment)

IEEE80211_TX_INTFL_OF-
FCHAN_TX_OK

Internal to mac80211. Used to indicate that a frame can be trans-
mitted while the queues are stopped for off-channel operation.

IEEE80211_TX_INT-
FL_NEED_TXPROCESSING

completely internal to mac80211, used to indicate that a pending
frame requires TX processing before it can be sent out.

IEEE80211_TX_INT-
FL_RETRIED

completely internal to mac80211, used to indicate that a frame was
already retried due to PS

IEEE80211_TX_INTFL_DON-
T_ENCRYPT

completely internal to mac80211, used to indicate frame should not
be encrypted

IEEE80211_TX_CTL_NO_PS_BUFFERThis frame is a response to a poll frame (PS-Poll or uAPSD) or a
non-bufferable MMPDU and must be sent although the station is
in powersave mode.

IEEE80211_TX_CTL_MORE_FRAMESMore frames will be passed to the transmit function after the current
frame, this can be used by drivers to kick the DMA queue only if
unset or when the queue gets full.

43

Receive and transmit processing

IEEE80211_TX_INTFL_RE-
TRANSMISSION

This frame is being retransmitted after TX status because the desti-
nation was asleep, it must not be modified again (no seqno assign-
ment, crypto, etc.)

IEEE80211_TX_INT-
FL_MLME_CONN_TX

This frame was transmitted by the MLME code for connection es-
tablishment, this indicates that its status should kick the MLME
state machine.

IEEE80211_TX_INTFL_N-
L80211_FRAME_TX

Frame was requested through nl80211 MLME command (internal
to mac80211 to figure out whether to send TX status to user space)

IEEE80211_TX_CTL_LDPC tells the driver to use LDPC for this frame

IEEE80211_TX_CTL_STBC Enables Space-Time Block Coding (STBC) for this frame and se-
lects the maximum number of streams that it can use.

IEEE80211_TX_CTL_TX_OF-
FCHAN

Marks this packet to be transmitted on the off-channel channel
when a remain-on-channel offload is done in hardware -- normal
packets still flow and are expected to be handled properly by the
device.

IEEE80211_TX_INT-
FL_TKIP_MIC_FAILURE

Marks this packet to be used for TKIP testing. It will be sent out
with incorrect Michael MIC key to allow TKIP countermeasures to
be tested.

IEEE80211_TX_CTL_NO_C-
CK_RATE

This frame will be sent at non CCK rate. This flag is actually used
for management frame especially for P2P frames not being sent at
CCK rate in 2GHz band.

IEEE80211_TX_STATUS_EOSP This packet marks the end of service period, when its status is re-
ported the service period ends. For frames in an SP that mac80211
transmits, it is already set; for driver frames the driver may set this
flag. It is also used to do the same for PS-Poll responses.

IEEE80211_TX_CTL_USE_MIN-
RATE

This frame will be sent at lowest rate. This flag is used to send null-
func frame at minimum rate when the nullfunc is used for connec-
tion monitoring purpose.

IEEE80211_TX_CTL_DONT-
FRAG

Don't fragment this packet even if it would be fragmented by size
(this is optional, only used for monitor injection).

IEEE80211_TX_S-
TAT_NOACK_TRANSMITTED

A frame that was marked with IEEE80211_TX_CTL_NO_ACK
has been successfully transmitted without any errors (like
issues specific to the driver/HW). This flag must not be
set for frames that don't request no-ack behaviour with
IEEE80211_TX_CTL_NO_ACK.

Description

These flags are used with the flags member of ieee80211_tx_info.

Note

If you have to add new flags to the enumeration, then don't forget to update IEEE80211_TX_TEMPO-
RARY_FLAGS when necessary.

44

Receive and transmit processing

Name
enum mac80211_tx_control_flags — flags to describe transmit control

Synopsis

enum mac80211_tx_control_flags {
 IEEE80211_TX_CTRL_PORT_CTRL_PROTO,
 IEEE80211_TX_CTRL_PS_RESPONSE
};

Constants

IEEE80211_TX_CTRL_PORT_C-
TRL_PROTO

this frame is a port control protocol frame (e.g. EAP)

IEEE80211_TX_CTR-
L_PS_RESPONSE

This frame is a response to a poll frame (PS-Poll or uAPSD).

Description

These flags are used in tx_info->control.flags.

45

Receive and transmit processing

Name
enum mac80211_rate_control_flags — per-rate flags set by the Rate Control algorithm.

Synopsis

enum mac80211_rate_control_flags {
 IEEE80211_TX_RC_USE_RTS_CTS,
 IEEE80211_TX_RC_USE_CTS_PROTECT,
 IEEE80211_TX_RC_USE_SHORT_PREAMBLE,
 IEEE80211_TX_RC_MCS,
 IEEE80211_TX_RC_GREEN_FIELD,
 IEEE80211_TX_RC_40_MHZ_WIDTH,
 IEEE80211_TX_RC_DUP_DATA,
 IEEE80211_TX_RC_SHORT_GI,
 IEEE80211_TX_RC_VHT_MCS,
 IEEE80211_TX_RC_80_MHZ_WIDTH,
 IEEE80211_TX_RC_160_MHZ_WIDTH
};

Constants

IEEE80211_TX_R-
C_USE_RTS_CTS

Use RTS/CTS exchange for this rate.

IEEE80211_TX_RC_USE_C-
TS_PROTECT

CTS-to-self protection is required. This is set if the current BSS
requires ERP protection.

IEEE80211_TX_R-
C_USE_SHORT_PREAMBLE

Use short preamble.

IEEE80211_TX_RC_MCS HT rate.

IEEE80211_TX_R-
C_GREEN_FIELD

Indicates whether this rate should be used in Greenfield mode.

IEEE80211_TX_R-
C_40_MHZ_WIDTH

Indicates if the Channel Width should be 40 MHz.

IEEE80211_TX_RC_DUP_DATA The frame should be transmitted on both of
the adjacent 20 MHz channels, if the cur-
rent channel type is NL80211_CHAN_HT40MINUS or
NL80211_CHAN_HT40PLUS.

IEEE80211_TX_RC_SHORT_GI Short Guard interval should be used for this rate.

IEEE80211_TX_RC_VHT_MCS VHT MCS rate, in this case the idx field is split into a higher 4 bits
(Nss) and lower 4 bits (MCS number)

IEEE80211_TX_R-
C_80_MHZ_WIDTH

Indicates 80 MHz transmission

IEEE80211_TX_R-
C_160_MHZ_WIDTH

Indicates 160 MHz transmission (80+80 isn't supported yet)

46

Receive and transmit processing

Description

These flags are set by the Rate control algorithm for each rate during tx, in the flags member of struct
ieee80211_tx_rate.

47

Receive and transmit processing

Name
struct ieee80211_tx_rate — rate selection/status

Synopsis

struct ieee80211_tx_rate {
 s8 idx;
 u16 count:5;
 u16 flags:11;
};

Members

idx rate index to attempt to send with

count number of tries in this rate before going to the next rate

flags rate control flags (enum mac80211_rate_control_flags)

Description

A value of -1 for idx indicates an invalid rate and, if used in an array of retry rates, that no more rates
should be tried.

When used for transmit status reporting, the driver should always report the rate along with the flags it used.

struct ieee80211_tx_info contains an array of these structs in the control information, and it will be filled
by the rate control algorithm according to what should be sent. For example, if this array contains, in the
format { <idx>, <count> } the information { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } then this means
that the frame should be transmitted up to twice at rate 3, up to twice at rate 2, and up to four times at rate
1 if it doesn't get acknowledged. Say it gets acknowledged by the peer after the fifth attempt, the status
information should then contain { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... since it was transmitted twice at rate
3, twice at rate 2 and once at rate 1 after which we received an acknowledgement.

48

Receive and transmit processing

Name
struct ieee80211_tx_info — skb transmit information

Synopsis

struct ieee80211_tx_info {
 u32 flags;
 u8 band;
 u8 hw_queue;
 u16 ack_frame_id;
 union {unnamed_union};
};

Members

flags transmit info flags, defined above

band the band to transmit on (use for checking for races)

hw_queue HW queue to put the frame on, skb_get_queue_mapping gives the AC

ack_frame_id internal frame ID for TX status, used internally

{unnamed_union} anonymous

Description

This structure is placed in skb->cb for three uses: (1) mac80211 TX control - mac80211 tells the driver
what to do (2) driver internal use (if applicable) (3) TX status information - driver tells mac80211 what
happened

49

Receive and transmit processing

Name
ieee80211_tx_info_clear_status — clear TX status

Synopsis

void ieee80211_tx_info_clear_status (struct ieee80211_tx_info * info);

Arguments

info The struct ieee80211_tx_info to be cleared.

Description

When the driver passes an skb back to mac80211, it must report a number of things in TX status. This
function clears everything in the TX status but the rate control information (it does clear the count since
you need to fill that in anyway).

NOTE

You can only use this function if you do NOT use info->driver_data! Use info->rate_driver_data instead
if you need only the less space that allows.

50

Receive and transmit processing

Name
ieee80211_rx — receive frame

Synopsis

void ieee80211_rx (struct ieee80211_hw * hw, struct sk_buff * skb);

Arguments

hw the hardware this frame came in on

skb the buffer to receive, owned by mac80211 after this call

Description

Use this function to hand received frames to mac80211. The receive buffer in skb must start with an IEEE
802.11 header. In case of a paged skb is used, the driver is recommended to put the ieee80211 header of
the frame on the linear part of the skb to avoid memory allocation and/or memcpy by the stack.

This function may not be called in IRQ context. Calls to this function for a single hard-
ware must be synchronized against each other. Calls to this function, ieee80211_rx_ni and
ieee80211_rx_irqsafe may not be mixed for a single hardware. Must not run concurrently with
ieee80211_tx_status or ieee80211_tx_status_ni.

In process context use instead ieee80211_rx_ni.

51

Receive and transmit processing

Name
ieee80211_rx_ni — receive frame (in process context)

Synopsis

void ieee80211_rx_ni (struct ieee80211_hw * hw, struct sk_buff * skb);

Arguments

hw the hardware this frame came in on

skb the buffer to receive, owned by mac80211 after this call

Description

Like ieee80211_rx but can be called in process context (internally disables bottom halves).

Calls to this function, ieee80211_rx and ieee80211_rx_irqsafe may not be mixed for a sin-
gle hardware. Must not run concurrently with ieee80211_tx_status or ieee80211_tx_sta-
tus_ni.

52

Receive and transmit processing

Name
ieee80211_rx_irqsafe — receive frame

Synopsis

void ieee80211_rx_irqsafe (struct ieee80211_hw * hw, struct sk_buff *
skb);

Arguments

hw the hardware this frame came in on

skb the buffer to receive, owned by mac80211 after this call

Description

Like ieee80211_rx but can be called in IRQ context (internally defers to a tasklet.)

Calls to this function, ieee80211_rx or ieee80211_rx_ni may not be mixed for a single hard-
ware.Must not run concurrently with ieee80211_tx_status or ieee80211_tx_status_ni.

53

Receive and transmit processing

Name
ieee80211_tx_status — transmit status callback

Synopsis

void ieee80211_tx_status (struct ieee80211_hw * hw, struct sk_buff *
skb);

Arguments

hw the hardware the frame was transmitted by

skb the frame that was transmitted, owned by mac80211 after this call

Description

Call this function for all transmitted frames after they have been transmitted. It is permissible to not call
this function for multicast frames but this can affect statistics.

This function may not be called in IRQ context. Calls to this function for a single hardware
must be synchronized against each other. Calls to this function, ieee80211_tx_status_ni and
ieee80211_tx_status_irqsafe may not be mixed for a single hardware. Must not run concur-
rently with ieee80211_rx or ieee80211_rx_ni.

54

Receive and transmit processing

Name
ieee80211_tx_status_ni — transmit status callback (in process context)

Synopsis

void ieee80211_tx_status_ni (struct ieee80211_hw * hw, struct sk_buff
* skb);

Arguments

hw the hardware the frame was transmitted by

skb the frame that was transmitted, owned by mac80211 after this call

Description

Like ieee80211_tx_status but can be called in process context.

Calls to this function, ieee80211_tx_status and ieee80211_tx_status_irqsafe may not
be mixed for a single hardware.

55

Receive and transmit processing

Name
ieee80211_tx_status_irqsafe — IRQ-safe transmit status callback

Synopsis

void ieee80211_tx_status_irqsafe (struct ieee80211_hw * hw, struct
sk_buff * skb);

Arguments

hw the hardware the frame was transmitted by

skb the frame that was transmitted, owned by mac80211 after this call

Description

Like ieee80211_tx_status but can be called in IRQ context (internally defers to a tasklet.)

Calls to this function, ieee80211_tx_status and ieee80211_tx_status_ni may not be
mixed for a single hardware.

56

Receive and transmit processing

Name
ieee80211_rts_get — RTS frame generation function

Synopsis

void ieee80211_rts_get (struct ieee80211_hw * hw, struct ieee80211_vif *
vif, const void * frame, size_t frame_len, const struct ieee80211_tx_info
* frame_txctl, struct ieee80211_rts * rts);

Arguments

hw pointer obtained from ieee80211_alloc_hw.

vif struct ieee80211_vif pointer from the add_interface callback.

frame pointer to the frame that is going to be protected by the RTS.

frame_len the frame length (in octets).

frame_txctl struct ieee80211_tx_info of the frame.

rts The buffer where to store the RTS frame.

Description

If the RTS frames are generated by the host system (i.e., not in hardware/firmware), the low-level driver
uses this function to receive the next RTS frame from the 802.11 code. The low-level is responsible for
calling this function before and RTS frame is needed.

57

Receive and transmit processing

Name
ieee80211_rts_duration — Get the duration field for an RTS frame

Synopsis

__le16 ieee80211_rts_duration (struct ieee80211_hw * hw, struct
ieee80211_vif * vif, size_t frame_len, const struct ieee80211_tx_info
* frame_txctl);

Arguments

hw pointer obtained from ieee80211_alloc_hw.

vif struct ieee80211_vif pointer from the add_interface callback.

frame_len the length of the frame that is going to be protected by the RTS.

frame_txctl struct ieee80211_tx_info of the frame.

Description

If the RTS is generated in firmware, but the host system must provide the duration field, the low-level
driver uses this function to receive the duration field value in little-endian byteorder.

Return

The duration.

58

Receive and transmit processing

Name
ieee80211_ctstoself_get — CTS-to-self frame generation function

Synopsis

void ieee80211_ctstoself_get (struct ieee80211_hw * hw, struct
ieee80211_vif * vif, const void * frame, size_t frame_len, const struct
ieee80211_tx_info * frame_txctl, struct ieee80211_cts * cts);

Arguments

hw pointer obtained from ieee80211_alloc_hw.

vif struct ieee80211_vif pointer from the add_interface callback.

frame pointer to the frame that is going to be protected by the CTS-to-self.

frame_len the frame length (in octets).

frame_txctl struct ieee80211_tx_info of the frame.

cts The buffer where to store the CTS-to-self frame.

Description

If the CTS-to-self frames are generated by the host system (i.e., not in hardware/firmware), the low-level
driver uses this function to receive the next CTS-to-self frame from the 802.11 code. The low-level is
responsible for calling this function before and CTS-to-self frame is needed.

59

Receive and transmit processing

Name
ieee80211_ctstoself_duration — Get the duration field for a CTS-to-self frame

Synopsis

__le16 ieee80211_ctstoself_duration (struct ieee80211_hw * hw, struct
ieee80211_vif * vif, size_t frame_len, const struct ieee80211_tx_info
* frame_txctl);

Arguments

hw pointer obtained from ieee80211_alloc_hw.

vif struct ieee80211_vif pointer from the add_interface callback.

frame_len the length of the frame that is going to be protected by the CTS-to-self.

frame_txctl struct ieee80211_tx_info of the frame.

Description

If the CTS-to-self is generated in firmware, but the host system must provide the duration field, the low-
level driver uses this function to receive the duration field value in little-endian byteorder.

Return

The duration.

60

Receive and transmit processing

Name
ieee80211_generic_frame_duration — Calculate the duration field for a frame

Synopsis

__le16 ieee80211_generic_frame_duration (struct ieee80211_hw * hw,
struct ieee80211_vif * vif, enum ieee80211_band band, size_t frame_len,
struct ieee80211_rate * rate);

Arguments

hw pointer obtained from ieee80211_alloc_hw.

vif struct ieee80211_vif pointer from the add_interface callback.

band the band to calculate the frame duration on

frame_len the length of the frame.

rate the rate at which the frame is going to be transmitted.

Description

Calculate the duration field of some generic frame, given its length and transmission rate (in 100kbps).

Return

The duration.

61

Receive and transmit processing

Name
ieee80211_wake_queue — wake specific queue

Synopsis

void ieee80211_wake_queue (struct ieee80211_hw * hw, int queue);

Arguments

hw pointer as obtained from ieee80211_alloc_hw.

queue queue number (counted from zero).

Description

Drivers should use this function instead of netif_wake_queue.

62

Receive and transmit processing

Name
ieee80211_stop_queue — stop specific queue

Synopsis

void ieee80211_stop_queue (struct ieee80211_hw * hw, int queue);

Arguments

hw pointer as obtained from ieee80211_alloc_hw.

queue queue number (counted from zero).

Description

Drivers should use this function instead of netif_stop_queue.

63

Receive and transmit processing

Name
ieee80211_wake_queues — wake all queues

Synopsis

void ieee80211_wake_queues (struct ieee80211_hw * hw);

Arguments

hw pointer as obtained from ieee80211_alloc_hw.

Description

Drivers should use this function instead of netif_wake_queue.

64

Receive and transmit processing

Name
ieee80211_stop_queues — stop all queues

Synopsis

void ieee80211_stop_queues (struct ieee80211_hw * hw);

Arguments

hw pointer as obtained from ieee80211_alloc_hw.

Description

Drivers should use this function instead of netif_stop_queue.

65

Receive and transmit processing

Name
ieee80211_queue_stopped — test status of the queue

Synopsis

int ieee80211_queue_stopped (struct ieee80211_hw * hw, int queue);

Arguments

hw pointer as obtained from ieee80211_alloc_hw.

queue queue number (counted from zero).

Description

Drivers should use this function instead of netif_stop_queue.

Return

true if the queue is stopped. false otherwise.

66

Chapter 5. Frame filtering
mac80211 requires to see many management frames for proper operation, and users may want to see many
more frames when in monitor mode. However, for best CPU usage and power consumption, having as
few frames as possible percolate through the stack is desirable. Hence, the hardware should filter as much
as possible.

To achieve this, mac80211 uses filter flags (see below) to tell the driver's configure_filter function
which frames should be passed to mac80211 and which should be filtered out.

Before configure_filter is invoked, the prepare_multicast callback is invoked with the para-
meters mc_count and mc_list for the combined multicast address list of all virtual interfaces. It's use is
optional, and it returns a u64 that is passed to configure_filter. Additionally, configure_fil-
ter has the arguments changed_flags telling which flags were changed and total_flags with
the new flag states.

If your device has no multicast address filters your driver will need to check both the FIF_ALLMULTI
flag and the mc_count parameter to see whether multicast frames should be accepted or dropped.

All unsupported flags in total_flags must be cleared. Hardware does not support a flag if it is inca-
pable of _passing_ the frame to the stack. Otherwise the driver must ignore the flag, but not clear it. You
must _only_ clear the flag (announce no support for the flag to mac80211) if you are not able to pass the
packet type to the stack (so the hardware always filters it). So for example, you should clear FIF_CON-
TROL, if your hardware always filters control frames. If your hardware always passes control frames to
the kernel and is incapable of filtering them, you do _not_ clear the FIF_CONTROL flag. This rule applies
to all other FIF flags as well.

67

Frame filtering

Name
enum ieee80211_filter_flags — hardware filter flags

Synopsis

enum ieee80211_filter_flags {
 FIF_ALLMULTI,
 FIF_FCSFAIL,
 FIF_PLCPFAIL,
 FIF_BCN_PRBRESP_PROMISC,
 FIF_CONTROL,
 FIF_OTHER_BSS,
 FIF_PSPOLL,
 FIF_PROBE_REQ
};

Constants
FIF_ALLMULTI pass all multicast frames, this is used if requested by the user or if the

hardware is not capable of filtering by multicast address.

FIF_FCSFAIL pass frames with failed FCS (but you need to set the
RX_FLAG_FAILED_FCS_CRC for them)

FIF_PLCPFAIL pass frames with failed PLCP CRC (but you need to set the
RX_FLAG_FAILED_PLCP_CRC for them

FIF_BCN_PRBRESP_PROMISC This flag is set during scanning to indicate to the hardware that it
should not filter beacons or probe responses by BSSID. Filtering
them can greatly reduce the amount of processing mac80211 needs
to do and the amount of CPU wakeups, so you should honour this
flag if possible.

FIF_CONTROL pass control frames (except for PS Poll) addressed to this station

FIF_OTHER_BSS pass frames destined to other BSSes

FIF_PSPOLL pass PS Poll frames

FIF_PROBE_REQ pass probe request frames

HW queue control

These flags determine what the filter in hardware should be programmed to let through and what should
not be passed to the stack. It is always safe to pass more frames than requested, but this has negative impact
on power consumption.

68

Chapter 6. The mac80211 workqueue
mac80211 provides its own workqueue for drivers and internal mac80211 use. The workqueue is a single
threaded workqueue and can only be accessed by helpers for sanity checking. Drivers must ensure all work
added onto the mac80211 workqueue should be cancelled on the driver stop callback.

mac80211 will flushed the workqueue upon interface removal and during suspend.

All work performed on the mac80211 workqueue must not acquire the RTNL lock.

69

The mac80211 workqueue

Name
ieee80211_queue_work — add work onto the mac80211 workqueue

Synopsis
void ieee80211_queue_work (struct ieee80211_hw * hw, struct work_struct
* work);

Arguments
hw the hardware struct for the interface we are adding work for

work the work we want to add onto the mac80211 workqueue

Description

Drivers and mac80211 use this to add work onto the mac80211 workqueue. This helper ensures drivers
are not queueing work when they should not be.

70

The mac80211 workqueue

Name
ieee80211_queue_delayed_work — add work onto the mac80211 workqueue

Synopsis
void ieee80211_queue_delayed_work (struct ieee80211_hw * hw, struct
delayed_work * dwork, unsigned long delay);

Arguments
hw the hardware struct for the interface we are adding work for

dwork delayable work to queue onto the mac80211 workqueue

delay number of jiffies to wait before queueing

Description

Drivers and mac80211 use this to queue delayed work onto the mac80211 workqueue.

71

Part II. Advanced driver interface
Information contained within this part of the book is of interest only for advanced interaction of mac80211 with drivers
to exploit more hardware capabilities and improve performance.

Table of Contents
7. LED support ... 74

ieee80211_get_tx_led_name .. 75
ieee80211_get_rx_led_name .. 76
ieee80211_get_assoc_led_name .. 77
ieee80211_get_radio_led_name .. 78
struct ieee80211_tpt_blink ... 79
enum ieee80211_tpt_led_trigger_flags ... 80
ieee80211_create_tpt_led_trigger .. 81

8. Hardware crypto acceleration ... 82
enum set_key_cmd .. 83
struct ieee80211_key_conf .. 84
enum ieee80211_key_flags .. 85
ieee80211_get_tkip_p1k .. 87
ieee80211_get_tkip_p1k_iv ... 88
ieee80211_get_tkip_p2k .. 89

9. Powersave support ... 90
10. Beacon filter support .. 91

ieee80211_beacon_loss ... 92
11. Multiple queues and QoS support ... 93

struct ieee80211_tx_queue_params ... 94
12. Access point mode support .. 95

support for powersaving clients .. 95
13. Supporting multiple virtual interfaces ... 105

ieee80211_iterate_active_interfaces ... 106
ieee80211_iterate_active_interfaces_atomic .. 107

14. Station handling ... 108
struct ieee80211_sta ... 109
enum sta_notify_cmd .. 111
ieee80211_find_sta ... 112
ieee80211_find_sta_by_ifaddr .. 113

15. Hardware scan offload ... 114
ieee80211_scan_completed .. 115

16. Aggregation ... 116
TX A-MPDU aggregation ... 116
RX A-MPDU aggregation ... 116

17. Spatial Multiplexing Powersave (SMPS) ... 118
ieee80211_request_smps ... 119
enum ieee80211_smps_mode ... 120

73

Chapter 7. LED support
Mac80211 supports various ways of blinking LEDs. Wherever possible, device LEDs should be exposed
as LED class devices and hooked up to the appropriate trigger, which will then be triggered appropriately
by mac80211.

74

LED support

Name
ieee80211_get_tx_led_name — get name of TX LED

Synopsis
const char * ieee80211_get_tx_led_name (struct ieee80211_hw * hw);

Arguments
hw the hardware to get the LED trigger name for

Description

mac80211 creates a transmit LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDs)
of the trigger so you can automatically link the LED device.

Return
The name of the LED trigger. NULL if not configured for LEDs.

75

LED support

Name
ieee80211_get_rx_led_name — get name of RX LED

Synopsis
const char * ieee80211_get_rx_led_name (struct ieee80211_hw * hw);

Arguments
hw the hardware to get the LED trigger name for

Description

mac80211 creates a receive LED trigger for each wireless hardware that can be used to drive LEDs if your
driver registers a LED device. This function returns the name (or NULL if not configured for LEDs) of the
trigger so you can automatically link the LED device.

Return
The name of the LED trigger. NULL if not configured for LEDs.

76

LED support

Name
ieee80211_get_assoc_led_name — get name of association LED

Synopsis
const char * ieee80211_get_assoc_led_name (struct ieee80211_hw * hw);

Arguments
hw the hardware to get the LED trigger name for

Description

mac80211 creates a association LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDs)
of the trigger so you can automatically link the LED device.

Return
The name of the LED trigger. NULL if not configured for LEDs.

77

LED support

Name
ieee80211_get_radio_led_name — get name of radio LED

Synopsis
const char * ieee80211_get_radio_led_name (struct ieee80211_hw * hw);

Arguments
hw the hardware to get the LED trigger name for

Description

mac80211 creates a radio change LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDs)
of the trigger so you can automatically link the LED device.

Return
The name of the LED trigger. NULL if not configured for LEDs.

78

LED support

Name
struct ieee80211_tpt_blink — throughput blink description

Synopsis

struct ieee80211_tpt_blink {
 int throughput;
 int blink_time;
};

Members
throughput throughput in Kbit/sec

blink_time blink time in milliseconds (full cycle, ie. one off + one on period)

79

LED support

Name
enum ieee80211_tpt_led_trigger_flags — throughput trigger flags

Synopsis

enum ieee80211_tpt_led_trigger_flags {
 IEEE80211_TPT_LEDTRIG_FL_RADIO,
 IEEE80211_TPT_LEDTRIG_FL_WORK,
 IEEE80211_TPT_LEDTRIG_FL_CONNECTED
};

Constants
IEEE80211_TP-
T_LEDTRIG_FL_RADIO

enable blinking with radio

IEEE80211_TP-
T_LEDTRIG_FL_WORK

enable blinking when working

IEEE80211_TP-
T_LEDTRIG_FL_CONNECTED

enable blinking when at least one interface is connected in some
way, including being an AP

80

LED support

Name
ieee80211_create_tpt_led_trigger — create throughput LED trigger

Synopsis
const char * ieee80211_create_tpt_led_trigger (struct ieee80211_hw *
hw, unsigned int flags, const struct ieee80211_tpt_blink * blink_table,
unsigned int blink_table_len);

Arguments
hw the hardware to create the trigger for

flags trigger flags, see enum ieee80211_tpt_led_trigger_flags

blink_table the blink table -- needs to be ordered by throughput

blink_table_len size of the blink table

Return
NULL (in case of error, or if no LED triggers are configured) or the name of the new trigger.

Note
This function must be called before ieee80211_register_hw.

81

Chapter 8. Hardware crypto
acceleration

mac80211 is capable of taking advantage of many hardware acceleration designs for encryption and de-
cryption operations.

The set_key callback in the struct ieee80211_ops for a given device is called to enable hardware accel-
eration of encryption and decryption. The callback takes a sta parameter that will be NULL for default
keys or keys used for transmission only, or point to the station information for the peer for individual
keys. Multiple transmission keys with the same key index may be used when VLANs are configured for
an access point.

When transmitting, the TX control data will use the hw_key_idx selected by the driver by modifying
the struct ieee80211_key_conf pointed to by the key parameter to the set_key function.

The set_key call for the SET_KEY command should return 0 if the key is now in use, -EOPNOTSUPP
or -ENOSPC if it couldn't be added; if you return 0 then hw_key_idx must be assigned to the hardware
key index, you are free to use the full u8 range.

Note that in the case that the IEEE80211_HW_SW_CRYPTO_CONTROL flag is set, mac80211 will not
automatically fall back to software crypto if enabling hardware crypto failed. The set_key call may also
return the value 1 to permit this specific key/algorithm to be done in software.

When the cmd is DISABLE_KEY then it must succeed.

Note that it is permissible to not decrypt a frame even if a key for it has been uploaded to hardware, the
stack will not make any decision based on whether a key has been uploaded or not but rather based on
the receive flags.

The struct ieee80211_key_conf structure pointed to by the key parameter is guaranteed to be valid until
another call to set_key removes it, but it can only be used as a cookie to differentiate keys.

In TKIP some HW need to be provided a phase 1 key, for RX decryption acceleration (i.e. iwlwifi). Those
drivers should provide update_tkip_key handler. The update_tkip_key call updates the driver with
the new phase 1 key. This happens every time the iv16 wraps around (every 65536 packets). The set_key
call will happen only once for each key (unless the AP did rekeying), it will not include a valid phase 1
key. The valid phase 1 key is provided by update_tkip_key only. The trigger that makes mac80211 call
this handler is software decryption with wrap around of iv16.

The set_default_unicast_key call updates the default WEP key index configured to the hardware
for WEP encryption type. This is required for devices that support offload of data packets (e.g. ARP
responses).

82

Hardware crypto acceleration

Name
enum set_key_cmd — key command

Synopsis

enum set_key_cmd {
 SET_KEY,
 DISABLE_KEY
};

Constants
SET_KEY a key is set

DISABLE_KEY a key must be disabled

Description

Used with the set_key callback in struct ieee80211_ops, this indicates whether a key is being removed
or added.

83

Hardware crypto acceleration

Name
struct ieee80211_key_conf — key information

Synopsis

struct ieee80211_key_conf {
 atomic64_t tx_pn;
 u32 cipher;
 u8 icv_len;
 u8 iv_len;
 u8 hw_key_idx;
 u8 flags;
 s8 keyidx;
 u8 keylen;
 u8 key[0];
};

Members
tx_pn PN used for TX on non-TKIP keys, may be used by the driver as well if it needs to do

software PN assignment by itself (e.g. due to TSO)

cipher The key's cipher suite selector.

icv_len The ICV length for this key type

iv_len The IV length for this key type

hw_key_idx To be set by the driver, this is the key index the driver wants to be given when a frame
is transmitted and needs to be encrypted in hardware.

flags key flags, see enum ieee80211_key_flags.

keyidx the key index (0-3)

keylen key material length

key[0] key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)

Description

This key information is given by mac80211 to the driver by the set_key callback in struct
ieee80211_ops.

data block
- Temporal Encryption Key (128 bits) - Temporal Authenticator Tx MIC Key (64 bits) - Temporal Au-
thenticator Rx MIC Key (64 bits)

84

Hardware crypto acceleration

Name
enum ieee80211_key_flags — key flags

Synopsis

enum ieee80211_key_flags {
 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT,
 IEEE80211_KEY_FLAG_GENERATE_IV,
 IEEE80211_KEY_FLAG_GENERATE_MMIC,
 IEEE80211_KEY_FLAG_PAIRWISE,
 IEEE80211_KEY_FLAG_SW_MGMT_TX,
 IEEE80211_KEY_FLAG_PUT_IV_SPACE,
 IEEE80211_KEY_FLAG_RX_MGMT,
 IEEE80211_KEY_FLAG_RESERVE_TAILROOM
};

Constants
IEEE80211_KEY_FLAG_GEN-
ERATE_IV_MGMT

This flag should be set by the driver for a CCMP/GCMP key to
indicate that is requires IV generation only for managment frames
(MFP).

IEEE80211_KEY_FLAG_GEN-
ERATE_IV

This flag should be set by the driver to indicate that it requires IV
generation for this particular key. Setting this flag does not neces-
sarily mean that SKBs will have sufficient tailroom for ICV or MIC.

IEEE80211_KEY_FLAG_GEN-
ERATE_MMIC

This flag should be set by the driver for a TKIP key if it requires
Michael MIC generation in software.

IEEE80211_KEY_FLAG_PAIR-
WISE

Set by mac80211, this flag indicates that the key is pairwise rather
then a shared key.

IEEE80211_KEY_FLAG_SW_MGMT_TXThis flag should be set by the driver for a CCMP/GCMP key if it
requires CCMP/GCMP encryption of management frames (MFP)
to be done in software.

IEEE80211_KEY_FLAG_PUT_IV_S-
PACE

This flag should be set by the driver if space should be prepared
for the IV, but the IV itself should not be generated. Do not set
together with IEEE80211_KEY_FLAG_GENERATE_IV on the
same key. Setting this flag does not necessarily mean that SKBs
will have sufficient tailroom for ICV or MIC.

IEEE80211_KEY_FLAG_RX_MGMTThis key will be used to decrypt received management frames.
The flag can help drivers that have a hardware crypto imple-
mentation that doesn't deal with management frames properly
by allowing them to not upload the keys to hardware and fall
back to software crypto. Note that this flag deals only with RX,
if your crypto engine can't deal with TX you can also set the
IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such
frames in SW.

IEEE80211_KEY_FLAG_RESERVE_TAIL-
ROOM

This flag should be set by the driver for a key to indicate that suffi-
cient tailroom must always be reserved for ICV or MIC, even when
HW encryption is enabled.

85

Hardware crypto acceleration

Description

These flags are used for communication about keys between the driver and mac80211, with the flags
parameter of struct ieee80211_key_conf.

86

Hardware crypto acceleration

Name
ieee80211_get_tkip_p1k — get a TKIP phase 1 key

Synopsis
void ieee80211_get_tkip_p1k (struct ieee80211_key_conf * keyconf, struct
sk_buff * skb, u16 * p1k);

Arguments
keyconf the parameter passed with the set key

skb the packet to take the IV32 value from that will be encrypted with this P1K

p1k a buffer to which the key will be written, as 5 u16 values

Description

This function returns the TKIP phase 1 key for the IV32 taken from the given packet.

87

Hardware crypto acceleration

Name
ieee80211_get_tkip_p1k_iv — get a TKIP phase 1 key for IV32

Synopsis
void ieee80211_get_tkip_p1k_iv (struct ieee80211_key_conf * keyconf,
u32 iv32, u16 * p1k);

Arguments
keyconf the parameter passed with the set key

iv32 IV32 to get the P1K for

p1k a buffer to which the key will be written, as 5 u16 values

Description

This function returns the TKIP phase 1 key for the given IV32.

88

Hardware crypto acceleration

Name
ieee80211_get_tkip_p2k — get a TKIP phase 2 key

Synopsis
void ieee80211_get_tkip_p2k (struct ieee80211_key_conf * keyconf, struct
sk_buff * skb, u8 * p2k);

Arguments
keyconf the parameter passed with the set key

skb the packet to take the IV32/IV16 values from that will be encrypted with this key

p2k a buffer to which the key will be written, 16 bytes

Description

This function computes the TKIP RC4 key for the IV values in the packet.

89

Chapter 9. Powersave support
mac80211 has support for various powersave implementations.

First, it can support hardware that handles all powersaving by itself, such hardware should simply set the
IEEE80211_HW_SUPPORTS_PS hardware flag. In that case, it will be told about the desired powersave
mode with the IEEE80211_CONF_PS flag depending on the association status. The hardware must take
care of sending nullfunc frames when necessary, i.e. when entering and leaving powersave mode. The
hardware is required to look at the AID in beacons and signal to the AP that it woke up when it finds
traffic directed to it.

IEEE80211_CONF_PS flag enabled means that the powersave mode defined in IEEE 802.11-2007 sec-
tion 11.2 is enabled. This is not to be confused with hardware wakeup and sleep states. Driver is respon-
sible for waking up the hardware before issuing commands to the hardware and putting it back to sleep
at appropriate times.

When PS is enabled, hardware needs to wakeup for beacons and receive the buffered multicast/broadcast
frames after the beacon. Also it must be possible to send frames and receive the acknowledment frame.

Other hardware designs cannot send nullfunc frames by themselves and also need software support for
parsing the TIM bitmap. This is also supported by mac80211 by combining the IEEE80211_HW_SUP-
PORTS_PS and IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still re-
quired to pass up beacons. The hardware is still required to handle waking up for multicast traffic; if it
cannot the driver must handle that as best as it can, mac80211 is too slow to do that.

Dynamic powersave is an extension to normal powersave in which the hardware stays awake for a user-
specified period of time after sending a frame so that reply frames need not be buffered and therefore
delayed to the next wakeup. It's compromise of getting good enough latency when there's data traffic and
still saving significantly power in idle periods.

Dynamic powersave is simply supported by mac80211 enabling and disabling PS based on traffic. Driver
needs to only set IEEE80211_HW_SUPPORTS_PS flag and mac80211 will handle everything automat-
ically. Additionally, hardware having support for the dynamic PS feature may set the IEEE80211_H-
W_SUPPORTS_DYNAMIC_PS flag to indicate that it can support dynamic PS mode itself. The driver
needs to look at the dynamic_ps_timeout hardware configuration value and use it that value when-
ever IEEE80211_CONF_PS is set. In this case mac80211 will disable dynamic PS feature in stack and
will just keep IEEE80211_CONF_PS enabled whenever user has enabled powersave.

Driver informs U-APSD client support by enabling IEEE80211_VIF_SUPPORTS_UAPSD flag. The
mode is configured through the uapsd parameter in conf_tx operation. Hardware needs to send the
QoS Nullfunc frames and stay awake until the service period has ended. To utilize U-APSD, dynamic
powersave is disabled for voip AC and all frames from that AC are transmitted with powersave enabled.

Note: U-APSD client mode is not yet supported with IEEE80211_HW_PS_NULLFUNC_STACK.

90

Chapter 10. Beacon filter support
Some hardware have beacon filter support to reduce host cpu wakeups which will reduce system power
consumption. It usually works so that the firmware creates a checksum of the beacon but omits all con-
stantly changing elements (TSF, TIM etc). Whenever the checksum changes the beacon is forwarded to the
host, otherwise it will be just dropped. That way the host will only receive beacons where some relevant
information (for example ERP protection or WMM settings) have changed.

Beacon filter support is advertised with the IEEE80211_VIF_BEACON_FILTER interface capa-
bility. The driver needs to enable beacon filter support whenever power save is enabled, that is
IEEE80211_CONF_PS is set. When power save is enabled, the stack will not check for beacon loss and
the driver needs to notify about loss of beacons with ieee80211_beacon_loss.

The time (or number of beacons missed) until the firmware notifies the driver of a beacon loss event
(which in turn causes the driver to call ieee80211_beacon_loss) should be configurable and will
be controlled by mac80211 and the roaming algorithm in the future.

Since there may be constantly changing information elements that nothing in the software stack cares
about, we will, in the future, have mac80211 tell the driver which information elements are interesting in
the sense that we want to see changes in them. This will include - a list of information element IDs - a list
of OUIs for the vendor information element

Ideally, the hardware would filter out any beacons without changes in the requested elements, but if it
cannot support that it may, at the expense of some efficiency, filter out only a subset. For example, if the
device doesn't support checking for OUIs it should pass up all changes in all vendor information elements.

Note that change, for the sake of simplification, also includes information elements appearing or disap-
pearing from the beacon.

Some hardware supports an “ignore list” instead, just make sure nothing that was requested is on the ignore
list, and include commonly changing information element IDs in the ignore list, for example 11 (BSS load)
and the various vendor-assigned IEs with unknown contents (128, 129, 133-136, 149, 150, 155, 156, 173,
176, 178, 179, 219); for forward compatibility it could also include some currently unused IDs.

In addition to these capabilities, hardware should support notifying the host of changes in the beacon RSSI.
This is relevant to implement roaming when no traffic is flowing (when traffic is flowing we see the RSSI
of the received data packets). This can consist in notifying the host when the RSSI changes significantly
or when it drops below or rises above configurable thresholds. In the future these thresholds will also be
configured by mac80211 (which gets them from userspace) to implement them as the roaming algorithm
requires.

If the hardware cannot implement this, the driver should ask it to periodically pass beacon frames to the
host so that software can do the signal strength threshold checking.

91

Beacon filter support

Name
ieee80211_beacon_loss — inform hardware does not receive beacons

Synopsis
void ieee80211_beacon_loss (struct ieee80211_vif * vif);

Arguments
vif struct ieee80211_vif pointer from the add_interface callback.

Description
When beacon filtering is enabled with IEEE80211_VIF_BEACON_FILTER and IEEE80211_CON-
F_PS is set, the driver needs to inform whenever the hardware is not receiving beacons with this function.

92

Chapter 11. Multiple queues and QoS
support

TBD

93

Multiple queues and QoS support

Name
struct ieee80211_tx_queue_params — transmit queue configuration

Synopsis

struct ieee80211_tx_queue_params {
 u16 txop;
 u16 cw_min;
 u16 cw_max;
 u8 aifs;
 bool acm;
 bool uapsd;
};

Members
txop maximum burst time in units of 32 usecs, 0 meaning disabled

cw_min minimum contention window [a value of the form 2^n-1 in the range 1..32767]

cw_max maximum contention window [like cw_min]

aifs arbitration interframe space [0..255]

acm is mandatory admission control required for the access category

uapsd is U-APSD mode enabled for the queue

Description

The information provided in this structure is required for QoS transmit queue configuration. Cf. IEEE
802.11 7.3.2.29.

94

Chapter 12. Access point mode
support

TBD

Some parts of the if_conf should be discussed here instead

Insert notes about VLAN interfaces with hw crypto here or in the hw crypto chapter.

support for powersaving clients

In order to implement AP and P2P GO modes, mac80211 has support for client powersaving, both “legacy”
PS (PS-Poll/null data) and uAPSD. There currently is no support for sAPSD.

There is one assumption that mac80211 makes, namely that a client will not poll with PS-Poll and trigger
with uAPSD at the same time. Both are supported, and both can be used by the same client, but they can't
be used concurrently by the same client. This simplifies the driver code.

The first thing to keep in mind is that there is a flag for complete driver implementation: IEEE80211_H-
W_AP_LINK_PS. If this flag is set, mac80211 expects the driver to handle most of the state machine for
powersaving clients and will ignore the PM bit in incoming frames. Drivers then use ieee80211_s-
ta_ps_transition to inform mac80211 of stations' powersave transitions. In this mode, mac80211
also doesn't handle PS-Poll/uAPSD.

In the mode without IEEE80211_HW_AP_LINK_PS, mac80211 will check the PM bit in incoming
frames for client powersave transitions. When a station goes to sleep, we will stop transmitting to it.
There is, however, a race condition: a station might go to sleep while there is data buffered on hardware
queues. If the device has support for this it will reject frames, and the driver should give the frames back
to mac80211 with the IEEE80211_TX_STAT_TX_FILTERED flag set which will cause mac80211 to
retry the frame when the station wakes up. The driver is also notified of powersave transitions by calling
its sta_notify callback.

When the station is asleep, it has three choices: it can wake up, it can PS-Poll, or it can possi-
bly start a uAPSD service period. Waking up is implemented by simply transmitting all buffered
(and filtered) frames to the station. This is the easiest case. When the station sends a PS-Poll or a
uAPSD trigger frame, mac80211 will inform the driver of this with the allow_buffered_frames
callback; this callback is optional. mac80211 will then transmit the frames as usual and set the
IEEE80211_TX_CTL_NO_PS_BUFFER on each frame. The last frame in the service period (or the only
response to a PS-Poll) also has IEEE80211_TX_STATUS_EOSP set to indicate that it ends the service
period; as this frame must have TX status report it also sets IEEE80211_TX_CTL_REQ_TX_STATUS.
When TX status is reported for this frame, the service period is marked has having ended and a new one
can be started by the peer.

Additionally, non-bufferable MMPDUs can also be transmitted by mac80211 with the
IEEE80211_TX_CTL_NO_PS_BUFFER set in them.

Another race condition can happen on some devices like iwlwifi when there are frames queued for the
station and it wakes up or polls; the frames that are already queued could end up being transmitted first
instead, causing reordering and/or wrong processing of the EOSP. The cause is that allowing frames to be
transmitted to a certain station is out-of-band communication to the device. To allow this problem to be
solved, the driver can call ieee80211_sta_block_awake if frames are buffered when it is notified

95

Access point mode support

that the station went to sleep. When all these frames have been filtered (see above), it must call the function
again to indicate that the station is no longer blocked.

If the driver buffers frames in the driver for aggregation in any way, it must use the ieee80211_s-
ta_set_buffered call when it is notified of the station going to sleep to inform mac80211 of any
TIDs that have frames buffered. Note that when a station wakes up this information is reset (hence the
requirement to call it when informed of the station going to sleep). Then, when a service period starts
for any reason, release_buffered_frames is called with the number of frames to be released and
which TIDs they are to come from. In this case, the driver is responsible for setting the EOSP (for uAPSD)
and MORE_DATA bits in the released frames, to help the more_data parameter is passed to tell the
driver if there is more data on other TIDs -- the TIDs to release frames from are ignored since mac80211
doesn't know how many frames the buffers for those TIDs contain.

If the driver also implement GO mode, where absence periods may shorten service periods (or abort PS-
Poll responses), it must filter those response frames except in the case of frames that are buffered in the
driver -- those must remain buffered to avoid reordering. Because it is possible that no frames are released
in this case, the driver must call ieee80211_sta_eosp to indicate to mac80211 that the service period
ended anyway.

Finally, if frames from multiple TIDs are released from mac80211 but the driver might reorder them, it
must clear & set the flags appropriately (only the last frame may have IEEE80211_TX_STATUS_EOSP)
and also take care of the EOSP and MORE_DATA bits in the frame. The driver may also use
ieee80211_sta_eosp in this case.

Note that if the driver ever buffers frames other than QoS-data frames, it must take care to never send a
non-QoS-data frame as the last frame in a service period, adding a QoS-nulldata frame after a non-QoS-
data frame if needed.

96

Access point mode support

Name
ieee80211_get_buffered_bc — accessing buffered broadcast and multicast frames

Synopsis

struct sk_buff * ieee80211_get_buffered_bc (struct ieee80211_hw * hw,
struct ieee80211_vif * vif);

Arguments

hw pointer as obtained from ieee80211_alloc_hw.

vif struct ieee80211_vif pointer from the add_interface callback.

Description

Function for accessing buffered broadcast and multicast frames. If hardware/firmware does not implement
buffering of broadcast/multicast frames when power saving is used, 802.11 code buffers them in the host
memory. The low-level driver uses this function to fetch next buffered frame. In most cases, this is used
when generating beacon frame.

Return

A pointer to the next buffered skb or NULL if no more buffered frames are available.

Note

buffered frames are returned only after DTIM beacon frame was generated with ieee80211_bea-
con_get and the low-level driver must thus call ieee80211_beacon_get first.
ieee80211_get_buffered_bc returns NULL if the previous generated beacon was not DTIM, so
the low-level driver does not need to check for DTIM beacons separately and should be able to use com-
mon code for all beacons.

97

Access point mode support

Name
ieee80211_beacon_get — beacon generation function

Synopsis

struct sk_buff * ieee80211_beacon_get (struct ieee80211_hw * hw, struct
ieee80211_vif * vif);

Arguments

hw pointer obtained from ieee80211_alloc_hw.

vif struct ieee80211_vif pointer from the add_interface callback.

Description

See ieee80211_beacon_get_tim.

Return

See ieee80211_beacon_get_tim.

98

Access point mode support

Name
ieee80211_sta_eosp — notify mac80211 about end of SP

Synopsis

void ieee80211_sta_eosp (struct ieee80211_sta * pubsta);

Arguments

pubsta the station

Description

When a device transmits frames in a way that it can't tell mac80211 in the TX status about the EOSP, it
must clear the IEEE80211_TX_STATUS_EOSP bit and call this function instead. This applies for PS-
Poll as well as uAPSD.

Note that just like with _tx_status and _rx drivers must not mix calls to irqsafe/non-irqsafe versions,
this function must not be mixed with those either. Use the all irqsafe, or all non-irqsafe, don't mix!

NB

the _irqsafe version of this function doesn't exist, no driver needs it right now. Don't call this function if
you'd need the _irqsafe version, look at the git history and restore the _irqsafe version!

99

Access point mode support

Name
enum ieee80211_frame_release_type — frame release reason

Synopsis

enum ieee80211_frame_release_type {
 IEEE80211_FRAME_RELEASE_PSPOLL,
 IEEE80211_FRAME_RELEASE_UAPSD
};

Constants

IEEE80211_FRAME_RE-
LEASE_PSPOLL

frame released for PS-Poll

IEEE80211_FRAME_RE-
LEASE_UAPSD

frame(s) released due to frame received on trigger-enabled AC

100

Access point mode support

Name
ieee80211_sta_ps_transition — PS transition for connected sta

Synopsis

int ieee80211_sta_ps_transition (struct ieee80211_sta * sta, bool
start);

Arguments

sta currently connected sta

start start or stop PS

Description

When operating in AP mode with the IEEE80211_HW_AP_LINK_PS flag set, use this function to in-
form mac80211 about a connected station entering/leaving PS mode.

This function may not be called in IRQ context or with softirqs enabled.

Calls to this function for a single hardware must be synchronized against each other.

Return

0 on success. -EINVAL when the requested PS mode is already set.

101

Access point mode support

Name
ieee80211_sta_ps_transition_ni — PS transition for connected sta (in process context)

Synopsis

int ieee80211_sta_ps_transition_ni (struct ieee80211_sta * sta, bool
start);

Arguments

sta currently connected sta

start start or stop PS

Description

Like ieee80211_sta_ps_transition but can be called in process context (internally disables bot-
tom halves). Concurrent call restriction still applies.

Return

Like ieee80211_sta_ps_transition.

102

Access point mode support

Name
ieee80211_sta_set_buffered — inform mac80211 about driver-buffered frames

Synopsis

void ieee80211_sta_set_buffered (struct ieee80211_sta * sta, u8 tid,
bool buffered);

Arguments

sta struct ieee80211_sta pointer for the sleeping station

tid the TID that has buffered frames

buffered indicates whether or not frames are buffered for this TID

Description

If a driver buffers frames for a powersave station instead of passing them back to mac80211 for retrans-
mission, the station may still need to be told that there are buffered frames via the TIM bit.

This function informs mac80211 whether or not there are frames that are buffered in the driver for a given
TID; mac80211 can then use this data to set the TIM bit (NOTE: This may call back into the driver's
set_tim call! Beware of the locking!)

If all frames are released to the station (due to PS-poll or uAPSD) then the driver needs to inform mac80211
that there no longer are frames buffered. However, when the station wakes up mac80211 assumes that all
buffered frames will be transmitted and clears this data, drivers need to make sure they inform mac80211
about all buffered frames on the sleep transition (sta_notify with STA_NOTIFY_SLEEP).

Note that technically mac80211 only needs to know this per AC, not per TID, but since driver buffering
will inevitably happen per TID (since it is related to aggregation) it is easier to make mac80211 map the
TID to the AC as required instead of keeping track in all drivers that use this API.

103

Access point mode support

Name
ieee80211_sta_block_awake — block station from waking up

Synopsis

void ieee80211_sta_block_awake (struct ieee80211_hw * hw, struct
ieee80211_sta * pubsta, bool block);

Arguments

hw the hardware

pubsta the station

block whether to block or unblock

Description

Some devices require that all frames that are on the queues for a specific station that went to sleep are
flushed before a poll response or frames after the station woke up can be delivered to that it. Note that
such frames must be rejected by the driver as filtered, with the appropriate status flag.

This function allows implementing this mode in a race-free manner.

To do this, a driver must keep track of the number of frames still enqueued for a specific station. If this
number is not zero when the station goes to sleep, the driver must call this function to force mac80211
to consider the station to be asleep regardless of the station's actual state. Once the number of outstand-
ing frames reaches zero, the driver must call this function again to unblock the station. That will cause
mac80211 to be able to send ps-poll responses, and if the station queried in the meantime then frames will
also be sent out as a result of this. Additionally, the driver will be notified that the station woke up some
time after it is unblocked, regardless of whether the station actually woke up while blocked or not.

104

Chapter 13. Supporting multiple virtual
interfaces

TBD

Note: WDS with identical MAC address should almost always be OK

Insert notes about having multiple virtual interfaces with different MAC addresses here, note which con-
figurations are supported by mac80211, add notes about supporting hw crypto with it.

105

Supporting multiple virtual interfaces

Name
ieee80211_iterate_active_interfaces — iterate active interfaces

Synopsis
void ieee80211_iterate_active_interfaces (struct ieee80211_hw * hw, u32
iter_flags, void (*iterator) (void *data, u8 *mac, struct ieee80211_vif
*vif), void * data);

Arguments
hw the hardware struct of which the interfaces should be iterated over

iter_flags iteration flags, see enum ieee80211_interface_iteration_flags

iterator the iterator function to call

data first argument of the iterator function

Description

This function iterates over the interfaces associated with a given hardware that are currently active and
calls the callback for them. This function allows the iterator function to sleep, when the iterator function is
atomic ieee80211_iterate_active_interfaces_atomic can be used. Does not iterate over
a new interface during add_interface.

106

Supporting multiple virtual interfaces

Name
ieee80211_iterate_active_interfaces_atomic — iterate active interfaces

Synopsis
void ieee80211_iterate_active_interfaces_atomic (struct ieee80211_hw *
hw, u32 iter_flags, void (*iterator) (void *data, u8 *mac, struct
ieee80211_vif *vif), void * data);

Arguments
hw the hardware struct of which the interfaces should be iterated over

iter_flags iteration flags, see enum ieee80211_interface_iteration_flags

iterator the iterator function to call, cannot sleep

data first argument of the iterator function

Description

This function iterates over the interfaces associated with a given hardware that are currently active and
calls the callback for them. This function requires the iterator callback function to be atomic, if that is
not desired, use ieee80211_iterate_active_interfaces instead. Does not iterate over a new
interface during add_interface.

107

Chapter 14. Station handling
TODO

108

Station handling

Name
struct ieee80211_sta — station table entry

Synopsis

struct ieee80211_sta {
 u32 supp_rates[IEEE80211_NUM_BANDS];
 u8 addr[ETH_ALEN];
 u16 aid;
 struct ieee80211_sta_ht_cap ht_cap;
 struct ieee80211_sta_vht_cap vht_cap;
 u8 max_rx_aggregation_subframes;
 bool wme;
 u8 uapsd_queues;
 u8 max_sp;
 u8 rx_nss;
 enum ieee80211_sta_rx_bandwidth bandwidth;
 enum ieee80211_smps_mode smps_mode;
 struct ieee80211_sta_rates __rcu * rates;
 bool tdls;
 bool tdls_initiator;
 bool mfp;
 struct ieee80211_txq * txq[IEEE80211_NUM_TIDS];
 u8 drv_priv[0];
};

Members
sup-
p_rates[IEEE80211_NUM_BANDS]

Bitmap of supported rates (per band)

addr[ETH_ALEN] MAC address

aid AID we assigned to the station if we're an AP

ht_cap HT capabilities of this STA; restricted to our own capabilities

vht_cap VHT capabilities of this STA; restricted to our own capabilities

max_rx_aggregation_subframes maximal amount of frames in a single AMPDU that this station is
allowed to transmit to us. Can be modified by driver.

wme indicates whether the STA supports QoS/WME (if local devices
does, otherwise always false)

uapsd_queues bitmap of queues configured for uapsd. Only valid if wme is sup-
ported.

max_sp max Service Period. Only valid if wme is supported.

rx_nss in HT/VHT, the maximum number of spatial streams the station can
receive at the moment, changed by operating mode notifications

109

Station handling

and capabilities. The value is only valid after the station moves to
associated state.

bandwidth current bandwidth the station can receive with

smps_mode current SMPS mode (off, static or dynamic)

rates rate control selection table

tdls indicates whether the STA is a TDLS peer

tdls_initiator indicates the STA is an initiator of the TDLS link. Only valid if the
STA is a TDLS peer in the first place.

mfp indicates whether the STA uses management frame protection or
not.

txq[IEEE80211_NUM_TIDS] per-TID data TX queues (if driver uses the TXQ abstraction)

drv_priv[0] data area for driver use, will always be aligned to sizeof(void *),
size is determined in hw information.

Description

A station table entry represents a station we are possibly communicating with. Since stations are
RCU-managed in mac80211, any ieee80211_sta pointer you get access to must either be protected by
rcu_read_lock explicitly or implicitly, or you must take good care to not use such a pointer after a
call to your sta_remove callback that removed it.

110

Station handling

Name
enum sta_notify_cmd — sta notify command

Synopsis

enum sta_notify_cmd {
 STA_NOTIFY_SLEEP,
 STA_NOTIFY_AWAKE
};

Constants
STA_NOTIFY_SLEEP a station is now sleeping

STA_NOTI-
FY_AWAKE

a sleeping station woke up

Description

Used with the sta_notify callback in struct ieee80211_ops, this indicates if an associated station made
a power state transition.

111

Station handling

Name
ieee80211_find_sta — find a station

Synopsis
struct ieee80211_sta * ieee80211_find_sta (struct ieee80211_vif * vif,
const u8 * addr);

Arguments
vif virtual interface to look for station on

addr station's address

Return
The station, if found. NULL otherwise.

Note
This function must be called under RCU lock and the resulting pointer is only valid under RCU lock as well.

112

Station handling

Name
ieee80211_find_sta_by_ifaddr — find a station on hardware

Synopsis
struct ieee80211_sta * ieee80211_find_sta_by_ifaddr (struct
ieee80211_hw * hw, const u8 * addr, const u8 * localaddr);

Arguments
hw pointer as obtained from ieee80211_alloc_hw

addr remote station's address

localaddr local address (vif->sdata->vif.addr). Use NULL for 'any'.

Return
The station, if found. NULL otherwise.

Note
This function must be called under RCU lock and the resulting pointer is only valid under RCU lock as well.

NOTE
You may pass NULL for localaddr, but then you will just get the first STA that matches the remote ad-
dress 'addr'. We can have multiple STA associated with multiple logical stations (e.g. consider a station
connecting to another BSSID on the same AP hardware without disconnecting first). In this case, the result
of this method with localaddr NULL is not reliable.

DO NOT USE THIS FUNCTION with localaddr NULL if at all possible.

113

Chapter 15. Hardware scan offload
TBD

114

Hardware scan offload

Name
ieee80211_scan_completed — completed hardware scan

Synopsis
void ieee80211_scan_completed (struct ieee80211_hw * hw, bool aborted);

Arguments
hw the hardware that finished the scan

aborted set to true if scan was aborted

Description

When hardware scan offload is used (i.e. the hw_scan callback is assigned) this function needs to be
called by the driver to notify mac80211 that the scan finished. This function can be called from any context,
including hardirq context.

115

Chapter 16. Aggregation
TX A-MPDU aggregation

Aggregation on the TX side requires setting the hardware flag IEEE80211_HW_AMPDU_AGGRE-
GATION. The driver will then be handed packets with a flag indicating A-MPDU aggregation. The driver
or device is responsible for actually aggregating the frames, as well as deciding how many and which to
aggregate.

When TX aggregation is started by some subsystem (usually the rate control algorithm would be appro-
priate) by calling the ieee80211_start_tx_ba_session function, the driver will be notified via
its ampdu_action function, with the IEEE80211_AMPDU_TX_START action.

In response to that, the driver is later required to call the ieee80211_start_tx_ba_cb_irqsafe
function, which will really start the aggregation session after the peer has also responded. If the peer
responds negatively, the session will be stopped again right away. Note that it is possible for the aggregation
session to be stopped before the driver has indicated that it is done setting it up, in which case it must not
indicate the setup completion.

Also note that, since we also need to wait for a response from the peer, the driver is notified of the com-
pletion of the handshake by the IEEE80211_AMPDU_TX_OPERATIONAL action to the ampdu_ac-
tion callback.

Similarly, when the aggregation session is stopped by the peer or something calling
ieee80211_stop_tx_ba_session, the driver's ampdu_action function will be called with the
action IEEE80211_AMPDU_TX_STOP. In this case, the call must not fail, and the driver must later
call ieee80211_stop_tx_ba_cb_irqsafe. Note that the sta can get destroyed before the BA tear
down is complete.

RX A-MPDU aggregation

Aggregation on the RX side requires only implementing the ampdu_action callback that is invoked to
start/stop any block-ack sessions for RX aggregation.

When RX aggregation is started by the peer, the driver is notified via ampdu_action function, with the
IEEE80211_AMPDU_RX_START action, and may reject the request in which case a negative response
is sent to the peer, if it accepts it a positive response is sent.

While the session is active, the device/driver are required to de-aggregate frames and pass them up one by
one to mac80211, which will handle the reorder buffer.

When the aggregation session is stopped again by the peer or ourselves, the driver's ampdu_action
function will be called with the action IEEE80211_AMPDU_RX_STOP. In this case, the call must not fail.

116

Aggregation

Name
enum ieee80211_ampdu_mlme_action — A-MPDU actions

Synopsis

enum ieee80211_ampdu_mlme_action {
 IEEE80211_AMPDU_RX_START,
 IEEE80211_AMPDU_RX_STOP,
 IEEE80211_AMPDU_TX_START,
 IEEE80211_AMPDU_TX_STOP_CONT,
 IEEE80211_AMPDU_TX_STOP_FLUSH,
 IEEE80211_AMPDU_TX_STOP_FLUSH_CONT,
 IEEE80211_AMPDU_TX_OPERATIONAL
};

Constants

IEEE80211_AMPDU_RX_START start RX aggregation

IEEE80211_AMPDU_RX_STOP stop RX aggregation

IEEE80211_AMPDU_TX_START start TX aggregation

IEEE80211_AMPDU_TX_S-
TOP_CONT

stop TX aggregation but continue transmitting queued packets, now
unaggregated. After all packets are transmitted the driver has to call
ieee80211_stop_tx_ba_cb_irqsafe.

IEEE80211_AMPDU_TX_S-
TOP_FLUSH

stop TX aggregation and flush all packets, called when
the station is removed. There's no need or reason to call
ieee80211_stop_tx_ba_cb_irqsafe in this case as
mac80211 assumes the session is gone and removes the station.

IEEE80211_AMPDU_TX_S-
TOP_FLUSH_CONT

called when TX aggregation is stopped but the driver hasn't
called ieee80211_stop_tx_ba_cb_irqsafe yet and now
the connection is dropped and the station will be removed. Drivers
should clean up and drop remaining packets when this is called.

IEEE80211_AMPDU_TX_OPER-
ATIONAL

TX aggregation has become operational

Description

These flags are used with the ampdu_action callback in struct ieee80211_ops to indicate which action
is needed.

Note that drivers MUST be able to deal with a TX aggregation session being stopped even before they
OK'ed starting it by calling ieee80211_start_tx_ba_cb_irqsafe, because the peer might receive the addBA
frame and send a delBA right away!

117

Chapter 17. Spatial Multiplexing
Powersave (SMPS)

SMPS (Spatial multiplexing power save) is a mechanism to conserve power in an 802.11n implementation.
For details on the mechanism and rationale, please refer to 802.11 (as amended by 802.11n-2009) “11.2.3
SM power save”.

The mac80211 implementation is capable of sending action frames to update the AP about the station's
SMPS mode, and will instruct the driver to enter the specific mode. It will also announce the requested
SMPS mode during the association handshake. Hardware support for this feature is required, and can be
indicated by hardware flags.

The default mode will be “automatic”, which nl80211/cfg80211 defines to be dynamic SMPS in (regular)
powersave, and SMPS turned off otherwise.

To support this feature, the driver must set the appropriate hardware support flags, and handle the SMPS
flag to the config operation. It will then with this mechanism be instructed to enter the requested SMPS
mode while associated to an HT AP.

118

Spatial Multiplexing
Powersave (SMPS)

Name
ieee80211_request_smps — request SM PS transition

Synopsis
void ieee80211_request_smps (struct ieee80211_vif * vif, enum
ieee80211_smps_mode smps_mode);

Arguments
vif struct ieee80211_vif pointer from the add_interface callback.

smps_mode new SM PS mode

Description
This allows the driver to request an SM PS transition in managed mode. This is useful when the driver has
more information than the stack about possible interference, for example by bluetooth.

119

Spatial Multiplexing
Powersave (SMPS)

Name
enum ieee80211_smps_mode — spatial multiplexing power save mode

Synopsis

enum ieee80211_smps_mode {
 IEEE80211_SMPS_AUTOMATIC,
 IEEE80211_SMPS_OFF,
 IEEE80211_SMPS_STATIC,
 IEEE80211_SMPS_DYNAMIC,
 IEEE80211_SMPS_NUM_MODES
};

Constants
IEEE80211_SMPS_AUTOMATIC automatic

IEEE80211_SMPS_OFF off

IEEE80211_SMPS_STATIC static

IEEE80211_SMPS_DYNAMIC dynamic

IEEE80211_SMPS_NUM_MOD-
ES

internal, don't use

120

Part III. Rate control interface
TBD

This part of the book describes the rate control algorithm interface and how it relates to mac80211 and drivers.

Table of Contents
18. Rate Control API .. 123

ieee80211_start_tx_ba_session ... 124
ieee80211_start_tx_ba_cb_irqsafe ... 125
ieee80211_stop_tx_ba_session .. 126
ieee80211_stop_tx_ba_cb_irqsafe ... 127
enum ieee80211_rate_control_changed .. 128
struct ieee80211_tx_rate_control ... 129
rate_control_send_low .. 130

122

Chapter 18. Rate Control API
TBD

123

Rate Control API

Name
ieee80211_start_tx_ba_session — Start a tx Block Ack session.

Synopsis
int ieee80211_start_tx_ba_session (struct ieee80211_sta * sta, u16 tid,
u16 timeout);

Arguments
sta the station for which to start a BA session

tid the TID to BA on.

timeout session timeout value (in TUs)

Return
success if addBA request was sent, failure otherwise

Although mac80211/low level driver/user space application can estimate the need to start aggregation on
a certain RA/TID, the session level will be managed by the mac80211.

124

Rate Control API

Name
ieee80211_start_tx_ba_cb_irqsafe — low level driver ready to aggregate.

Synopsis
void ieee80211_start_tx_ba_cb_irqsafe (struct ieee80211_vif * vif, const
u8 * ra, u16 tid);

Arguments
vif struct ieee80211_vif pointer from the add_interface callback

ra receiver address of the BA session recipient.

tid the TID to BA on.

Description
This function must be called by low level driver once it has finished with preparations for the BA session.
It can be called from any context.

125

Rate Control API

Name
ieee80211_stop_tx_ba_session — Stop a Block Ack session.

Synopsis
int ieee80211_stop_tx_ba_session (struct ieee80211_sta * sta, u16 tid);

Arguments
sta the station whose BA session to stop

tid the TID to stop BA.

Return
negative error if the TID is invalid, or no aggregation active

Although mac80211/low level driver/user space application can estimate the need to stop aggregation on
a certain RA/TID, the session level will be managed by the mac80211.

126

Rate Control API

Name
ieee80211_stop_tx_ba_cb_irqsafe — low level driver ready to stop aggregate.

Synopsis
void ieee80211_stop_tx_ba_cb_irqsafe (struct ieee80211_vif * vif, const
u8 * ra, u16 tid);

Arguments
vif struct ieee80211_vif pointer from the add_interface callback

ra receiver address of the BA session recipient.

tid the desired TID to BA on.

Description
This function must be called by low level driver once it has finished with preparations for the BA session
tear down. It can be called from any context.

127

Rate Control API

Name
enum ieee80211_rate_control_changed — flags to indicate what changed

Synopsis

enum ieee80211_rate_control_changed {
 IEEE80211_RC_BW_CHANGED,
 IEEE80211_RC_SMPS_CHANGED,
 IEEE80211_RC_SUPP_RATES_CHANGED,
 IEEE80211_RC_NSS_CHANGED
};

Constants
IEEE80211_RC_BW_CHANGED The bandwidth that can be used to transmit to this station changed.

The actual bandwidth is in the station information -- for HT20/40
the IEEE80211_HT_CAP_SUP_WIDTH_20_40 flag changes, for
HT and VHT the bandwidth field changes.

IEEE80211_RC_SM-
PS_CHANGED

The SMPS state of the station changed.

IEEE80211_RC_SUP-
P_RATES_CHANGED

The supported rate set of this peer changed (in IBSS mode) due to
discovering more information about the peer.

IEEE80211_RC_NSS_CHANGED N_SS (number of spatial streams) was changed by the peer

128

Rate Control API

Name
struct ieee80211_tx_rate_control — rate control information for/from RC algo

Synopsis

struct ieee80211_tx_rate_control {
 struct ieee80211_hw * hw;
 struct ieee80211_supported_band * sband;
 struct ieee80211_bss_conf * bss_conf;
 struct sk_buff * skb;
 struct ieee80211_tx_rate reported_rate;
 bool rts;
 bool short_preamble;
 u8 max_rate_idx;
 u32 rate_idx_mask;
 u8 * rate_idx_mcs_mask;
 bool bss;
};

Members
hw The hardware the algorithm is invoked for.

sband The band this frame is being transmitted on.

bss_conf the current BSS configuration

skb the skb that will be transmitted, the control information in it needs to be filled
in

reported_rate The rate control algorithm can fill this in to indicate which rate should be
reported to userspace as the current rate and used for rate calculations in the
mesh network.

rts whether RTS will be used for this frame because it is longer than the RTS
threshold

short_preamble whether mac80211 will request short-preamble transmission if the selected
rate supports it

max_rate_idx user-requested maximum (legacy) rate (deprecated; this will be removed once
drivers get updated to use rate_idx_mask)

rate_idx_mask user-requested (legacy) rate mask

rate_idx_mcs_mask user-requested MCS rate mask (NULL if not in use)

bss whether this frame is sent out in AP or IBSS mode

129

Rate Control API

Name
rate_control_send_low — helper for drivers for management/no-ack frames

Synopsis
bool rate_control_send_low (struct ieee80211_sta * sta, void * priv_sta,
struct ieee80211_tx_rate_control * txrc);

Arguments
sta struct ieee80211_sta pointer to the target destination. Note that this may be null.

priv_sta private rate control structure. This may be null.

txrc rate control information we sholud populate for mac80211.

Description

Rate control algorithms that agree to use the lowest rate to send management frames and NO_ACK data
with the respective hw retries should use this in the beginning of their mac80211 get_rate callback. If
true is returned the rate control can simply return. If false is returned we guarantee that sta and sta and
priv_sta is not null.

Rate control algorithms wishing to do more intelligent selection of rate for multicast/broadcast frames may
choose to not use this.

130

Part IV. Internals
TBD

This part of the book describes mac80211 internals.

Table of Contents
19. Key handling ... 133

Key handling basics ... 133
MORE TBD ... 133

20. Receive processing ... 134
21. Transmit processing .. 135
22. Station info handling ... 136

Programming information .. 136
STA information lifetime rules ... 141

23. Aggregation ... 143
struct sta_ampdu_mlme ... 144
struct tid_ampdu_tx .. 145
struct tid_ampdu_rx .. 147

24. Synchronisation .. 149

132

Chapter 19. Key handling
Key handling basics

Key handling in mac80211 is done based on per-interface (sub_if_data) keys and per-station keys. Since
each station belongs to an interface, each station key also belongs to that interface.

Hardware acceleration is done on a best-effort basis for algorithms that are implemented in software, for
each key the hardware is asked to enable that key for offloading but if it cannot do that the key is simply
kept for software encryption (unless it is for an algorithm that isn't implemented in software). There is
currently no way of knowing whether a key is handled in SW or HW except by looking into debugfs.

All key management is internally protected by a mutex. Within all other parts of mac80211, key references
are, just as STA structure references, protected by RCU. Note, however, that some things are unprotected,
namely the key->sta dereferences within the hardware acceleration functions. This means that sta_in-
fo_destroy must remove the key which waits for an RCU grace period.

MORE TBD
TBD

133

Chapter 20. Receive processing
TBD

134

Chapter 21. Transmit processing
TBD

135

Chapter 22. Station info handling
Programming information

136

Station info handling

Name
struct sta_info — STA information

Synopsis

struct sta_info {
 struct list_head list;
 struct list_head free_list;
 struct rcu_head rcu_head;
 struct rhash_head hash_node;
 u8 addr[ETH_ALEN];
 struct ieee80211_local * local;
 struct ieee80211_sub_if_data * sdata;
 struct ieee80211_key __rcu * gtk[NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS];
 struct ieee80211_key __rcu * ptk[NUM_DEFAULT_KEYS];
 u8 ptk_idx;
 struct rate_control_ref * rate_ctrl;
 void * rate_ctrl_priv;
 spinlock_t rate_ctrl_lock;
 spinlock_t lock;
 struct ieee80211_fast_tx __rcu * fast_tx;
#ifdef CONFIG_MAC80211_MESH
 struct mesh_sta * mesh;
#endif
 struct work_struct drv_deliver_wk;
 u16 listen_interval;
 bool dead;
 bool uploaded;
 enum ieee80211_sta_state sta_state;
 unsigned long _flags;
 spinlock_t ps_lock;
 struct sk_buff_head ps_tx_buf[IEEE80211_NUM_ACS];
 struct sk_buff_head tx_filtered[IEEE80211_NUM_ACS];
 unsigned long driver_buffered_tids;
 unsigned long txq_buffered_tids;
 long last_connected;
 struct debugfs;
#endif
 enum ieee80211_sta_rx_bandwidth cur_max_bandwidth;
 enum ieee80211_smps_mode known_smps_mode;
 const struct ieee80211_cipher_scheme * cipher_scheme;
 u8 reserved_tid;
 struct cfg80211_chan_def tdls_chandef;
 struct ieee80211_sta sta;
};

Members

list global linked list entry

free_list list entry for keeping track of stations to free

rcu_head RCU head used for freeing this station struct

137

Station info handling

hash_node hash node for rhashtable

addr[ETH_ALEN] station's MAC address - duplicated from public part to let the hash
table work with just a single cacheline

local pointer to the global information

sdata virtual interface this station belongs to

gtk[NUM_DE-
FAULT_KEYS + NUM_DE-
FAULT_MGMT_KEYS]

group keys negotiated with this station, if any

ptk[NUM_DEFAULT_KEYS] peer keys negotiated with this station, if any

ptk_idx last installed peer key index

rate_ctrl rate control algorithm reference

rate_ctrl_priv rate control private per-STA pointer

rate_ctrl_lock spinlock used to protect rate control data (data inside the algorithm,
so serializes calls there)

lock used for locking all fields that require locking, see comments in the
header file.

fast_tx TX fastpath information

mesh mesh STA information

drv_deliver_wk used for delivering frames after driver PS unblocking

listen_interval listen interval of this station, when we're acting as AP

dead set to true when sta is unlinked

uploaded set to true when sta is uploaded to the driver

sta_state duplicates information about station state (for debug)

_flags STA flags, see enum ieee80211_sta_info_flags, do not use directly

ps_lock used for powersave (when mac80211 is the AP) related locking

ps_tx_buf[IEEE80211_NUM_ACS] buffers (per AC) of frames to transmit to this station when it leaves
power saving state or polls

tx_fil-
tered[IEEE80211_NUM_ACS]

buffers (per AC) of frames we already tried to transmit but were
filtered by hardware due to STA having entered power saving state,
these are also delivered to the station when it leaves powersave or
polls for frames

driver_buffered_tids bitmap of TIDs the driver has data buffered on

txq_buffered_tids bitmap of TIDs that mac80211 has txq data buffered on

last_connected time (in seconds) when a station got connected

138

Station info handling

debugfs debug filesystem info

cur_max_bandwidth maximum bandwidth to use for TX to the station, taken from HT/
VHT capabilities or VHT operating mode notification

known_smps_mode the smps_mode the client thinks we are in. Relevant for AP only.

cipher_scheme optional cipher scheme for this station

reserved_tid reserved TID (if any, otherwise IEEE80211_TID_UN-
RESERVED)

tdls_chandef a TDLS peer can have a wider chandef that is compatible to the
BSS one.

sta station information we share with the driver

Description

This structure collects information about a station that mac80211 is communicating with.

139

Station info handling

Name
enum ieee80211_sta_info_flags — Stations flags

Synopsis

enum ieee80211_sta_info_flags {
 WLAN_STA_AUTH,
 WLAN_STA_ASSOC,
 WLAN_STA_PS_STA,
 WLAN_STA_AUTHORIZED,
 WLAN_STA_SHORT_PREAMBLE,
 WLAN_STA_WDS,
 WLAN_STA_CLEAR_PS_FILT,
 WLAN_STA_MFP,
 WLAN_STA_BLOCK_BA,
 WLAN_STA_PS_DRIVER,
 WLAN_STA_PSPOLL,
 WLAN_STA_TDLS_PEER,
 WLAN_STA_TDLS_PEER_AUTH,
 WLAN_STA_TDLS_INITIATOR,
 WLAN_STA_TDLS_CHAN_SWITCH,
 WLAN_STA_TDLS_OFF_CHANNEL,
 WLAN_STA_TDLS_WIDER_BW,
 WLAN_STA_UAPSD,
 WLAN_STA_SP,
 WLAN_STA_4ADDR_EVENT,
 WLAN_STA_INSERTED,
 WLAN_STA_RATE_CONTROL,
 WLAN_STA_TOFFSET_KNOWN,
 WLAN_STA_MPSP_OWNER,
 WLAN_STA_MPSP_RECIPIENT,
 WLAN_STA_PS_DELIVER
};

Constants

WLAN_STA_AUTH Station is authenticated.

WLAN_STA_ASSOC Station is associated.

WLAN_STA_PS_STA Station is in power-save mode

WLAN_STA_AUTHORIZED Station is authorized to send/receive traffic. This bit is always
checked so needs to be enabled for all stations when virtual port
control is not in use.

WLAN_STA_SHORT_PREAM-
BLE

Station is capable of receiving short-preamble frames.

WLAN_STA_WDS Station is one of our WDS peers.

WLAN_STA_CLEAR_PS_FILT Clear PS filter in hardware (using the
IEEE80211_TX_CTL_CLEAR_PS_FILT control flag) when the
next frame to this station is transmitted.

140

Station info handling

WLAN_STA_MFP Management frame protection is used with this STA.

WLAN_STA_BLOCK_BA Used to deny ADDBA requests (both TX and RX) during sus-
pend/resume and station removal.

WLAN_STA_PS_DRIVER driver requires keeping this station in power-save mode logically to
flush frames that might still be in the queues

WLAN_STA_PSPOLL Station sent PS-poll while driver was keeping station in power-save
mode, reply when the driver unblocks.

WLAN_STA_TDLS_PEER Station is a TDLS peer.

WLAN_STA_T-
DLS_PEER_AUTH

This TDLS peer is authorized to send direct packets. This means
the link is enabled.

WLAN_STA_TDLS_INITIATOR We are the initiator of the TDLS link with this station.

WLAN_STA_T-
DLS_CHAN_SWITCH

This TDLS peer supports TDLS channel-switching

WLAN_STA_TDLS_OFF_CHAN-
NEL

The local STA is currently off-channel with this TDLS peer

WLAN_STA_TDLS_WIDER_BW This TDLS peer supports working on a wider bw on the BSS base
channel.

WLAN_STA_UAPSD Station requested unscheduled SP while driver was keeping station
in power-save mode, reply when the driver unblocks the station.

WLAN_STA_SP Station is in a service period, so don't try to reply to other uAPSD
trigger frames or PS-Poll.

WLAN_STA_4ADDR_EVENT 4-addr event was already sent for this frame.

WLAN_STA_INSERTED This station is inserted into the hash table.

WLAN_STA_RATE_CONTROL rate control was initialized for this station.

WLAN_STA_TOF-
FSET_KNOWN

toffset calculated for this station is valid.

WLAN_STA_MPSP_OWNER local STA is owner of a mesh Peer Service Period.

WLAN_STA_MPSP_RECIPIENT local STA is recipient of a MPSP.

WLAN_STA_PS_DELIVER station woke up, but we're still blocking TX until pending frames
are delivered

Description

These flags are used with struct sta_info's flags member, but only indirectly with set_sta_flag
and friends.

STA information lifetime rules

141

Station info handling

STA info structures (struct sta_info) are managed in a hash table for faster lookup and a list for iteration.
They are managed using RCU, i.e. access to the list and hash table is protected by RCU.

Upon allocating a STA info structure with sta_info_alloc, the caller owns that structure. It must then
insert it into the hash table using either sta_info_insert or sta_info_insert_rcu; only in the
latter case (which acquires an rcu read section but must not be called from within one) will the pointer
still be valid after the call. Note that the caller may not do much with the STA info before inserting it, in
particular, it may not start any mesh peer link management or add encryption keys.

When the insertion fails (sta_info_insert) returns non-zero), the structure will have been freed by
sta_info_insert!

Station entries are added by mac80211 when you establish a link with a peer. This means different things
for the different type of interfaces we support. For a regular station this mean we add the AP sta when we
receive an association response from the AP. For IBSS this occurs when get to know about a peer on the
same IBSS. For WDS we add the sta for the peer immediately upon device open. When using AP mode
we add stations for each respective station upon request from userspace through nl80211.

In order to remove a STA info structure, various sta_info_destroy_*() calls are available.

There is no concept of ownership on a STA entry, each structure is owned by the global hash table/list
until it is removed. All users of the structure need to be RCU protected so that the structure won't be freed
before they are done using it.

142

Chapter 23. Aggregation

143

Aggregation

Name
struct sta_ampdu_mlme — STA aggregation information.

Synopsis

struct sta_ampdu_mlme {
 struct mutex mtx;
 struct tid_ampdu_rx __rcu * tid_rx[IEEE80211_NUM_TIDS];
 unsigned long tid_rx_timer_expired[BITS_TO_LONGS(IEEE80211_NUM_TIDS)];
 unsigned long tid_rx_stop_requested[BITS_TO_LONGS(IEEE80211_NUM_TIDS)];
 struct work_struct work;
 struct tid_ampdu_tx __rcu * tid_tx[IEEE80211_NUM_TIDS];
 struct tid_ampdu_tx * tid_start_tx[IEEE80211_NUM_TIDS];
 unsigned long last_addba_req_time[IEEE80211_NUM_TIDS];
 u8 addba_req_num[IEEE80211_NUM_TIDS];
 u8 dialog_token_allocator;
};

Members
mtx mutex to protect all TX data (except non-NULL assignments to

tid_tx[idx], which are protected by the sta spinlock) tid_start_tx is
also protected by sta->lock.

tid_rx[IEEE80211_NUM_TIDS] aggregation info for Rx per TID -- RCU protected

tid_rx_timer_ex-
pired[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]

bitmap indicating on which TIDs the RX timer expired until the
work for it runs

tid_rx_stop_request-
ed[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]

bitmap indicating which BA sessions per TID the driver requested
to close until the work for it runs

work work struct for starting/stopping aggregation

tid_tx[IEEE80211_NUM_TIDS] aggregation info for Tx per TID

tid_s-
tart_tx[IEEE80211_NUM_TIDS]

sessions where start was requested

last_addba_re-
q_time[IEEE80211_NUM_TIDS]

timestamp of the last addBA request.

addba_re-
q_num[IEEE80211_NUM_TIDS]

number of times addBA request has been sent.

dialog_token_allocator dialog token enumerator for each new session;

144

Aggregation

Name
struct tid_ampdu_tx — TID aggregation information (Tx).

Synopsis

struct tid_ampdu_tx {
 struct rcu_head rcu_head;
 struct timer_list session_timer;
 struct timer_list addba_resp_timer;
 struct sk_buff_head pending;
 unsigned long state;
 unsigned long last_tx;
 u16 timeout;
 u8 dialog_token;
 u8 stop_initiator;
 bool tx_stop;
 u8 buf_size;
 u16 failed_bar_ssn;
 bool bar_pending;
 bool amsdu;
};

Members
rcu_head rcu head for freeing structure

session_timer check if we keep Tx-ing on the TID (by timeout value)

addba_resp_timer timer for peer's response to addba request

pending pending frames queue -- use sta's spinlock to protect

state session state (see above)

last_tx jiffies of last tx activity

timeout session timeout value to be filled in ADDBA requests

dialog_token dialog token for aggregation session

stop_initiator initiator of a session stop

tx_stop TX DelBA frame when stopping

buf_size reorder buffer size at receiver

failed_bar_ssn ssn of the last failed BAR tx attempt

bar_pending BAR needs to be re-sent

amsdu support A-MSDU withing A-MDPU

Description
This structure's lifetime is managed by RCU, assignments to the array holding it must hold the aggregation
mutex.

145

Aggregation

The TX path can access it under RCU lock-free if, and only if, the state has the flag HT_AGG_STATE_OP-
ERATIONAL set. Otherwise, the TX path must also acquire the spinlock and re-check the state, see com-
ments in the tx code touching it.

146

Aggregation

Name
struct tid_ampdu_rx — TID aggregation information (Rx).

Synopsis

struct tid_ampdu_rx {
 struct rcu_head rcu_head;
 spinlock_t reorder_lock;
 struct sk_buff_head * reorder_buf;
 unsigned long * reorder_time;
 struct timer_list session_timer;
 struct timer_list reorder_timer;
 unsigned long last_rx;
 u16 head_seq_num;
 u16 stored_mpdu_num;
 u16 ssn;
 u16 buf_size;
 u16 timeout;
 u8 dialog_token;
 bool auto_seq;
 bool removed;
};

Members
rcu_head RCU head used for freeing this struct

reorder_lock serializes access to reorder buffer, see below.

reorder_buf buffer to reorder incoming aggregated MPDUs. An MPDU may be an A-MSDU
with individually reported subframes.

reorder_time jiffies when skb was added

session_timer check if peer keeps Tx-ing on the TID (by timeout value)

reorder_timer releases expired frames from the reorder buffer.

last_rx jiffies of last rx activity

head_seq_num head sequence number in reordering buffer.

stored_mpdu_num number of MPDUs in reordering buffer

ssn Starting Sequence Number expected to be aggregated.

buf_size buffer size for incoming A-MPDUs

timeout reset timer value (in TUs).

dialog_token dialog token for aggregation session

auto_seq used for offloaded BA sessions to automatically pick head_seq_and and ssn.

147

Aggregation

removed this session is removed (but might have been found due to RCU)

Description
This structure's lifetime is managed by RCU, assignments to the array holding it must hold the aggregation
mutex.

The reorder_lock is used to protect the members of this struct, except for timeout, buf_size
and dialog_token, which are constant across the lifetime of the struct (the dialog token being used
only for debugging).

148

Chapter 24. Synchronisation
TBD

Locking, lots of RCU

149

	The 802.11 subsystems – for kernel developers
	Table of Contents
	The cfg80211 subsystem
	Chapter 1. Device registration
	enum ieee80211_band
	enum ieee80211_channel_flags
	struct ieee80211_channel
	enum ieee80211_rate_flags
	struct ieee80211_rate
	struct ieee80211_sta_ht_cap
	struct ieee80211_supported_band
	enum cfg80211_signal_type
	enum wiphy_params_flags
	enum wiphy_flags
	struct wiphy
	struct wireless_dev
	wiphy_new
	wiphy_register
	wiphy_unregister
	wiphy_free
	wiphy_name
	wiphy_dev
	wiphy_priv
	priv_to_wiphy
	set_wiphy_dev
	wdev_priv
	struct ieee80211_iface_limit
	struct ieee80211_iface_combination
	cfg80211_check_combinations

	Chapter 2. Actions and configuration
	struct cfg80211_ops
	struct vif_params
	struct key_params
	enum survey_info_flags
	struct survey_info
	struct cfg80211_beacon_data
	struct cfg80211_ap_settings
	struct station_parameters
	enum rate_info_flags
	struct rate_info
	struct station_info
	enum monitor_flags
	enum mpath_info_flags
	struct mpath_info
	struct bss_parameters
	struct ieee80211_txq_params
	struct cfg80211_crypto_settings
	struct cfg80211_auth_request
	struct cfg80211_assoc_request
	struct cfg80211_deauth_request
	struct cfg80211_disassoc_request
	struct cfg80211_ibss_params
	struct cfg80211_connect_params
	struct cfg80211_pmksa
	cfg80211_rx_mlme_mgmt
	cfg80211_auth_timeout
	cfg80211_rx_assoc_resp
	cfg80211_assoc_timeout
	cfg80211_tx_mlme_mgmt
	cfg80211_ibss_joined
	cfg80211_connect_result
	cfg80211_roamed
	cfg80211_disconnected
	cfg80211_ready_on_channel
	cfg80211_remain_on_channel_expired
	cfg80211_new_sta
	cfg80211_rx_mgmt
	cfg80211_mgmt_tx_status
	cfg80211_cqm_rssi_notify
	cfg80211_cqm_pktloss_notify
	cfg80211_michael_mic_failure

	Chapter 3. Scanning and BSS list handling
	struct cfg80211_ssid
	struct cfg80211_scan_request
	cfg80211_scan_done
	struct cfg80211_bss
	struct cfg80211_inform_bss
	cfg80211_inform_bss_frame_data
	cfg80211_inform_bss_data
	cfg80211_unlink_bss
	cfg80211_find_ie
	ieee80211_bss_get_ie

	Chapter 4. Utility functions
	ieee80211_channel_to_frequency
	ieee80211_frequency_to_channel
	ieee80211_get_channel
	ieee80211_get_response_rate
	ieee80211_hdrlen
	ieee80211_get_hdrlen_from_skb
	struct ieee80211_radiotap_iterator

	Chapter 5. Data path helpers
	ieee80211_data_to_8023
	ieee80211_data_from_8023
	ieee80211_amsdu_to_8023s
	cfg80211_classify8021d

	Chapter 6. Regulatory enforcement infrastructure
	regulatory_hint
	wiphy_apply_custom_regulatory
	freq_reg_info

	Chapter 7. RFkill integration
	wiphy_rfkill_set_hw_state
	wiphy_rfkill_start_polling
	wiphy_rfkill_stop_polling

	Chapter 8. Test mode
	cfg80211_testmode_alloc_reply_skb
	cfg80211_testmode_reply
	cfg80211_testmode_alloc_event_skb
	cfg80211_testmode_event

	The mac80211 subsystem
	Part I. The basic mac80211 driver interface
	Chapter 1. Basic hardware handling
	struct ieee80211_hw
	enum ieee80211_hw_flags
	SET_IEEE80211_DEV
	SET_IEEE80211_PERM_ADDR
	struct ieee80211_ops
	ieee80211_alloc_hw
	ieee80211_register_hw
	ieee80211_unregister_hw
	ieee80211_free_hw

	Chapter 2. PHY configuration
	struct ieee80211_conf
	enum ieee80211_conf_flags

	Chapter 3. Virtual interfaces
	struct ieee80211_vif

	Chapter 4. Receive and transmit processing
	what should be here
	Frame format
	Packet alignment
	Calling into mac80211 from interrupts
	functions/definitions
	struct ieee80211_rx_status
	enum mac80211_rx_flags
	enum mac80211_tx_info_flags
	enum mac80211_tx_control_flags
	enum mac80211_rate_control_flags
	struct ieee80211_tx_rate
	struct ieee80211_tx_info
	ieee80211_tx_info_clear_status
	ieee80211_rx
	ieee80211_rx_ni
	ieee80211_rx_irqsafe
	ieee80211_tx_status
	ieee80211_tx_status_ni
	ieee80211_tx_status_irqsafe
	ieee80211_rts_get
	ieee80211_rts_duration
	ieee80211_ctstoself_get
	ieee80211_ctstoself_duration
	ieee80211_generic_frame_duration
	ieee80211_wake_queue
	ieee80211_stop_queue
	ieee80211_wake_queues
	ieee80211_stop_queues
	ieee80211_queue_stopped

	Chapter 5. Frame filtering
	enum ieee80211_filter_flags

	Chapter 6. The mac80211 workqueue
	ieee80211_queue_work
	ieee80211_queue_delayed_work

	Part II. Advanced driver interface
	Chapter 7. LED support
	ieee80211_get_tx_led_name
	ieee80211_get_rx_led_name
	ieee80211_get_assoc_led_name
	ieee80211_get_radio_led_name
	struct ieee80211_tpt_blink
	enum ieee80211_tpt_led_trigger_flags
	ieee80211_create_tpt_led_trigger

	Chapter 8. Hardware crypto acceleration
	enum set_key_cmd
	struct ieee80211_key_conf
	enum ieee80211_key_flags
	ieee80211_get_tkip_p1k
	ieee80211_get_tkip_p1k_iv
	ieee80211_get_tkip_p2k

	Chapter 9. Powersave support
	Chapter 10. Beacon filter support
	ieee80211_beacon_loss

	Chapter 11. Multiple queues and QoS support
	struct ieee80211_tx_queue_params

	Chapter 12. Access point mode support
	support for powersaving clients
	ieee80211_get_buffered_bc
	ieee80211_beacon_get
	ieee80211_sta_eosp
	enum ieee80211_frame_release_type
	ieee80211_sta_ps_transition
	ieee80211_sta_ps_transition_ni
	ieee80211_sta_set_buffered
	ieee80211_sta_block_awake

	Chapter 13. Supporting multiple virtual interfaces
	ieee80211_iterate_active_interfaces
	ieee80211_iterate_active_interfaces_atomic

	Chapter 14. Station handling
	struct ieee80211_sta
	enum sta_notify_cmd
	ieee80211_find_sta
	ieee80211_find_sta_by_ifaddr

	Chapter 15. Hardware scan offload
	ieee80211_scan_completed

	Chapter 16. Aggregation
	TX A-MPDU aggregation
	RX A-MPDU aggregation
	enum ieee80211_ampdu_mlme_action

	Chapter 17. Spatial Multiplexing Powersave (SMPS)
	ieee80211_request_smps
	enum ieee80211_smps_mode

	Part III. Rate control interface
	Chapter 18. Rate Control API
	ieee80211_start_tx_ba_session
	ieee80211_start_tx_ba_cb_irqsafe
	ieee80211_stop_tx_ba_session
	ieee80211_stop_tx_ba_cb_irqsafe
	enum ieee80211_rate_control_changed
	struct ieee80211_tx_rate_control
	rate_control_send_low

	Part IV. Internals
	Chapter 19. Key handling
	Key handling basics
	MORE TBD

	Chapter 20. Receive processing
	Chapter 21. Transmit processing
	Chapter 22. Station info handling
	Programming information
	struct sta_info
	enum ieee80211_sta_info_flags

	STA information lifetime rules

	Chapter 23. Aggregation
	struct sta_ampdu_mlme
	struct tid_ampdu_tx
	struct tid_ampdu_rx

	Chapter 24. Synchronisation

