
Voltage and current regulator API

Liam Girdwood <lrg@slimlogic.co.uk>
Mark Brown, Wolfson Microelectronics

<broonie@opensource.wolfsonmicro.com>

Voltage and current regulator API
by Liam Girdwood and Mark Brown
Copyright © 2007-2008 Wolfson Microelectronics
Copyright © 2008 Liam Girdwood

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction .. 1

Glossary .. 1
2. Consumer driver interface ... 2

Enabling and disabling ... 2
Configuration ... 2
Callbacks ... 2

3. Regulator driver interface ... 3
4. Machine interface .. 4

Supplies ... 4
Constraints ... 4

5. API reference .. 5
struct pre_voltage_change_data .. 6
struct regulator_bulk_data ... 7
struct regulator_state .. 8
struct regulation_constraints .. 9
struct regulator_consumer_supply ... 11
struct regulator_init_data ... 12
struct regulator_linear_range .. 13
struct regulator_ops .. 14
struct regulator_desc .. 16
struct regulator_config .. 19
regulator_get ... 20
regulator_get_exclusive .. 21
regulator_get_optional .. 22
regulator_put ... 23
regulator_register_supply_alias .. 24
regulator_unregister_supply_alias ... 25
regulator_bulk_register_supply_alias ... 26
regulator_bulk_unregister_supply_alias .. 27
regulator_enable .. 28
regulator_disable ... 29
regulator_force_disable ... 30
regulator_disable_deferred ... 31
regulator_is_enabled ... 32
regulator_can_change_voltage .. 33
regulator_count_voltages ... 34
regulator_list_voltage ... 35
regulator_get_hardware_vsel_register .. 36
regulator_list_hardware_vsel .. 37
regulator_get_linear_step .. 38
regulator_is_supported_voltage .. 39
regulator_set_voltage .. 40
regulator_set_voltage_time .. 41
regulator_set_voltage_time_sel ... 42
regulator_sync_voltage ... 43
regulator_get_voltage ... 44
regulator_set_current_limit .. 45
regulator_get_current_limit .. 46
regulator_set_mode .. 47
regulator_get_mode .. 48
regulator_set_load .. 49

iii

Voltage and current regulator API

regulator_allow_bypass ... 50
regulator_register_notifier ... 51
regulator_unregister_notifier .. 52
regulator_bulk_get ... 53
regulator_bulk_enable ... 54
regulator_bulk_disable .. 55
regulator_bulk_force_disable ... 56
regulator_bulk_free .. 57
regulator_notifier_call_chain .. 58
regulator_mode_to_status .. 59
regulator_register ... 60
regulator_unregister ... 61
regulator_suspend_prepare .. 62
regulator_suspend_finish ... 63
regulator_has_full_constraints .. 64
rdev_get_drvdata ... 65
regulator_get_drvdata ... 66
regulator_set_drvdata ... 67
rdev_get_id ... 68

iv

Chapter 1. Introduction
This framework is designed to provide a standard kernel interface to control voltage and current regulators.

The intention is to allow systems to dynamically control regulator power output in order to save power
and prolong battery life. This applies to both voltage regulators (where voltage output is controllable) and
current sinks (where current limit is controllable).

Note that additional (and currently more complete) documentation is available in the Linux kernel source
under Documentation/power/regulator.

Glossary
The regulator API uses a number of terms which may not be familiar:

Glossary
Regulator Electronic device that supplies power to other devices. Most regula-

tors can enable and disable their output and some can also control their
output voltage or current.

Consumer Electronic device which consumes power provided by a regulator.
These may either be static, requiring only a fixed supply, or dynamic,
requiring active management of the regulator at runtime.

Power Domain The electronic circuit supplied by a given regulator, including the reg-
ulator and all consumer devices. The configuration of the regulator is
shared between all the components in the circuit.

Power Management Integrated
Circuit

An IC which contains numerous regulators and often also other sub-
systems. In an embedded system the primary PMIC is often equiva-
lent to a combination of the PSU and southbridge in a desktop system.

1

Chapter 2. Consumer driver interface
This offers a similar API to the kernel clock framework. Consumer drivers use get and put operations to
acquire and release regulators. Functions are provided to enable and disable the regulator and to get and
set the runtime parameters of the regulator.

When requesting regulators consumers use symbolic names for their supplies, such as "Vcc", which are
mapped into actual regulator devices by the machine interface.

A stub version of this API is provided when the regulator framework is not in use in order to minimise
the need to use ifdefs.

Enabling and disabling
The regulator API provides reference counted enabling and disabling of regulators. Consumer devices use
the regulator_enable and regulator_disable functions to enable and disable regulators.
Calls to the two functions must be balanced.

Note that since multiple consumers may be using a regulator and machine constraints may not allow the
regulator to be disabled there is no guarantee that calling regulator_disable will actually cause the
supply provided by the regulator to be disabled. Consumer drivers should assume that the regulator may
be enabled at all times.

Configuration
Some consumer devices may need to be able to dynamically configure their supplies. For example, MMC
drivers may need to select the correct operating voltage for their cards. This may be done while the regulator
is enabled or disabled.

The regulator_set_voltage and regulator_set_current_limit functions provide the
primary interface for this. Both take ranges of voltages and currents, supporting drivers that do not require
a specific value (eg, CPU frequency scaling normally permits the CPU to use a wider range of supply
voltages at lower frequencies but does not require that the supply voltage be lowered). Where an exact
value is required both minimum and maximum values should be identical.

Callbacks
Callbacks may also be registered for events such as regulation failures.

2

Chapter 3. Regulator driver interface
Drivers for regulator chips register the regulators with the regulator core, providing operations structures
to the core. A notifier interface allows error conditions to be reported to the core.

Registration should be triggered by explicit setup done by the platform, supplying a struct regula-
tor_init_data for the regulator containing constraint and supply information.

3

Chapter 4. Machine interface
This interface provides a way to define how regulators are connected to consumers on a given system and
what the valid operating parameters are for the system.

Supplies
Regulator supplies are specified using struct regulator_consumer_supply. This is done at driver registration
time as part of the machine constraints.

Constraints
As well as defining the connections the machine interface also provides constraints defining the operations
that clients are allowed to perform and the parameters that may be set. This is required since generally
regulator devices will offer more flexibility than it is safe to use on a given system, for example supporting
higher supply voltages than the consumers are rated for.

This is done at driver registration time by providing a struct regulation_constraints.

The constraints may also specify an initial configuration for the regulator in the constraints, which is
particularly useful for use with static consumers.

4

Chapter 5. API reference
Due to limitations of the kernel documentation framework and the existing layout of the source code the
entire regulator API is documented here.

5

API reference

Name
struct pre_voltage_change_data — Data sent with PRE_VOLTAGE_CHANGE event

Synopsis

struct pre_voltage_change_data {
 unsigned long old_uV;
 unsigned long min_uV;
 unsigned long max_uV;
};

Members
old_uV Current voltage before change.

min_uV Min voltage we'll change to.

max_uV Max voltage we'll change to.

6

API reference

Name
struct regulator_bulk_data — Data used for bulk regulator operations.

Synopsis

struct regulator_bulk_data {
 const char * supply;
 struct regulator * consumer;
};

Members
supply The name of the supply. Initialised by the user before using the bulk regulator APIs.

consumer The regulator consumer for the supply. This will be managed by the bulk API.

Description
The regulator APIs provide a series of regulator_bulk_ API calls as a convenience to consumers
which require multiple supplies. This structure is used to manage data for these calls.

7

API reference

Name
struct regulator_state — regulator state during low power system states

Synopsis

struct regulator_state {
 int uV;
 unsigned int mode;
 int enabled;
 int disabled;
};

Members
uV Operating voltage during suspend.

mode Operating mode during suspend.

enabled Enabled during suspend.

disabled Disabled during suspend.

Description

This describes a regulators state during a system wide low power state. One of enabled or disabled must
be set for the configuration to be applied.

8

API reference

Name
struct regulation_constraints — regulator operating constraints.

Synopsis

struct regulation_constraints {
 const char * name;
 int min_uV;
 int max_uV;
 int uV_offset;
 int min_uA;
 int max_uA;
 int ilim_uA;
 int system_load;
 unsigned int valid_modes_mask;
 unsigned int valid_ops_mask;
 int input_uV;
 struct regulator_state state_disk;
 struct regulator_state state_mem;
 struct regulator_state state_standby;
 suspend_state_t initial_state;
 unsigned int initial_mode;
 unsigned int ramp_delay;
 unsigned int enable_time;
 unsigned always_on:1;
 unsigned boot_on:1;
 unsigned apply_uV:1;
 unsigned ramp_disable:1;
 unsigned soft_start:1;
 unsigned pull_down:1;
};

Members
name Descriptive name for the constraints, used for display purposes.

min_uV Smallest voltage consumers may set.

max_uV Largest voltage consumers may set.

uV_offset Offset applied to voltages from consumer to compensate for voltage drops.

min_uA Smallest current consumers may set.

max_uA Largest current consumers may set.

ilim_uA Maximum input current.

system_load Load that isn't captured by any consumer requests.

valid_modes_mask Mask of modes which may be configured by consumers.

valid_ops_mask Operations which may be performed by consumers.

9

API reference

input_uV Input voltage for regulator when supplied by another regulator.

state_disk State for regulator when system is suspended in disk mode.

state_mem State for regulator when system is suspended in mem mode.

state_standby State for regulator when system is suspended in standby mode.

initial_state Suspend state to set by default.

initial_mode Mode to set at startup.

ramp_delay Time to settle down after voltage change (unit: uV/us)

enable_time Turn-on time of the rails (unit: microseconds)

always_on Set if the regulator should never be disabled.

boot_on Set if the regulator is enabled when the system is initially started. If the regulator
is not enabled by the hardware or bootloader then it will be enabled when the
constraints are applied.

apply_uV Apply the voltage constraint when initialising.

ramp_disable Disable ramp delay when initialising or when setting voltage.

soft_start Enable soft start so that voltage ramps slowly.

pull_down Enable pull down when regulator is disabled.

Description

This struct describes regulator and board/machine specific constraints.

10

API reference

Name
struct regulator_consumer_supply — supply -> device mapping

Synopsis

struct regulator_consumer_supply {
 const char * dev_name;
 const char * supply;
};

Members
dev_name Result of dev_name for the consumer.

supply Name for the supply.

Description

This maps a supply name to a device. Use of dev_name allows support for buses which make struct device
available late such as I2C.

11

API reference

Name
struct regulator_init_data — regulator platform initialisation data.

Synopsis

struct regulator_init_data {
 const char * supply_regulator;
 struct regulation_constraints constraints;
 int num_consumer_supplies;
 struct regulator_consumer_supply * consumer_supplies;
 int (* regulator_init) (void *driver_data);
 void * driver_data;
};

Members
supply_regulator Parent regulator. Specified using the regulator name as it appears in the

name field in sysfs, which can be explicitly set using the constraints
field 'name'.

constraints Constraints. These must be specified for the regulator to be usable.

num_consumer_supplies Number of consumer device supplies.

consumer_supplies Consumer device supply configuration.

regulator_init Callback invoked when the regulator has been registered.

driver_data Data passed to regulator_init.

Description

Initialisation constraints, our supply and consumers supplies.

12

API reference

Name
struct regulator_linear_range — specify linear voltage ranges

Synopsis

struct regulator_linear_range {
 unsigned int min_uV;
 unsigned int min_sel;
 unsigned int max_sel;
 unsigned int uV_step;
};

Members
min_uV Lowest voltage in range

min_sel Lowest selector for range

max_sel Highest selector for range

uV_step Step size

Description

Specify a range of voltages for regulator_map_linar_range and regulator_list_lin-
ear_range.

13

API reference

Name
struct regulator_ops — regulator operations.

Synopsis

struct regulator_ops {
 int (* list_voltage) (struct regulator_dev *, unsigned selector);
 int (* set_voltage) (struct regulator_dev *, int min_uV, int max_uV,unsigned *selector);
 int (* map_voltage) (struct regulator_dev *, int min_uV, int max_uV);
 int (* set_voltage_sel) (struct regulator_dev *, unsigned selector);
 int (* get_voltage) (struct regulator_dev *);
 int (* get_voltage_sel) (struct regulator_dev *);
 int (* set_current_limit) (struct regulator_dev *,int min_uA, int max_uA);
 int (* get_current_limit) (struct regulator_dev *);
 int (* set_input_current_limit) (struct regulator_dev *, int lim_uA);
 int (* enable) (struct regulator_dev *);
 int (* disable) (struct regulator_dev *);
 int (* is_enabled) (struct regulator_dev *);
 int (* set_mode) (struct regulator_dev *, unsigned int mode);
 unsigned int (* get_mode) (struct regulator_dev *);
 int (* enable_time) (struct regulator_dev *);
 int (* set_ramp_delay) (struct regulator_dev *, int ramp_delay);
 int (* set_voltage_time_sel) (struct regulator_dev *,unsigned int old_selector,unsigned int new_selector);
 int (* set_soft_start) (struct regulator_dev *);
 int (* get_status) (struct regulator_dev *);
 unsigned int (* get_optimum_mode) (struct regulator_dev *, int input_uV,int output_uV, int load_uA);
 int (* set_load) (struct regulator_dev *, int load_uA);
 int (* set_bypass) (struct regulator_dev *dev, bool enable);
 int (* get_bypass) (struct regulator_dev *dev, bool *enable);
 int (* set_suspend_voltage) (struct regulator_dev *, int uV);
 int (* set_suspend_enable) (struct regulator_dev *);
 int (* set_suspend_disable) (struct regulator_dev *);
 int (* set_suspend_mode) (struct regulator_dev *, unsigned int mode);
 int (* set_pull_down) (struct regulator_dev *);
};

Members
list_voltage Return one of the supported voltages, in microvolts; zero if the se-

lector indicates a voltage that is unusable on this system; or nega-
tive errno. Selectors range from zero to one less than regulator_de-
sc.n_voltages. Voltages may be reported in any order.

set_voltage Set the voltage for the regulator within the range specified. The driver
should select the voltage closest to min_uV.

map_voltage Convert a voltage into a selector

set_voltage_sel Set the voltage for the regulator using the specified selector.

get_voltage Return the currently configured voltage for the regulator.

get_voltage_sel Return the currently configured voltage selector for the regulator.

14

API reference

set_current_limit Configure a limit for a current-limited regulator. The driver should
select the current closest to max_uA.

get_current_limit Get the configured limit for a current-limited regulator.

set_input_current_limit Configure an input limit.

enable Configure the regulator as enabled.

disable Configure the regulator as disabled.

is_enabled Return 1 if the regulator is enabled, 0 if not. May also return negative
errno.

set_mode Set the configured operating mode for the regulator.

get_mode Get the configured operating mode for the regulator.

enable_time Time taken for the regulator voltage output voltage to stabilise after
being enabled, in microseconds.

set_ramp_delay Set the ramp delay for the regulator. The driver should select ramp
delay equal to or less than(closest) ramp_delay.

set_voltage_time_sel Time taken for the regulator voltage output voltage to stabilise after
being set to a new value, in microseconds. The function provides the
from and to voltage selector, the function should return the worst
case.

set_soft_start Enable soft start for the regulator.

get_status Return actual (not as-configured) status of regulator, as a REGULA-
TOR_STATUS value (or negative errno)

get_optimum_mode Get the most efficient operating mode for the regulator when running
with the specified parameters.

set_load Set the load for the regulator.

set_bypass Set the regulator in bypass mode.

get_bypass Get the regulator bypass mode state.

set_suspend_voltage Set the voltage for the regulator when the system is suspended.

set_suspend_enable Mark the regulator as enabled when the system is suspended.

set_suspend_disable Mark the regulator as disabled when the system is suspended.

set_suspend_mode Set the operating mode for the regulator when the system is suspend-
ed.

set_pull_down Configure the regulator to pull down when the regulator is disabled.

Description
This struct describes regulator operations which can be implemented by regulator chip drivers.

15

API reference

Name
struct regulator_desc — Static regulator descriptor

Synopsis

struct regulator_desc {
 const char * name;
 const char * supply_name;
 const char * of_match;
 const char * regulators_node;
 int (* of_parse_cb) (struct device_node *,const struct regulator_desc *,struct regulator_config *);
 int id;
 bool continuous_voltage_range;
 unsigned n_voltages;
 const struct regulator_ops * ops;
 int irq;
 enum regulator_type type;
 struct module * owner;
 unsigned int min_uV;
 unsigned int uV_step;
 unsigned int linear_min_sel;
 int fixed_uV;
 unsigned int ramp_delay;
 int min_dropout_uV;
 const struct regulator_linear_range * linear_ranges;
 int n_linear_ranges;
 const unsigned int * volt_table;
 unsigned int vsel_reg;
 unsigned int vsel_mask;
 unsigned int apply_reg;
 unsigned int apply_bit;
 unsigned int enable_reg;
 unsigned int enable_mask;
 unsigned int enable_val;
 unsigned int disable_val;
 bool enable_is_inverted;
 unsigned int bypass_reg;
 unsigned int bypass_mask;
 unsigned int bypass_val_on;
 unsigned int bypass_val_off;
 unsigned int enable_time;
 unsigned int off_on_delay;
 unsigned int (* of_map_mode) (unsigned int mode);
};

Members
name Identifying name for the regulator.

supply_name Identifying the regulator supply

of_match Name used to identify regulator in DT.

16

API reference

regulators_node Name of node containing regulator definitions in DT.

of_parse_cb Optional callback called only if of_match is present. Will be called
for each regulator parsed from DT, during init_data parsing. The
regulator_config passed as argument to the callback will be a copy
of config passed to regulator_register, valid only for this particu-
lar call. Callback may freely change the config but it cannot store
it for later usage. Callback should return 0 on success or negative
ERRNO indicating failure.

id Numerical identifier for the regulator.

continuous_voltage_range Indicates if the regulator can set any voltage within constrains
range.

n_voltages Number of selectors available for ops.list_voltage.

ops Regulator operations table.

irq Interrupt number for the regulator.

type Indicates if the regulator is a voltage or current regulator.

owner Module providing the regulator, used for refcounting.

min_uV Voltage given by the lowest selector (if linear mapping)

uV_step Voltage increase with each selector (if linear mapping)

linear_min_sel Minimal selector for starting linear mapping

fixed_uV Fixed voltage of rails.

ramp_delay Time to settle down after voltage change (unit: uV/us)

min_dropout_uV The minimum dropout voltage this regulator can handle

linear_ranges A constant table of possible voltage ranges.

n_linear_ranges Number of entries in the linear_ranges table.

volt_table Voltage mapping table (if table based mapping)

vsel_reg Register for selector when using regulator_regmap_X_voltage_

vsel_mask Mask for register bitfield used for selector

apply_reg Register for initiate voltage change on the output when using regu-
lator_set_voltage_sel_regmap

apply_bit Register bitfield used for initiate voltage change on the output when
using regulator_set_voltage_sel_regmap

enable_reg Register for control when using regmap enable/disable ops

enable_mask Mask for control when using regmap enable/disable ops

enable_val Enabling value for control when using regmap enable/disable ops

17

API reference

disable_val Disabling value for control when using regmap enable/disable ops

enable_is_inverted A flag to indicate set enable_mask bits to disable when using reg-
ulator_enable_regmap and friends APIs.

bypass_reg Register for control when using regmap set_bypass

bypass_mask Mask for control when using regmap set_bypass

bypass_val_on Enabling value for control when using regmap set_bypass

bypass_val_off Disabling value for control when using regmap set_bypass

enable_time Time taken for initial enable of regulator (in uS).

off_on_delay guard time (in uS), before re-enabling a regulator

of_map_mode Maps a hardware mode defined in a DeviceTree to a standard mode

Description

Each regulator registered with the core is described with a structure of this type and a struct regulator_con-
fig. This structure contains the non-varying parts of the regulator description.

18

API reference

Name
struct regulator_config — Dynamic regulator descriptor

Synopsis

struct regulator_config {
 struct device * dev;
 const struct regulator_init_data * init_data;
 void * driver_data;
 struct device_node * of_node;
 struct regmap * regmap;
 bool ena_gpio_initialized;
 int ena_gpio;
 unsigned int ena_gpio_invert:1;
 unsigned int ena_gpio_flags;
};

Members
dev struct device for the regulator

init_data platform provided init data, passed through by driver

driver_data private regulator data

of_node OpenFirmware node to parse for device tree bindings (may be NULL).

regmap regmap to use for core regmap helpers if dev_get_regmap is insuffi-
cient.

ena_gpio_initialized GPIO controlling regulator enable was properly initialized, meaning that
>= 0 is a valid gpio identifier and < 0 is a non existent gpio.

ena_gpio GPIO controlling regulator enable.

ena_gpio_invert Sense for GPIO enable control.

ena_gpio_flags Flags to use when calling gpio_request_one

Description

Each regulator registered with the core is described with a structure of this type and a struct regulator_desc.
This structure contains the runtime variable parts of the regulator description.

19

API reference

Name
regulator_get — lookup and obtain a reference to a regulator.

Synopsis
struct regulator * regulator_get (struct device * dev, const char * id);

Arguments
dev device for regulator “consumer”

id Supply name or regulator ID.

Description
Returns a struct regulator corresponding to the regulator producer, or IS_ERR condition containing errno.

Use of supply names configured via regulator_set_device_supply is strongly encouraged. It is
recommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.

20

API reference

Name
regulator_get_exclusive — obtain exclusive access to a regulator.

Synopsis
struct regulator * regulator_get_exclusive (struct device * dev, const
char * id);

Arguments
dev device for regulator “consumer”

id Supply name or regulator ID.

Description
Returns a struct regulator corresponding to the regulator producer, or IS_ERR condition containing errno.
Other consumers will be unable to obtain this regulator while this reference is held and the use count for
the regulator will be initialised to reflect the current state of the regulator.

This is intended for use by consumers which cannot tolerate shared use of the regulator such as those which
need to force the regulator off for correct operation of the hardware they are controlling.

Use of supply names configured via regulator_set_device_supply is strongly encouraged. It is
recommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.

21

API reference

Name
regulator_get_optional — obtain optional access to a regulator.

Synopsis
struct regulator * regulator_get_optional (struct device * dev, const
char * id);

Arguments
dev device for regulator “consumer”

id Supply name or regulator ID.

Description
Returns a struct regulator corresponding to the regulator producer, or IS_ERR condition containing errno.

This is intended for use by consumers for devices which can have some supplies unconnected in normal
use, such as some MMC devices. It can allow the regulator core to provide stub supplies for other supplies
requested using normal regulator_get calls without disrupting the operation of drivers that can handle
absent supplies.

Use of supply names configured via regulator_set_device_supply is strongly encouraged. It is
recommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.

22

API reference

Name
regulator_put — "free" the regulator source

Synopsis
void regulator_put (struct regulator * regulator);

Arguments
regulator regulator source

Note
drivers must ensure that all regulator_enable calls made on this regulator source are balanced by regula-
tor_disable calls prior to calling this function.

23

API reference

Name
regulator_register_supply_alias — Provide device alias for supply lookup

Synopsis
int regulator_register_supply_alias (struct device * dev, const char *
id, struct device * alias_dev, const char * alias_id);

Arguments
dev device that will be given as the regulator “consumer”

id Supply name or regulator ID

alias_dev device that should be used to lookup the supply

alias_id Supply name or regulator ID that should be used to lookup the supply

Description
All lookups for id on dev will instead be conducted for alias_id on alias_dev.

24

API reference

Name
regulator_unregister_supply_alias — Remove device alias

Synopsis
void regulator_unregister_supply_alias (struct device * dev, const char
* id);

Arguments
dev device that will be given as the regulator “consumer”

id Supply name or regulator ID

Description
Remove a lookup alias if one exists for id on dev.

25

API reference

Name
regulator_bulk_register_supply_alias — register multiple aliases

Synopsis
int regulator_bulk_register_supply_alias (struct device * dev, const
char *const * id, struct device * alias_dev, const char *const * alias_id,
int num_id);

Arguments
dev device that will be given as the regulator “consumer”

id List of supply names or regulator IDs

alias_dev device that should be used to lookup the supply

alias_id List of supply names or regulator IDs that should be used to lookup the supply

num_id Number of aliases to register

Description
return 0 on success, an errno on failure.

This helper function allows drivers to register several supply aliases in one operation. If any of the aliases
cannot be registered any aliases that were registered will be removed before returning to the caller.

26

API reference

Name
regulator_bulk_unregister_supply_alias — unregister multiple aliases

Synopsis
void regulator_bulk_unregister_supply_alias (struct device * dev, const
char *const * id, int num_id);

Arguments
dev device that will be given as the regulator “consumer”

id List of supply names or regulator IDs

num_id Number of aliases to unregister

Description
This helper function allows drivers to unregister several supply aliases in one operation.

27

API reference

Name
regulator_enable — enable regulator output

Synopsis
int regulator_enable (struct regulator * regulator);

Arguments
regulator regulator source

Description
Request that the regulator be enabled with the regulator output at the predefined voltage or current value.
Calls to regulator_enable must be balanced with calls to regulator_disable.

NOTE
the output value can be set by other drivers, boot loader or may be hardwired in the regulator.

28

API reference

Name
regulator_disable — disable regulator output

Synopsis
int regulator_disable (struct regulator * regulator);

Arguments
regulator regulator source

Description
Disable the regulator output voltage or current. Calls to regulator_enable must be balanced with
calls to regulator_disable.

NOTE
this will only disable the regulator output if no other consumer devices have it enabled, the regulator device
supports disabling and machine constraints permit this operation.

29

API reference

Name
regulator_force_disable — force disable regulator output

Synopsis
int regulator_force_disable (struct regulator * regulator);

Arguments
regulator regulator source

Description
Forcibly disable the regulator output voltage or current.

NOTE
this *will* disable the regulator output even if other consumer devices have it enabled. This should be
used for situations when device damage will likely occur if the regulator is not disabled (e.g. over temp).

30

API reference

Name
regulator_disable_deferred — disable regulator output with delay

Synopsis
int regulator_disable_deferred (struct regulator * regulator, int ms);

Arguments
regulator regulator source

ms miliseconds until the regulator is disabled

Description
Execute regulator_disable on the regulator after a delay. This is intended for use with devices that
require some time to quiesce.

NOTE
this will only disable the regulator output if no other consumer devices have it enabled, the regulator device
supports disabling and machine constraints permit this operation.

31

API reference

Name
regulator_is_enabled — is the regulator output enabled

Synopsis
int regulator_is_enabled (struct regulator * regulator);

Arguments
regulator regulator source

Description
Returns positive if the regulator driver backing the source/client has requested that the device be enabled,
zero if it hasn't, else a negative errno code.

Note that the device backing this regulator handle can have multiple users, so it might be enabled even if
regulator_enable was never called for this particular source.

32

API reference

Name
regulator_can_change_voltage — check if regulator can change voltage

Synopsis
int regulator_can_change_voltage (struct regulator * regulator);

Arguments
regulator regulator source

Description
Returns positive if the regulator driver backing the source/client can change its voltage, false otherwise.
Useful for detecting fixed or dummy regulators and disabling voltage change logic in the client driver.

33

API reference

Name
regulator_count_voltages — count regulator_list_voltage selectors

Synopsis
int regulator_count_voltages (struct regulator * regulator);

Arguments
regulator regulator source

Description
Returns number of selectors, or negative errno. Selectors are numbered starting at zero, and typically
correspond to bitfields in hardware registers.

34

API reference

Name
regulator_list_voltage — enumerate supported voltages

Synopsis
int regulator_list_voltage (struct regulator * regulator, unsigned se-
lector);

Arguments
regulator regulator source

selector identify voltage to list

Context
can sleep

Description
Returns a voltage that can be passed to regulator_set_voltage(), zero if this selector code can't
be used on this system, or a negative errno.

35

API reference

Name
regulator_get_hardware_vsel_register — get the HW voltage selector register

Synopsis
int regulator_get_hardware_vsel_register (struct regulator * regulator,
unsigned * vsel_reg, unsigned * vsel_mask);

Arguments
regulator regulator source

vsel_reg voltage selector register, output parameter

vsel_mask mask for voltage selector bitfield, output parameter

Description
Returns the hardware register offset and bitmask used for setting the regulator voltage. This might be useful
when configuring voltage-scaling hardware or firmware that can make I2C requests behind the kernel's
back, for example.

On success, the output parameters vsel_reg and vsel_mask are filled in and 0 is returned, otherwise
a negative errno is returned.

36

API reference

Name
regulator_list_hardware_vsel — get the HW-specific register value for a selector

Synopsis
int regulator_list_hardware_vsel (struct regulator * regulator, unsigned
selector);

Arguments
regulator regulator source

selector identify voltage to list

Description
Converts the selector to a hardware-specific voltage selector that can be directly written to the regulator
registers. The address of the voltage register can be determined by calling regulator_get_hard-
ware_vsel_register.

On error a negative errno is returned.

37

API reference

Name
regulator_get_linear_step — return the voltage step size between VSEL values

Synopsis
unsigned int regulator_get_linear_step (struct regulator * regulator);

Arguments
regulator regulator source

Description
Returns the voltage step size between VSEL values for linear regulators, or return 0 if the regulator isn't
a linear regulator.

38

API reference

Name
regulator_is_supported_voltage — check if a voltage range can be supported

Synopsis
int regulator_is_supported_voltage (struct regulator * regulator, int
min_uV, int max_uV);

Arguments
regulator Regulator to check.

min_uV Minimum required voltage in uV.

max_uV Maximum required voltage in uV.

Description
Returns a boolean or a negative error code.

39

API reference

Name
regulator_set_voltage — set regulator output voltage

Synopsis
int regulator_set_voltage (struct regulator * regulator, int min_uV,
int max_uV);

Arguments
regulator regulator source

min_uV Minimum required voltage in uV

max_uV Maximum acceptable voltage in uV

Description
Sets a voltage regulator to the desired output voltage. This can be set during any regulator state. IOW,
regulator can be disabled or enabled.

If the regulator is enabled then the voltage will change to the new value immediately otherwise if the
regulator is disabled the regulator will output at the new voltage when enabled.

NOTE
If the regulator is shared between several devices then the lowest request voltage that meets the system
constraints will be used. Regulator system constraints must be set for this regulator before calling this
function otherwise this call will fail.

40

API reference

Name
regulator_set_voltage_time — get raise/fall time

Synopsis
int regulator_set_voltage_time (struct regulator * regulator, int
old_uV, int new_uV);

Arguments
regulator regulator source

old_uV starting voltage in microvolts

new_uV target voltage in microvolts

Description
Provided with the starting and ending voltage, this function attempts to calculate the time in microseconds
required to rise or fall to this new voltage.

41

API reference

Name
regulator_set_voltage_time_sel — get raise/fall time

Synopsis
int regulator_set_voltage_time_sel (struct regulator_dev * rdev, un-
signed int old_selector, unsigned int new_selector);

Arguments
rdev regulator source device

old_selector selector for starting voltage

new_selector selector for target voltage

Description
Provided with the starting and target voltage selectors, this function returns time in microseconds required
to rise or fall to this new voltage

Drivers providing ramp_delay in regulation_constraints can use this as their set_voltage_time_sel
operation.

42

API reference

Name
regulator_sync_voltage — re-apply last regulator output voltage

Synopsis
int regulator_sync_voltage (struct regulator * regulator);

Arguments
regulator regulator source

Description
Re-apply the last configured voltage. This is intended to be used where some external control source the
consumer is cooperating with has caused the configured voltage to change.

43

API reference

Name
regulator_get_voltage — get regulator output voltage

Synopsis
int regulator_get_voltage (struct regulator * regulator);

Arguments
regulator regulator source

Description
This returns the current regulator voltage in uV.

NOTE
If the regulator is disabled it will return the voltage value. This function should not be used to determine
regulator state.

44

API reference

Name
regulator_set_current_limit — set regulator output current limit

Synopsis
int regulator_set_current_limit (struct regulator * regulator, int
min_uA, int max_uA);

Arguments
regulator regulator source

min_uA Minimum supported current in uA

max_uA Maximum supported current in uA

Description
Sets current sink to the desired output current. This can be set during any regulator state. IOW, regulator
can be disabled or enabled.

If the regulator is enabled then the current will change to the new value immediately otherwise if the
regulator is disabled the regulator will output at the new current when enabled.

NOTE
Regulator system constraints must be set for this regulator before calling this function otherwise this call
will fail.

45

API reference

Name
regulator_get_current_limit — get regulator output current

Synopsis
int regulator_get_current_limit (struct regulator * regulator);

Arguments
regulator regulator source

Description
This returns the current supplied by the specified current sink in uA.

NOTE
If the regulator is disabled it will return the current value. This function should not be used to determine
regulator state.

46

API reference

Name
regulator_set_mode — set regulator operating mode

Synopsis
int regulator_set_mode (struct regulator * regulator, unsigned int
mode);

Arguments
regulator regulator source

mode operating mode - one of the REGULATOR_MODE constants

Description
Set regulator operating mode to increase regulator efficiency or improve regulation performance.

NOTE
Regulator system constraints must be set for this regulator before calling this function otherwise this call
will fail.

47

API reference

Name
regulator_get_mode — get regulator operating mode

Synopsis
unsigned int regulator_get_mode (struct regulator * regulator);

Arguments
regulator regulator source

Description
Get the current regulator operating mode.

48

API reference

Name
regulator_set_load — set regulator load

Synopsis
int regulator_set_load (struct regulator * regulator, int uA_load);

Arguments
regulator regulator source

uA_load load current

Description
Notifies the regulator core of a new device load. This is then used by DRMS (if enabled by constraints) to
set the most efficient regulator operating mode for the new regulator loading.

Consumer devices notify their supply regulator of the maximum power they will require (can be taken
from device datasheet in the power consumption tables) when they change operational status and hence
power state. Examples of operational state changes that can affect power

consumption are
-

o Device is opened / closed. o Device I/O is about to begin or has just finished. o Device is idling in
between work.

This information is also exported via sysfs to userspace.

DRMS will sum the total requested load on the regulator and change to the most efficient operating mode
if platform constraints allow.

On error a negative errno is returned.

49

API reference

Name
regulator_allow_bypass — allow the regulator to go into bypass mode

Synopsis
int regulator_allow_bypass (struct regulator * regulator, bool enable);

Arguments
regulator Regulator to configure

enable enable or disable bypass mode

Description
Allow the regulator to go into bypass mode if all other consumers for the regulator also enable bypass
mode and the machine constraints allow this. Bypass mode means that the regulator is simply passing the
input directly to the output with no regulation.

50

API reference

Name
regulator_register_notifier — register regulator event notifier

Synopsis
int regulator_register_notifier (struct regulator * regulator, struct
notifier_block * nb);

Arguments
regulator regulator source

nb notifier block

Description
Register notifier block to receive regulator events.

51

API reference

Name
regulator_unregister_notifier — unregister regulator event notifier

Synopsis
int regulator_unregister_notifier (struct regulator * regulator, struct
notifier_block * nb);

Arguments
regulator regulator source

nb notifier block

Description
Unregister regulator event notifier block.

52

API reference

Name
regulator_bulk_get — get multiple regulator consumers

Synopsis
int regulator_bulk_get (struct device * dev, int num_consumers, struct
regulator_bulk_data * consumers);

Arguments
dev Device to supply

num_consumers Number of consumers to register

consumers Configuration of consumers; clients are stored here.

Description
return 0 on success, an errno on failure.

This helper function allows drivers to get several regulator consumers in one operation. If any of the
regulators cannot be acquired then any regulators that were allocated will be freed before returning to the
caller.

53

API reference

Name
regulator_bulk_enable — enable multiple regulator consumers

Synopsis
int regulator_bulk_enable (int num_consumers, struct regulator_bulk_da-
ta * consumers);

Arguments
num_consumers Number of consumers

consumers Consumer data; clients are stored here. return 0 on success, an errno on failure

Description
This convenience API allows consumers to enable multiple regulator clients in a single API call. If any
consumers cannot be enabled then any others that were enabled will be disabled again prior to return.

54

API reference

Name
regulator_bulk_disable — disable multiple regulator consumers

Synopsis
int regulator_bulk_disable (int num_consumers, struct regula-
tor_bulk_data * consumers);

Arguments
num_consumers Number of consumers

consumers Consumer data; clients are stored here. return 0 on success, an errno on failure

Description
This convenience API allows consumers to disable multiple regulator clients in a single API call. If any
consumers cannot be disabled then any others that were disabled will be enabled again prior to return.

55

API reference

Name
regulator_bulk_force_disable — force disable multiple regulator consumers

Synopsis
int regulator_bulk_force_disable (int num_consumers, struct regula-
tor_bulk_data * consumers);

Arguments
num_consumers Number of consumers

consumers Consumer data; clients are stored here. return 0 on success, an errno on failure

Description
This convenience API allows consumers to forcibly disable multiple regulator clients in a single API call.

NOTE
This should be used for situations when device damage will likely occur if the regulators are not disabled
(e.g. over temp). Although regulator_force_disable function call for some consumers can return error num-
bers, the function is called for all consumers.

56

API reference

Name
regulator_bulk_free — free multiple regulator consumers

Synopsis
void regulator_bulk_free (int num_consumers, struct regulator_bulk_data
* consumers);

Arguments
num_consumers Number of consumers

consumers Consumer data; clients are stored here.

Description
This convenience API allows consumers to free multiple regulator clients in a single API call.

57

API reference

Name
regulator_notifier_call_chain — call regulator event notifier

Synopsis
int regulator_notifier_call_chain (struct regulator_dev * rdev, unsigned
long event, void * data);

Arguments
rdev regulator source

event notifier block

data callback-specific data.

Description
Called by regulator drivers to notify clients a regulator event has occurred. We also notify regulator clients
downstream. Note lock must be held by caller.

58

API reference

Name
regulator_mode_to_status — convert a regulator mode into a status

Synopsis
int regulator_mode_to_status (unsigned int mode);

Arguments
mode Mode to convert

Description
Convert a regulator mode into a status.

59

API reference

Name
regulator_register — register regulator

Synopsis
struct regulator_dev * regulator_register (const struct regulator_desc
* regulator_desc, const struct regulator_config * cfg);

Arguments
regulator_desc regulator to register

cfg runtime configuration for regulator

Description
Called by regulator drivers to register a regulator. Returns a valid pointer to struct regulator_dev on success
or an ERR_PTR on error.

60

API reference

Name
regulator_unregister — unregister regulator

Synopsis
void regulator_unregister (struct regulator_dev * rdev);

Arguments
rdev regulator to unregister

Description
Called by regulator drivers to unregister a regulator.

61

API reference

Name
regulator_suspend_prepare — prepare regulators for system wide suspend

Synopsis
int regulator_suspend_prepare (suspend_state_t state);

Arguments
state system suspend state

Description
Configure each regulator with it's suspend operating parameters for state. This will usually be called by
machine suspend code prior to supending.

62

API reference

Name
regulator_suspend_finish — resume regulators from system wide suspend

Synopsis
int regulator_suspend_finish (void);

Arguments
void no arguments

Description

Turn on regulators that might be turned off by regulator_suspend_prepare and that should be turned on
according to the regulators properties.

63

API reference

Name
regulator_has_full_constraints — the system has fully specified constraints

Synopsis
void regulator_has_full_constraints (void);

Arguments
void no arguments

Description

Calling this function will cause the regulator API to disable all regulators which have a zero use count and
don't have an always_on constraint in a late_initcall.

The intention is that this will become the default behaviour in a future kernel release so users are encour-
aged to use this facility now.

64

API reference

Name
rdev_get_drvdata — get rdev regulator driver data

Synopsis
void * rdev_get_drvdata (struct regulator_dev * rdev);

Arguments
rdev regulator

Description
Get rdev regulator driver private data. This call can be used in the regulator driver context.

65

API reference

Name
regulator_get_drvdata — get regulator driver data

Synopsis
void * regulator_get_drvdata (struct regulator * regulator);

Arguments
regulator regulator

Description
Get regulator driver private data. This call can be used in the consumer driver context when non API
regulator specific functions need to be called.

66

API reference

Name
regulator_set_drvdata — set regulator driver data

Synopsis
void regulator_set_drvdata (struct regulator * regulator, void * data);

Arguments
regulator regulator

data data

67

API reference

Name
rdev_get_id — get regulator ID

Synopsis
int rdev_get_id (struct regulator_dev * rdev);

Arguments
rdev regulator

68

	Voltage and current regulator API
	Table of Contents
	Chapter 1. Introduction
	Glossary
	Glossary

	Chapter 2. Consumer driver interface
	Enabling and disabling
	Configuration
	Callbacks

	Chapter 3. Regulator driver interface
	Chapter 4. Machine interface
	Supplies
	Constraints

	Chapter 5. API reference
	struct pre_voltage_change_data
	struct regulator_bulk_data
	struct regulator_state
	struct regulation_constraints
	struct regulator_consumer_supply
	struct regulator_init_data
	struct regulator_linear_range
	struct regulator_ops
	struct regulator_desc
	struct regulator_config
	regulator_get
	regulator_get_exclusive
	regulator_get_optional
	regulator_put
	regulator_register_supply_alias
	regulator_unregister_supply_alias
	regulator_bulk_register_supply_alias
	regulator_bulk_unregister_supply_alias
	regulator_enable
	regulator_disable
	regulator_force_disable
	regulator_disable_deferred
	regulator_is_enabled
	regulator_can_change_voltage
	regulator_count_voltages
	regulator_list_voltage
	regulator_get_hardware_vsel_register
	regulator_list_hardware_vsel
	regulator_get_linear_step
	regulator_is_supported_voltage
	regulator_set_voltage
	regulator_set_voltage_time
	regulator_set_voltage_time_sel
	regulator_sync_voltage
	regulator_get_voltage
	regulator_set_current_limit
	regulator_get_current_limit
	regulator_set_mode
	regulator_get_mode
	regulator_set_load
	regulator_allow_bypass
	regulator_register_notifier
	regulator_unregister_notifier
	regulator_bulk_get
	regulator_bulk_enable
	regulator_bulk_disable
	regulator_bulk_force_disable
	regulator_bulk_free
	regulator_notifier_call_chain
	regulator_mode_to_status
	regulator_register
	regulator_unregister
	regulator_suspend_prepare
	regulator_suspend_finish
	regulator_has_full_constraints
	rdev_get_drvdata
	regulator_get_drvdata
	regulator_set_drvdata
	rdev_get_id

