Industrial I/O driver developer's guide

Daniel Baluta <dani el . bal uta@ nt el . conp

Industrial I/O driver developer's guide

by Daniel Baluta
Copyright © 2015 Intel Corporation

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2.

Table of Contents

O | gL oo (8 1o o R PO PRSPPI 1
2. INAUSEIIE 1/O COE ...t ettt et e e et e e e et e et enb e e eentnaaaees 2
INAUSEFTE 1/O AEVICES ... et 2

1O device SysfS INTEITACEoouve e 8

1O deViCe CRENNEIScoeie e 9

INAUSEFiAl 1/O DUFFEIS ... e e e 13

1O buffer SysfS INErfate e 18

1O BUFFEI SEIUD ... e 18

INAUSEFTE 1/O IIQUEIS ..ottt ettt ettt e e et e e e an e e ennans 20

1O trigger SYSfS INEITACEiiiiiit e 23

[TO THQUEN SEIUD ...eietieeeeit ettt ettt e et et e e e et eeeebe s 23

[TO TFIGUEN OPS etteeeeti ettt ettt e e et e et e ettt e et et e e e et e e e e s 24

Industrial 1/0 triggered DUFFEIScoouuiiiii e e 25

1O triggered BUFfEr SEEUDiiiiii e 25

3. RESOUICES ...ttt ettt ettt ettt e e et et et ea e 30

Chapter 1. Introduction

Themain purpose of the Industrial 1/0 subsystem (110) isto provide support for devicesthat in some sense
perform either analog-to-digital conversion (ADC) or digital-to-analog conversion (DAC) or both. The
aim isto fill the gap between the somewhat similar hwmon and input subsystems. Hwmon is directed at
low sampl e rate sensors used to monitor and control the system itself, likefan speed control or temperature
measurement. Input is, asits name suggests, focused on human interaction input devices (keyboard, mouse,
touchscreen). In some cases there is considerable overlap between these and 110.

Devicesthat fall into this category include:
» analogto digital converters (ADCs)

* accelerometers

* capacitance to digital converters (CDCs)
« digital to analog converters (DACs)

* gyroscopes

* inertial measurement units (IMUs)
 color and light sensors

¢ magnetometers

* pressure sensors

* proximity sensors

* temperature sensors

Usually these sensors are connected via SPI or 12C. A common use case of the sensors devicesisto have
combined functionality (e.g. light plus proximity sensor).

Chapter 2. Industrial I/O core

The Industrial 1/0 core offers:
« aunified framework for writing drivers for many different types of embedded sensors.
» astandard interface to user space applications manipulating sensors.

The implementation can be found under drivers/iio/industrialio-*

Industrial I/O devices

Industrial 1/0 core

Name
struct iio_dev — industrial 1/0 device
Synopsis
struct iio_dev {
int id;
i nt nodes;

i nt currentnode;
struct device dev;
struct iio_event_interface * event _interface;
struct iio _buffer * buffer;
struct |ist_head buffer _|ist;
i nt scan_bytes;
struct mutex nl ock;
const unsigned long * avail abl e_scan_masks;
unsi gned maskl engt h;
const unsigned long * active_scan_nask;
bool scan_ti nestanp;
unsi gned scan_i ndex_ti nest anp;
struct iio_trigger * trig;
struct iio_poll _func * pollfunc;
struct iio_poll _func * pollfunc_event;
struct iio_chan_spec const * channels;
i nt num channel s;
struct |ist_head channel _attr_|ist;
struct attribute group chan_attr_group
const char * nane;
const struct iio_info * info;
struct nmutex info_exist |ock
const struct iio _buffer_setup ops * setup_ops;
struct cdev chrdev;

#define 11 O MAX GROUPS 6
const struct attribute group * groups[I1 O MAX GROUPS + 1];
i nt groupcounter;
unsi gned | ong fl ags;

#i f defi ned(CONFI G_DEBUG_FS)
struct dentry * debugfs _dentry;
unsi gned cached_reg_addr

#endi f
1
Members
id [INTERN] used to identify device internally
modes [DRIVER] operating modes supported by device
currentmode [DRIVER] current operating mode
dev [DRIVER] device structure, should be assigned a parent and owner
event_interface [INTERN] event chrdevs associated with interrupt lines

Industrial 1/0 core

buffer

buffer_list

scan_bytes

mlock

available scan_masks
masklength
active_scan_mask
scan_timestamp
scan_index_timestamp
trig

pollfunc
pollfunc_event
channels
num_channels
channel_attr_list
chan_attr_group
name

info

info_exist_lock
setup_ops

chrdev
groups[I10_MAX_GROUPS + 1]
groupcounter

flags

debugfs _dentry
cached_reg addr

[DRIVER] any buffer present

[INTERN] list of all buffers currently attached

[INTERN] num bytes captured to be fed to buffer demux
[INTERN] lock used to prevent simultaneous device state changes
[DRIVER] optional array of allowed bitmasks

[INTERN] the length of the mask established from channels
[INTERN] union of all scan masks requested by buffers
[INTERN] set if any buffers have requested timestamp
[INTERN] cache of the index to the timestamp

[INTERN] current device trigger (buffer modes)

[DRIVER] function run on trigger being received

[DRIVER] function run on events trigger being received
[DRIVER] channel specification structure table

[DRIVER] number of channels specified inchannel s.
[INTERN] keep track of automatically created channel attributes
[INTERN] group for all attrsin base directory

[DRIVER] name of the device.

[DRIVER] callbacks and constant info from driver

[INTERN] lock to prevent use during removal

[DRIVER] callbacks to call before and after buffer enable/disable
[INTERN] associated character device

[INTERN] attribute groups

[INTERN] index of next attribute group

[INTERN] file ops related flags including busy flag.

[INTERN] device specific debugfs dentry.

[INTERN] cached register address for debugfs reads.

Industrial 1/0 core

Name

iio_device aloc— allocate aniio_dev from adriver
Synopsis

struct iio_dev * iio_device alloc (int sizeof priv);
Arguments

si zeof _priv Spaceto alocate for private structure.

Industrial 1/0 core

Name

iio_device free— freeaniio_dev from adriver
Synopsis

void iio _device free (struct iio_dev * dev);
Arguments

dev theiio_dev associated with the device

Industrial 1/0 core

Name

iio_device _register — register a device with the 110 subsystem
Synopsis

int iio_device register (struct iio_dev * indio_dev);
Arguments

i ndi o_dev Device structure filled by the device driver

Industrial 1/0 core

Name

iio_device_unregister — unregister a device from the 110 subsystem
Synopsis

void iio_device unregister (struct iio_dev * indio_dev);
Arguments

i ndi o_dev Device structure representing the device.

An 110 device usually corresponds to a single hardware sensor and it provides all the information needed
by adriver handling a device. Let's first have alook at the functionality embedded in an 110 device then
we will show how a device driver makes use of an 110 device.

There are two ways for a user space application to interact with an [10 driver.

» /sys/bus/iioliio:deviceX, this represents a hardware sensor and groups together the data
channels of the same chip.

« /dev/iio: devi ceX, character device node interface used for buffered data transfer and for events
information retrieval.

A typical 110 driver will register itself asan 12C or SPI driver and will create two routines, pr obe and
renove .Atprobe:

e caliio_device_alloc,whichallocatesmemory for an 10 device.
« initialize 110 device fields with driver specific information (e.g. device name, device channels).

o cal iio_device_register,thisregistersthe device with the 11O core. After this call the device
isready to accept requests from user space applications.

Atr enove, we free the resources allocated in pr obe in reverse order:
* iio_device_unregi ster,unregister the device from the I10 core.

* iio_device_free,freethe memory alocated for the 10 device.

IO device sysfs interface

Attributesare sysfsfilesused to expose chip info and al so allowing applicationsto set various configuration
parameters. For device with index X, attributes can be found under / sys/ bus/ii o/ii o: devi ceX/
directory. Common attributes are:

» nane, description of the physical chip.

 dev, showsthe major:minor pair associated with/ dev/ i i o: devi ceX node.

» sanpling_frequency_avail abl e, available discrete set of sampling frequency values for de-
vice.

Available standard attributes for 110 devices are described in the Docunent ati on/ ABI / t est -
i ng/ sysfs-bus-iio fileintheLinux kernel sources.

Industrial 1/0 core

1O device channels

Industrial 1/0 core

Name

struct iio_chan_spec — specification of a single channel

Synopsis

struct iio_chan_spec {
enumiio_chan_type type;
i nt channel
i nt channel 2;
unsi gned | ong addr ess;
i nt scan_i ndex;
struct scan_type;
l ong i nfo_mask_separate
I ong i nfo_nmask _shared_by type;
I ong i nfo_mask_shared_by_dir;
I ong i nfo_mask_shared_by_all;
const struct iio_event_spec * event_spec;
unsi gned int num event _specs;
const struct iio_chan_spec_ext_info * ext_info;
const char * extend_nane;
const char * datasheet nane;
unsi gned nodi fied: 1;
unsi gned i ndexed: 1;
unsi gned out put: 1;

unsi gned differential:1;

info_mask_separate
info_mask_shared_by_type

info_mask_shared_by_dir

info_mask_shared_by_all
event_spec

num_event_specs

b
Members
type What type of measurement is the channel making.
channel What number do we wish to assign the channel.
channel2 If thereis a second number for adifferential channel then thisisit.
If modified is set then the value here specifies the modifier.
address Driver specific identifier.
scan_index Monatonic index to give ordering in scanswhen read from abuffer.
scan_type Sign: 's or 'u' to specify signed or unsigned

What information is to be exported that is specific to this channel.

What information is to be exported that is shared by all channels
of the sametype.

What information is to be exported that is shared by all channels of
the same direction.

What information is to be exported that is shared by all channels.
Array of events which should be registered for this channel.

Size of the event_spec array.

10

Industrial 1/0 core

realbits

ext_info Array of extended info attributes for this channel. The array is
NULL terminated, the last element should have its name field set
to NULL.

extend_name Allows labeling of channel attributes with an informative name.

Note this has no effect codes etc, unlike modifiers.

datasheet_name A nameused inin-kernel mapping of channels. It should correspond
to the first name that the channel is referred to by in the datasheet
(e.g. IND), or the nearest possible compound name (e.g. IND-INC).

modified Does a modifier apply to this channel. What these are depends
on the channel type. Modifier is set in channel2. Examples are
I10_MOD_X for axia sensors about the 'x' axis.

indexed Specify the channel has a humerical index. If not, the channel in-
dex number will be suppressed for sysfs attributes but not for event
codes.

output Channel is output.

differential Channel is differential.

Number of valid bits of data

storage_bits

Realbits + padding

shift

Shift right by this before masking out realhits.
endianness

little or big endian
repeat

Number of times real/storage bits repeats. When the repeat element is more than 1, then the type element
in sysfswill show arepeat value. Otherwise, the number of repetitionsis omitted.

An 110 device channel is a representation of a data channel. An 110 device can have one or multiple
channels. For example:

» athermometer sensor has one channel representing the temperature measurement.
+ alight sensor with two channels indicating the measurements in the visible and infrared spectrum.
» an accelerometer can have up to 3 channels representing acceleration on X, Y and Z axes.

An 110 channel isdescribed by the struct iio_chan_spec . A thermometer driver for the temperature sensor
in the example above would have to describe its channel as follows:

11

Industrial 1/0 core

static const struct iio_chan_spec tenp_channel[] = {

{
.type = |1 O_TEMP,
.info_mask_separate = BIT(I1 O CHAN | NFO_PROCESSED) ,

b

Channel sysfs attributes exposed to userspace are specified in the form of bitmasks. Depending on their
shared info, attributes can be set in one of the following masks:

 info_mask separate, attributes will be specific to this channel

 info_mask shared by type, attributes are shared by all channels of the same type

 info_mask shared by dir, attributes are shared by all channels of the same direction

 info_mask shared by all, attributes are shared by all channels

When there are multiple data channels per channel type we have two ways to distinguish between them:

e set .modified field of iio_chan spec to 1. Modifiers are specified using .channel2 field of the same
iio_chan_spec structure and are used to indicate a physically unique characteristic of the channel such
asitsdirection or spectral response. For example, alight sensor can have two channels, one for infrared
light and one for both infrared and visible light.

e set .indexed field of iio_chan_spec to 1. In this case the channel is simply another instance with an
index specified by the .channel field.

Here is how we can make use of the channel's modifiers:

static const struct iio_chan_spec light_channels[] = {

{
.type = |1 O_I NTENSI TY,
.modified = 1,
.channel 2 = 11O MOD_LIGHT_IR,
.info_mask_separate = BIT(I1 O _CHAN | NFO RAW ,
.info_mask_shared = BIT(I11 O _CHAN | NFO_SAMP_FREQ ,
1
{
.type = |1 O_I NTENSI TY,
.modified = 1,
.channel 2 = 11 O MOD_LI GHT_BOTH,
.info_mask_separate = BIT(I1 O _CHAN | NFO RAW ,
.info_mask_shared = BIT(I11 O _CHAN | NFO_SAMP_FREQ ,
1
{
.type = |1 O LI GHT,
.info_mask_separate = BIT(I1 O CHAN | NFO_PROCESSED) ,
.info_mask_shared = BIT(I11 O _CHAN | NFO_SAMP_FREQ ,
|

12

Industrial 1/0 core

This channel's definition will generate two separate sysfsfiles for raw dataretrieval:
o /sys/bus/iioliio:deviceXlin_intensity_ir_raw

* /sys/bus/iioliio:deviceX/in_intensity_both_raw

onefilefor processed data:

» /sys/bus/iioliio:devicexX/in_illum nance_i nput

and one shared sysfsfile for sampling frequency:

e /sys/bus/iioliio:deviceX sanpling frequency.

Hereis how we can make use of the channel's indexing:

static const struct iio_chan_spec light_channels[] = {

{

.type = |1 O VOLTAGE,

.indexed = 1,

. channel = 0,

.info_mask_separate = BIT(I1 O _CHAN | NFO RAW,
}
{

.type = |1 O VOLTAGE,

.indexed = 1,

. channel = 1,

.info_mask_separate = BIT(I1 O _CHAN | NFO RAW,
}

Thiswill generate two separate attributes files for raw dataretrieval:

» /sys/bus/iiol/devices/iio:deviceX in_voltageO_raw, representing voltage mea
surement for channel 0.

» /sys/bus/iioldevices/iio:deviceX in_voltagel_raw, representing voltage mea
surement for channel 1.

Industrial I/O buffers

13

Industrial 1/0 core

Name

struct iio_buffer — general buffer structure

Synopsis

struct iio_buffer {
int Iength;
i nt bytes_per_dat um
struct attribute group * scan_el attrs;
l ong * scan_mask;
bool scan_ti nest anp;
const struct iio_buffer_access_funcs * access;
struct list_head scan_el _dev_attr _list;
struct attribute _group scan_el group
wait _queue_head_t pollq;
bool stufftoread;
struct |ist_head denux_list;
void * demux_bounce;
struct |ist_head buffer_|ist;
struct kref ref;
unsi gned int waternmark

b
Members

length [DEVICE] number of datumsin buffer

bytes per_datum [DEVICE] size of individual datum including timestamp

scan_el_attrs [DRIVER] control of scan elements if that scan mode control method
isused

scan_mask [INTERN] bitmask used in masking scan mode elements

scan_timestamp [INTERN] does the scan mode include a timestamp

access [DRIVER] buffer access functions associated with the implementation.

scan_d_dev_attr list [INTERN] list of scan element related attributes.

scan_el_group [DRIVER] attribute group for those attributes not created from the
iio_chan_info array.

pollq [INTERN] wait queue to allow for polling on the buffer.

stufftoread [INTERN] flag to indicate new data.

demux_list [INTERN] list of operations required to demux the scan.

demux_bounce [INTERN] buffer for doing gather from incoming scan.

buffer_list [INTERN] entry in the deviceslist of current buffers.

ref [INTERN] reference count of the buffer.

14

Industrial 1/0 core

watermark [INTERN] number of datums to wait for poll/read.

15

Industrial 1/0 core

Name
iio_validate scan mask onehot — Validates that exactly one channel is selected
Synopsis
bool iio_validate scan_nask _onehot (struct iio_dev * indio_dev, const

unsi gned | ong * nask);

Arguments

i ndi o_dev theiiodevice

mask scan mask to be checked
Description

Return true if exactly one bit is set in the scan mask, false otherwise. It can be used for devices where only
one channel can be active for sampling at atime.

16

Industrial 1/0 core

Name
iio_buffer_get — Grab areference to the buffer
Synopsis
struct iio buffer * iio buffer_get (struct iio_buffer * buffer);
Arguments
buf f er Thebuffer to grab areference for, may be NULL
Description

Returns the pointer to the buffer that was passed into the function.

17

Industrial 1/0 core

Name

iio_buffer_put — Release the reference to the buffer
Synopsis
void iio_buffer_put (struct iio_buffer * buffer);

Arguments
buf f er Thebuffer to release the reference for, may be NULL

The Industrial 1/O core offers away for continuous data capture based on a trigger source. Multiple data
channels can be read at oncefrom/ dev/ i i 0: devi ceX character device node, thus reducing the CPU
load.

1O buffer sysfs interface

An 11O buffer has an associated attributes directory under /sys/bus/iioliio:de-
vi ceX/ buf f er/ . Here are the existing attributes:

« length, the total number of data samples (capacity) that can be stored by the buffer.

* enable, activate buffer capture.

11O buffer setup

The meta information associated with a channel reading placed in a buffer is called a scan element . The
important bits configuring scan elements are exposed to userspace applications viathe [/ sys/ bus/
iioliio:deviceX/ scan_el ement s/ directory. Thisfile containsattributes of the following form:

* enable, used for enabling achannel. If and only if its attribute is non zero, then atriggered capture will
contain data samples for this channel.

* type, description of the scan element data storage within the buffer and hence the form in which it is
read from user space. Format is [bell€]:[s|u] bits/storagebitsXrepeat] >> shift] .

« beor le, specifiesbig or little endian.

e soru, specifiesif signed (2's complement) or unsigned.

¢ bits, isthe number of valid data bits.

* storagebits, isthe number of bits (after padding) that it occupiesin the buffer.

« shift, if specified, is the shift that needs to be applied prior to masking out unused bits.

« repeat, specifies the number of bits/storagebits repetitions. When the repeat element is 0 or 1, then
the repeat value is omitted.

For example, adriver for a 3-axis accelerometer with 12 bit resolution where datais stored in two 8-bits
registers asfollows:

18

Industrial 1/0 core

e e g
ID3 |D2 |D1 |DO | X | X | X[X|
e e g

7 6 5 4 3 2 1 0
ot m e e e e e e e e e e - -+
| D11| D10| D9 |D8 |D7 |D6 |D5 | D4 |
ot m e e e e e e e e e e - -+

will have the following scan element type for each axis:

(LOW byt e, address 0x06)

(H GH byte, address 0x07)

$ cat /sys/bus/iioldevices/iio:deviceO/scan_el ements/in_accel _y_type

| e:s12/16>>4

A user space application will interpret data samples read from the buffer as two byte little endian signed
data, that needs a 4 bits right shift before masking out the 12 valid bits of data.

For implementing buffer support adriver should initializethe following fieldsiniio_chan_spec definition:

struct iio_chan_spec {

/* other menbers */
i nt scan_i ndex
struct {

char sign;

u8 real bits;

u8 storagebits;

u8 shift;

u8 repeat;

enum iio_endi an endi anness;

} scan_type;

b

The driver implementing the accelerometer described above will have the following channel definition:

struct struct iio_chan_spec accel _channel s[] = {

{
.type = I'1 O_ACCEL,
.modified = 1,
.channel 2 = 11 O MOD_X,

/* other stuff here */
.scan_i ndex = 0,
.scan_type = {
.sign ="'s'",
.realbits = 12,
.storgebits = 16,
.shift = 4,
.endi anness = 11O _LE,

19

Industrial 1/0 core

/[* simlar for Y (with channel2 = 1O MO Y, scan_index = 1)
* and Z (with channel2 = 11O MJXD Z, scan_index = 2) axis
*/

Here scan_index defines the order in which the enabled channels are placed inside the buffer. Channels
with alower scan_index will be placed before channels with a higher index. Each channel needs to have
aunique scan_index.

Setting scan_index to -1 can be used to indicate that the specific channel does not support buffered capture.
In this case no entries will be created for the channel in the scan_elements directory.

Industrial 1/O triggers

20

Industrial 1/0 core

Name

struct iio_trigger — industrial 1/O trigger device

Synopsis

struct iio_trigger {

const struct iio_trigger_ops * ops;
int id;

const char * nane;

struct device dev;

struct list_head |ist;

struct list_head alloc_list;

atomi c_t use_count;

struct irqg_chip subirqg_chip

i nt subirqg_base

struct iio_subirq subirgs[CONFI G || O CONSUVERS PER TRI GCGER] ;
unsi gned | ong pool [BITS TO LONGS(CONFI G | | O CONSUMERS PER TRI GGER) | ;

struct nutex pool | ock;

b

Members
ops [DRIVER] operations structure
id [INTERN] unique id number
name [DRIVER] unique name
dev
list
aloc list
use_count use count for the trigger
subirq_chip [INTERN] associate 'virtual' irq chip.
subirq_base
subirgs] CON-

FIG_IIO_CONSUMERS_PER_TRIG-
GER]

pool[BITS TO_LONGS(CON-

FIG_IIO_CONSUMERS_PER_TRIG-
GER)]

pool_lock

21

[DRIVER] associated device (if relevant)
[INTERN] used in maintenance of global trigger list

[DRIVER] used for driver specific trigger list

[INTERN] base number for irgs provided by trigger.

[INTERN] information about the ‘child' irgs.

[INTERN] bitmap of irgs currently in use.

[INTERN] protection of theirg pool.

Industrial 1/0 core

Name
devm_iio_trigger_alloc — Resource-managedi i o_tri gger_all oc
Synopsis
struct iio_trigger * devmiio trigger_alloc (struct device * dev, const
char * fnmt, ...);
Arguments
dev Deviceto alocateiio_trigger for
fnt trigger nameformat. If it includes format specifiers, the additional arguments following format are
formatted and inserted in the resulting string replacing their respective specifiers.
variable arguments
Description
Managediio_trigger_alloc. iio_trigger alocated with thisfunction isautomatically freed on driver detach.
If aniio_trigger alocated with this function needs to be freed separately, devm i i o_tri gger _free
must be used.
RETURNS

Pointer to allocated iio_trigger on success, NULL on failure.

22

Industrial 1/0 core

Name
devm_iio_trigger_free— Resource-managedi i o_tri gger _free
Synopsis
void devmiio trigger free (struct device * dev, struct iio_trigger *
iio_trig);
Arguments
dev Devicethisiio_dev belongsto

iio_trig theiio_trigger associated with the device
Description

Freeiio_trigger allocated withdevm ii o_trigger _all oc.

In many situationsit is useful for adriver to be able to capture data based on some external event (trigger)
as opposed to periodically polling for data. An 110 trigger can be provided by a device driver that also
has an 110 device based on hardware generated events (e.g. dataready or threshold exceeded) or provided
by a separate driver from an independent interrupt source (e.g. GPIO line connected to some external
system, timer interrupt or user space writing a specific file in sysfs). A trigger may initiate data capture
for anumber of sensors and also it may be completely unrelated to the sensor itself.

1O trigger sysfs interface

There are two locations in sysfs related to triggers:

» /sys/bus/iioldevices/triggerY,thisfileiscreated oncean IO trigger isregistered with the
110 core and corresponds to trigger with index Y. Because triggers can be very different depending on
type there are few standard attributes that we can describe here:

* name, trigger name that can be later used for association with a device.

< sampling_frequency, some timer based triggers use this attribute to specify the frequency for trigger
cals.

e /sys/bus/iioldevices/iio:deviceX/ trigger/,thisdirectory iscreated once the device

supports a triggered buffer. We can associate a trigger with our device by writing the trigger's name in
thecurrent _trigger file

1O trigger setup

Let's see a simple example of how to setup atrigger to be used by a driver.

struct iio_trigger_ops trigger_ops = {
.set _trigger_state = sanple_trigger_state,
.val i date_devi ce = sanpl e_val i dat e_devi ce,

}

struct iio_trigger *trig;

23

Industrial 1/0 core

/* first, allocate nenory for our trigger */
trig = iio_trigger_alloc(dev, "trig-%-%", name, idx);

/* setup trigger operations field */
trig->ops = & rigger_ops;

/* now register the trigger with the 110 core */
iio_trigger_register(trig);

IO trigger ops

24

Industrial 1/0 core

Name

struct iio_trigger_ops — operations structure for an iio_trigger.

Synopsis

struct iio_trigger_ops {

struct nodul e * owner;

int (* set_trigger_state) (struct iio_trigger *trig, bool state);

int (* try_ reenable) (struct iio_trigger *trig);

int (* validate_device) (struct iio_trigger *trig,struct iio_dev *indio_dev);

1
Members
owner used to monitor usage count of the trigger.
set_trigger_state switch on/off the trigger on demand
try_reenable function to reenable the trigger when the use count is zero (may be NULL)
validate device function to validate the device when the current trigger gets changed.
Description

Thisistypicaly static const within adriver and shared by instances of a given device.
Notice that atrigger has a set of operations attached:
e set _trigger_stat e, switch thetrigger on/off on demand.

» val i dat e_devi ce, function to validate the device when the current trigger gets changed.

Industrial 1/O triggered buffers

Now that we know what buffers and triggers are let's see how they work together.

IO triggered buffer setup

25

Industrial 1/0 core

Name
iio_triggered_buffer_setup — Setup triggered buffer and pollfunc

Synopsis
int iio triggered buffer _setup (struct iio_dev * indio_dev, irqreturn_t
(*h) (int irqg, void *p), irgreturn_t (*thread) (int irg, void *p), const
struct iio_buffer_setup ops * setup_ops);

Arguments
i ndi o_dev 110 device structure
h Function which will be used as pollfunc top half

t hr ead Function which will be used as pollfunc bottom half

setup_ops Buffer setup functions to use for this device. If NULL the default setup functions for
triggered buffers will be used.

Description

Thisfunction combines some common taskswhich will normally be performed when setting up atriggered
buffer. It will alocate the buffer and the pollfunc.

Before calling this function the indio_dev structure should already be completely initialized, but not yet
registered. In practice this means that this function should be called right beforei i o_devi ce_r eg-
i ster.

To free the resources allocated by thisfunctioncal i i o_tri ggered_buffer_cl eanup.

26

Industrial 1/0 core

Name

iio_triggered_buffer_cleanup — Free resourcesallocated by i i o_t ri ggered_buf fer_setup
Synopsis

void iio_triggered buffer _cleanup (struct iio_dev * indio_dev);
Arguments

i ndi o_dev 110 device structure

27

Industrial 1/0 core

Name
struct iio_buffer_setup_ops— buffer setup related callbacks

Synopsis

struct iio_buffer_setup_ops {
int (* preenable) (struct iio_dev *);
int (* postenable) (struct iio_dev *);
int (* predisable) (struct iio_dev *);
int (* postdisable) (struct iio_dev *);
bool (* validate_scan_mask) (struct iio_dev *indio_dev,const unsigned | ong *scan

i
Members
preenable [DRIVER] function to run prior to marking buffer enabled
postenable [DRIVER] function to run after marking buffer enabled
predisable [DRIVER] function to run prior to marking buffer disabled
postdisable [DRIVER] function to run after marking buffer disabled
validate scan_mask [DRIVER] function callback to check whether a given scan mask is valid

for the device.

A typical triggered buffer setup looks like this:

const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
. preenabl e sensor _buffer_preenabl e,
. post enabl e sensor _buffer_post enabl e,
. postdi sabl e sensor _buffer_postdi sabl e,
. predi sabl e sensor _buffer_predisable,

b
irqreturn_t sensor_iio_pollfunc(int irqg, void *p)
{
pf->timestanp = iio_get_tinme_ns();
return | RQ WAKE_THREAD;
}
irqreturn_t sensor_trigger_handler(int irq, void *p)
{
ulé buf[8];
int i =0;

/* read data for each active channel */
for_each_set _bit(bit, active_scan_mask, nasklength)
buf[i ++] = sensor_get _data(bit)
iio_push_to_buffers with_timestanp(indio_dev, buf, timestanmp);

iio_trigger_notify_done(trigger);

28

Industrial 1/0 core

return | RQ HANDLED,;
}

/* setup triggered buffer, usually in probe function */
iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,
sensor _trigger_handl er,
sensor _buffer_setup_ops);

The important things to notice here are;

« iio_buffer_setup_ops,thebuffer setup functionsto be called at predefined points in the buffer
configuration sequence (e.g. before enable, after disable). If not specified, the 110 core uses the default
iio_triggered_buffer_setup_ops.

e sensor _iio_poll func,thefunction that will be used as top half of poll function. It should do as
little processing as possible, because it runsin interrupt context. The most common operation isrecord-
ing of the current timestamp and for this reason one can usethe I10 coredefinedi i 0_pol | func_s-
tore_tinme function.

» sensor _trigger handl er,thefunction that will be used as bottom half of the poll function. This
runs in the context of akernel thread and all the processing takes place here. It usually reads data from
the device and stores it in the internal buffer together with the timestamp recorded in the top half.

29

Chapter 3. Resources

e drivers/iiol, containsthe 10O core plus and directories for each sensor type (e.g. accel, magne-
tometer, etc.)

e include/linux/iiol,containsthe header files, niceto read for the internal kernel interfaces.
e include/uapi/linux/iiol,containsfilesto be used by user space applications.
* tool s/iiol,containstoolsfor rapidly testing buffers, events and device creation.

e drivers/staging/iiol,containscodefor somedrivers or experimental features that are not yet
mature enough to be moved out.

Besides the code, there are some good online documentation sources:
 Industria I/O mailing list [http://marc.info/?=linux-iio]
» Anaog Device I1O wiki page [http://wiki.analog.com/software/linux/docg/iiofiio]

» Using the Linux I10 framework for SDR, Lars-Peter Clausen's presentation at FOSDEM [https://fos-
dem.org/2015/schedul e/event/iiosdr/]

30

http://marc.info/?l=linux-iio
http://marc.info/?l=linux-iio
http://wiki.analog.com/software/linux/docs/iio/iio
http://wiki.analog.com/software/linux/docs/iio/iio
https://fosdem.org/2015/schedule/event/iiosdr/
https://fosdem.org/2015/schedule/event/iiosdr/
https://fosdem.org/2015/schedule/event/iiosdr/

	Industrial I/O driver developer's guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Industrial I/O core
	Industrial I/O devices
	struct iio_dev
	iio_device_alloc
	iio_device_free
	iio_device_register
	iio_device_unregister
	IIO device sysfs interface
	IIO device channels
	struct iio_chan_spec

	Industrial I/O buffers
	struct iio_buffer
	iio_validate_scan_mask_onehot
	iio_buffer_get
	iio_buffer_put
	IIO buffer sysfs interface
	IIO buffer setup

	Industrial I/O triggers
	struct iio_trigger
	devm_iio_trigger_alloc
	devm_iio_trigger_free
	IIO trigger sysfs interface
	IIO trigger setup
	IIO trigger ops
	struct iio_trigger_ops

	Industrial I/O triggered buffers
	IIO triggered buffer setup
	iio_triggered_buffer_setup
	iio_triggered_buffer_cleanup
	struct iio_buffer_setup_ops

	Chapter 3. Resources

