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Chapter 1. Introduction
Welcome, to Rusty's Remarkably Unreliable Guide to Kernel Locking issues. This document describes
the locking systems in the Linux Kernel in 2.6.

With the wide availability of HyperThreading, and preemption  in the Linux Kernel, everyone hacking on
the kernel needs to know the fundamentals of concurrency and locking for SMP.
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Chapter 2. The Problem With
Concurrency

(Skip this if you know what a Race Condition is).

In a normal program, you can increment a counter like so:

      very_important_count++;
    

This is what they would expect to happen:

Table 2.1. Expected Results

Instance 1 Instance 2

read very_important_count (5)  

add 1 (6)  

write very_important_count (6)  

 read very_important_count (6)

 add 1 (7)

 write very_important_count (7)

This is what might happen:

Table 2.2. Possible Results

Instance 1 Instance 2

read very_important_count (5)  

 read very_important_count (5)

add 1 (6)  

 add 1 (6)

write very_important_count (6)  

 write very_important_count (6)

Race Conditions and Critical Regions
This overlap, where the result depends on the relative timing of multiple tasks, is called a race condition.
The piece of code containing the concurrency issue is called a critical region. And especially since Linux
starting running on SMP machines, they became one of the major issues in kernel design and implemen-
tation.

Preemption can have the same effect, even if there is only one CPU: by preempting one task during the
critical region, we have exactly the same race condition. In this case the thread which preempts might run
the critical region itself.
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The Problem With Concurrency

The solution is to recognize when these simultaneous accesses occur, and use locks to make sure that only
one instance can enter the critical region at any time. There are many friendly primitives in the Linux
kernel to help you do this. And then there are the unfriendly primitives, but I'll pretend they don't exist.
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Chapter 3. Locking in the Linux Kernel
If I could give you one piece of advice: never sleep with anyone crazier than yourself. But if I had to give
you advice on locking: keep it simple.

Be reluctant to introduce new locks.

Strangely enough, this last one is the exact reverse of my advice when you have slept with someone crazier
than yourself. And you should think about getting a big dog.

Two Main Types of Kernel Locks: Spinlocks
and Mutexes

There are two main types of kernel locks. The fundamental type is the spinlock (include/asm/spin-
lock.h), which is a very simple single-holder lock: if you can't get the spinlock, you keep trying (spin-
ning) until you can. Spinlocks are very small and fast, and can be used anywhere.

The second type is a mutex (include/linux/mutex.h): it is like a spinlock, but you may block
holding a mutex. If you can't lock a mutex, your task will suspend itself, and be woken up when the mutex
is released. This means the CPU can do something else while you are waiting. There are many cases when
you simply can't sleep (see Chapter 10, What Functions Are Safe To Call From Interrupts?), and so have
to use a spinlock instead.

Neither type of lock is recursive: see the section called “Deadlock: Simple and Advanced”.

Locks and Uniprocessor Kernels
For kernels compiled without CONFIG_SMP, and without CONFIG_PREEMPT spinlocks do not exist
at all. This is an excellent design decision: when no-one else can run at the same time, there is no reason
to have a lock.

If the kernel is compiled without CONFIG_SMP, but CONFIG_PREEMPT is set, then spinlocks simply
disable preemption, which is sufficient to prevent any races. For most purposes, we can think of preemption
as equivalent to SMP, and not worry about it separately.

You should always test your locking code with CONFIG_SMP and CONFIG_PREEMPT enabled, even
if you don't have an SMP test box, because it will still catch some kinds of locking bugs.

Mutexes still exist, because they are required for synchronization between user contexts, as we will see
below.

Locking Only In User Context
If you have a data structure which is only ever accessed from user context, then you can use a simple
mutex (include/linux/mutex.h) to protect it. This is the most trivial case: you initialize the mutex.
Then you can call mutex_lock_interruptible() to grab the mutex, and mutex_unlock() to
release it. There is also a mutex_lock(), which should be avoided, because it will not return if a signal
is received.

Example: net/netfilter/nf_sockopt.c allows registration of new setsockopt() and get-
sockopt() calls, with nf_register_sockopt(). Registration and de-registration are only done
on module load and unload (and boot time, where there is no concurrency), and the list of registrations
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Locking in the Linux Kernel

is only consulted for an unknown setsockopt() or getsockopt() system call. The nf_sockop-
t_mutex is perfect to protect this, especially since the setsockopt and getsockopt calls may well sleep.

Locking Between User Context and Softirqs
If a softirq shares data with user context, you have two problems. Firstly, the current user context can
be interrupted by a softirq, and secondly, the critical region could be entered from another CPU. This is
where spin_lock_bh() (include/linux/spinlock.h) is used. It disables softirqs on that CPU,
then grabs the lock. spin_unlock_bh() does the reverse. (The '_bh' suffix is a historical reference
to "Bottom Halves", the old name for software interrupts. It should really be called spin_lock_softirq()'
in a perfect world).

Note that you can also use spin_lock_irq() or spin_lock_irqsave() here, which stop hard-
ware interrupts as well: see Chapter 4, Hard IRQ Context.

This works perfectly for UP  as well: the spin lock vanishes, and this macro simply becomes local_b-
h_disable() (include/linux/interrupt.h), which protects you from the softirq being run.

Locking Between User Context and Tasklets
This is exactly the same as above, because tasklets are actually run from a softirq.

Locking Between User Context and Timers
This, too, is exactly the same as above, because timers are actually run from a softirq. From a locking
point of view, tasklets and timers are identical.

Locking Between Tasklets/Timers
Sometimes a tasklet or timer might want to share data with another tasklet or timer.

The Same Tasklet/Timer
Since a tasklet is never run on two CPUs at once, you don't need to worry about your tasklet being reentrant
(running twice at once), even on SMP.

Different Tasklets/Timers
If another tasklet/timer wants to share data with your tasklet or timer , you will both need to use
spin_lock() and spin_unlock() calls. spin_lock_bh() is unnecessary here, as you are al-
ready in a tasklet, and none will be run on the same CPU.

Locking Between Softirqs
Often a softirq might want to share data with itself or a tasklet/timer.

The Same Softirq
The same softirq can run on the other CPUs: you can use a per-CPU array (see the section called “Per-CPU
Data”) for better performance. If you're going so far as to use a softirq, you probably care about scalable
performance enough to justify the extra complexity.
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Locking in the Linux Kernel

You'll need to use spin_lock() and spin_unlock() for shared data.

Different Softirqs
You'll need to use spin_lock() and spin_unlock() for shared data, whether it be a timer, tasklet,
different softirq or the same or another softirq: any of them could be running on a different CPU.
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Chapter 4. Hard IRQ Context
Hardware interrupts usually communicate with a tasklet or softirq. Frequently this involves putting work
in a queue, which the softirq will take out.

Locking Between Hard IRQ and Softirqs/
Tasklets

If a hardware irq handler shares data with a softirq, you have two concerns. Firstly, the softirq processing
can be interrupted by a hardware interrupt, and secondly, the critical region could be entered by a hardware
interrupt on another CPU. This is where spin_lock_irq() is used. It is defined to disable interrupts
on that cpu, then grab the lock. spin_unlock_irq() does the reverse.

The irq handler does not to use spin_lock_irq(), because the softirq cannot run while the irq handler
is running: it can use spin_lock(), which is slightly faster. The only exception would be if a different
hardware irq handler uses the same lock: spin_lock_irq() will stop that from interrupting us.

This works perfectly for UP as well: the spin lock vanishes, and this macro simply becomes lo-
cal_irq_disable() (include/asm/smp.h), which protects you from the softirq/tasklet/BH be-
ing run.

spin_lock_irqsave() (include/linux/spinlock.h) is a variant which saves whether inter-
rupts were on or off in a flags word, which is passed to spin_unlock_irqrestore(). This means
that the same code can be used inside an hard irq handler (where interrupts are already off) and in softirqs
(where the irq disabling is required).

Note that softirqs (and hence tasklets and timers) are run on return from hardware interrupts, so
spin_lock_irq() also stops these. In that sense, spin_lock_irqsave() is the most general and
powerful locking function.

Locking Between Two Hard IRQ Handlers
It is rare to have to share data between two IRQ handlers, but if you do, spin_lock_irqsave() should
be used: it is architecture-specific whether all interrupts are disabled inside irq handlers themselves.
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Chapter 5. Cheat Sheet For Locking
Pete Zaitcev gives the following summary:

• If you are in a process context (any syscall) and want to lock other process out, use a mutex. You can
take a mutex and sleep (copy_from_user*( or kmalloc(x,GFP_KERNEL)).

• Otherwise (== data can be touched in an interrupt), use spin_lock_irqsave() and spin_un-
lock_irqrestore().

• Avoid holding spinlock for more than 5 lines of code and across any function call (except accessors
like readb).

Table of Minimum Requirements
The following table lists the minimum locking requirements between various contexts. In some cases, the
same context can only be running on one CPU at a time, so no locking is required for that context (eg.
a particular thread can only run on one CPU at a time, but if it needs shares data with another thread,
locking is required).

Remember the advice above: you can always use spin_lock_irqsave(), which is a superset of all
other spinlock primitives.

Table 5.1. Table of Locking Requirements

IRQ
Handler
A

IRQ
Handler
B

Softirq
A

Softirq
B

Tasklet
A

Tasklet
B

Timer A Timer B User
Context
A

User
Context
B

IRQ
Handler
A

None

IRQ
Handler
B

SLIS None

Softirq
A

SLI SLI SL

Softirq
B

SLI SLI SL SL

Tasklet
A

SLI SLI SL SL None

Tasklet
B

SLI SLI SL SL SL None

Timer A SLI SLI SL SL SL SL None

Timer B SLI SLI SL SL SL SL SL None

User
Context
A

SLI SLI SLBH SLBH SLBH SLBH SLBH SLBH None

User
Context
B

SLI SLI SLBH SLBH SLBH SLBH SLBH SLBH MLI None
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Cheat Sheet For Locking

Table 5.2. Legend for Locking Requirements Table

SLIS spin_lock_irqsave

SLI spin_lock_irq

SL spin_lock

SLBH spin_lock_bh

MLI mutex_lock_interruptible
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Chapter 6. The trylock Functions
There are functions that try to acquire a lock only once and immediately return a value telling about success
or failure to acquire the lock. They can be used if you need no access to the data protected with the lock
when some other thread is holding the lock. You should acquire the lock later if you then need access to
the data protected with the lock.

spin_trylock() does not spin but returns non-zero if it acquires the spinlock on the first try or 0 if
not. This function can be used in all contexts like spin_lock: you must have disabled the contexts that
might interrupt you and acquire the spin lock.

mutex_trylock() does not suspend your task but returns non-zero if it could lock the mutex on the
first try or 0 if not. This function cannot be safely used in hardware or software interrupt contexts despite
not sleeping.
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Chapter 7. Common Examples
Let's step through a simple example: a cache of number to name mappings. The cache keeps a count of
how often each of the objects is used, and when it gets full, throws out the least used one.

All In User Context
For our first example, we assume that all operations are in user context (ie. from system calls), so we can
sleep. This means we can use a mutex to protect the cache and all the objects within it. Here's the code:

#include <linux/list.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/mutex.h>
#include <asm/errno.h>

struct object
{
        struct list_head list;
        int id;
        char name[32];
        int popularity;
};

/* Protects the cache, cache_num, and the objects within it */
static DEFINE_MUTEX(cache_lock);
static LIST_HEAD(cache);
static unsigned int cache_num = 0;
#define MAX_CACHE_SIZE 10

/* Must be holding cache_lock */
static struct object *__cache_find(int id)
{
        struct object *i;

        list_for_each_entry(i, &cache, list)
                if (i->id == id) {
                        i->popularity++;
                        return i;
                }
        return NULL;
}

/* Must be holding cache_lock */
static void __cache_delete(struct object *obj)
{
        BUG_ON(!obj);
        list_del(&obj->list);
        kfree(obj);
        cache_num--;
}
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Common Examples

/* Must be holding cache_lock */
static void __cache_add(struct object *obj)
{
        list_add(&obj->list, &cache);
        if (++cache_num > MAX_CACHE_SIZE) {
                struct object *i, *outcast = NULL;
                list_for_each_entry(i, &cache, list) {
                        if (!outcast || i->popularity < outcast->popularity)
                                outcast = i;
                }
                __cache_delete(outcast);
        }
}

int cache_add(int id, const char *name)
{
        struct object *obj;

        if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
                return -ENOMEM;

        strlcpy(obj->name, name, sizeof(obj->name));
        obj->id = id;
        obj->popularity = 0;

        mutex_lock(&cache_lock);
        __cache_add(obj);
        mutex_unlock(&cache_lock);
        return 0;
}

void cache_delete(int id)
{
        mutex_lock(&cache_lock);
        __cache_delete(__cache_find(id));
        mutex_unlock(&cache_lock);
}

int cache_find(int id, char *name)
{
        struct object *obj;
        int ret = -ENOENT;

        mutex_lock(&cache_lock);
        obj = __cache_find(id);
        if (obj) {
                ret = 0;
                strcpy(name, obj->name);
        }
        mutex_unlock(&cache_lock);
        return ret;
}
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Common Examples

Note that we always make sure we have the cache_lock when we add, delete, or look up the cache: both
the cache infrastructure itself and the contents of the objects are protected by the lock. In this case it's easy,
since we copy the data for the user, and never let them access the objects directly.

There is a slight (and common) optimization here: in cache_add we set up the fields of the object before
grabbing the lock. This is safe, as no-one else can access it until we put it in cache.

Accessing From Interrupt Context
Now consider the case where cache_find can be called from interrupt context: either a hardware inter-
rupt or a softirq. An example would be a timer which deletes object from the cache.

The change is shown below, in standard patch format: the - are lines which are taken away, and the + are
lines which are added.

--- cache.c.usercontext 2003-12-09 13:58:54.000000000 +1100
+++ cache.c.interrupt 2003-12-09 14:07:49.000000000 +1100
@@ -12,7 +12,7 @@
         int popularity;
 };

-static DEFINE_MUTEX(cache_lock);
+static DEFINE_SPINLOCK(cache_lock);
 static LIST_HEAD(cache);
 static unsigned int cache_num = 0;
 #define MAX_CACHE_SIZE 10
@@ -55,6 +55,7 @@
 int cache_add(int id, const char *name)
 {
         struct object *obj;
+        unsigned long flags;

         if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
                 return -ENOMEM;
@@ -63,30 +64,33 @@
         obj->id = id;
         obj->popularity = 0;

-        mutex_lock(&cache_lock);
+        spin_lock_irqsave(&cache_lock, flags);
         __cache_add(obj);
-        mutex_unlock(&cache_lock);
+        spin_unlock_irqrestore(&cache_lock, flags);
         return 0;
 }

 void cache_delete(int id)
 {
-        mutex_lock(&cache_lock);
+        unsigned long flags;
+
+        spin_lock_irqsave(&cache_lock, flags);
         __cache_delete(__cache_find(id));
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Common Examples

-        mutex_unlock(&cache_lock);
+        spin_unlock_irqrestore(&cache_lock, flags);
 }

 int cache_find(int id, char *name)
 {
         struct object *obj;
         int ret = -ENOENT;
+        unsigned long flags;

-        mutex_lock(&cache_lock);
+        spin_lock_irqsave(&cache_lock, flags);
         obj = __cache_find(id);
         if (obj) {
                 ret = 0;
                 strcpy(name, obj->name);
         }
-        mutex_unlock(&cache_lock);
+        spin_unlock_irqrestore(&cache_lock, flags);
         return ret;
 }

Note that the spin_lock_irqsave will turn off interrupts if they are on, otherwise does nothing (if
we are already in an interrupt handler), hence these functions are safe to call from any context.

Unfortunately, cache_add calls kmalloc with the GFP_KERNEL flag, which is only legal in user
context. I have assumed that cache_add is still only called in user context, otherwise this should become
a parameter to cache_add.

Exposing Objects Outside This File
If our objects contained more information, it might not be sufficient to copy the information in and out:
other parts of the code might want to keep pointers to these objects, for example, rather than looking up
the id every time. This produces two problems.

The first problem is that we use the cache_lock to protect objects: we'd need to make this non-static so the
rest of the code can use it. This makes locking trickier, as it is no longer all in one place.

The second problem is the lifetime problem: if another structure keeps a pointer to an object, it presumably
expects that pointer to remain valid. Unfortunately, this is only guaranteed while you hold the lock, other-
wise someone might call cache_delete and even worse, add another object, re-using the same address.

As there is only one lock, you can't hold it forever: no-one else would get any work done.

The solution to this problem is to use a reference count: everyone who has a pointer to the object increases
it when they first get the object, and drops the reference count when they're finished with it. Whoever
drops it to zero knows it is unused, and can actually delete it.

Here is the code:

--- cache.c.interrupt 2003-12-09 14:25:43.000000000 +1100
+++ cache.c.refcnt 2003-12-09 14:33:05.000000000 +1100
@@ -7,6 +7,7 @@
 struct object
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Common Examples

 {
         struct list_head list;
+        unsigned int refcnt;
         int id;
         char name[32];
         int popularity;
@@ -17,6 +18,35 @@
 static unsigned int cache_num = 0;
 #define MAX_CACHE_SIZE 10

+static void __object_put(struct object *obj)
+{
+        if (--obj->refcnt == 0)
+                kfree(obj);
+}
+
+static void __object_get(struct object *obj)
+{
+        obj->refcnt++;
+}
+
+void object_put(struct object *obj)
+{
+        unsigned long flags;
+
+        spin_lock_irqsave(&cache_lock, flags);
+        __object_put(obj);
+        spin_unlock_irqrestore(&cache_lock, flags);
+}
+
+void object_get(struct object *obj)
+{
+        unsigned long flags;
+
+        spin_lock_irqsave(&cache_lock, flags);
+        __object_get(obj);
+        spin_unlock_irqrestore(&cache_lock, flags);
+}
+
 /* Must be holding cache_lock */
 static struct object *__cache_find(int id)
 {
@@ -35,6 +65,7 @@
 {
         BUG_ON(!obj);
         list_del(&obj->list);
+        __object_put(obj);
         cache_num--;
 }

@@ -63,6 +94,7 @@
         strlcpy(obj->name, name, sizeof(obj->name));
         obj->id = id;
         obj->popularity = 0;
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Common Examples

+        obj->refcnt = 1; /* The cache holds a reference */

         spin_lock_irqsave(&cache_lock, flags);
         __cache_add(obj);
@@ -79,18 +111,15 @@
         spin_unlock_irqrestore(&cache_lock, flags);
 }

-int cache_find(int id, char *name)
+struct object *cache_find(int id)
 {
         struct object *obj;
-        int ret = -ENOENT;
         unsigned long flags;

         spin_lock_irqsave(&cache_lock, flags);
         obj = __cache_find(id);
-        if (obj) {
-                ret = 0;
-                strcpy(name, obj->name);
-        }
+        if (obj)
+                __object_get(obj);
         spin_unlock_irqrestore(&cache_lock, flags);
-        return ret;
+        return obj;
 }

We encapsulate the reference counting in the standard 'get' and 'put' functions. Now we can return the
object itself from cache_find which has the advantage that the user can now sleep holding the object
(eg. to copy_to_user to name to userspace).

The other point to note is that I said a reference should be held for every pointer to the object: thus the
reference count is 1 when first inserted into the cache. In some versions the framework does not hold a
reference count, but they are more complicated.

Using Atomic Operations For The Reference Count
In practice, atomic_t would usually be used for refcnt. There are a number of atomic operations defined
in include/asm/atomic.h: these are guaranteed to be seen atomically from all CPUs in the system,
so no lock is required. In this case, it is simpler than using spinlocks, although for anything non-trivial using
spinlocks is clearer. The atomic_inc and atomic_dec_and_test are used instead of the standard
increment and decrement operators, and the lock is no longer used to protect the reference count itself.

--- cache.c.refcnt 2003-12-09 15:00:35.000000000 +1100
+++ cache.c.refcnt-atomic 2003-12-11 15:49:42.000000000 +1100
@@ -7,7 +7,7 @@
 struct object
 {
         struct list_head list;
-        unsigned int refcnt;
+        atomic_t refcnt;
         int id;

16



Common Examples

         char name[32];
         int popularity;
@@ -18,33 +18,15 @@
 static unsigned int cache_num = 0;
 #define MAX_CACHE_SIZE 10

-static void __object_put(struct object *obj)
-{
-        if (--obj->refcnt == 0)
-                kfree(obj);
-}
-
-static void __object_get(struct object *obj)
-{
-        obj->refcnt++;
-}
-
 void object_put(struct object *obj)
 {
-        unsigned long flags;
-
-        spin_lock_irqsave(&cache_lock, flags);
-        __object_put(obj);
-        spin_unlock_irqrestore(&cache_lock, flags);
+        if (atomic_dec_and_test(&obj->refcnt))
+                kfree(obj);
 }

 void object_get(struct object *obj)
 {
-        unsigned long flags;
-
-        spin_lock_irqsave(&cache_lock, flags);
-        __object_get(obj);
-        spin_unlock_irqrestore(&cache_lock, flags);
+        atomic_inc(&obj->refcnt);
 }

 /* Must be holding cache_lock */
@@ -65,7 +47,7 @@
 {
         BUG_ON(!obj);
         list_del(&obj->list);
-        __object_put(obj);
+        object_put(obj);
         cache_num--;
 }

@@ -94,7 +76,7 @@
         strlcpy(obj->name, name, sizeof(obj->name));
         obj->id = id;
         obj->popularity = 0;
-        obj->refcnt = 1; /* The cache holds a reference */
+        atomic_set(&obj->refcnt, 1); /* The cache holds a reference */
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         spin_lock_irqsave(&cache_lock, flags);
         __cache_add(obj);
@@ -119,7 +101,7 @@
         spin_lock_irqsave(&cache_lock, flags);
         obj = __cache_find(id);
         if (obj)
-                __object_get(obj);
+                object_get(obj);
         spin_unlock_irqrestore(&cache_lock, flags);
         return obj;
 }

Protecting The Objects Themselves
In these examples, we assumed that the objects (except the reference counts) never changed once they are
created. If we wanted to allow the name to change, there are three possibilities:

• You can make cache_lock non-static, and tell people to grab that lock before changing the name in any
object.

• You can provide a cache_obj_rename which grabs this lock and changes the name for the caller,
and tell everyone to use that function.

• You can make the cache_lock protect only the cache itself, and use another lock to protect the name.

Theoretically, you can make the locks as fine-grained as one lock for every field, for every object. In
practice, the most common variants are:

• One lock which protects the infrastructure (the cache list in this example) and all the objects. This is
what we have done so far.

• One lock which protects the infrastructure (including the list pointers inside the objects), and one lock
inside the object which protects the rest of that object.

• Multiple locks to protect the infrastructure (eg. one lock per hash chain), possibly with a separate per-
object lock.

Here is the "lock-per-object" implementation:

--- cache.c.refcnt-atomic 2003-12-11 15:50:54.000000000 +1100
+++ cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
@@ -6,11 +6,17 @@

 struct object
 {
+        /* These two protected by cache_lock. */
         struct list_head list;
+        int popularity;
+
         atomic_t refcnt;
+
+        /* Doesn't change once created. */
         int id;
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+
+        spinlock_t lock; /* Protects the name */
         char name[32];
-        int popularity;
 };

 static DEFINE_SPINLOCK(cache_lock);
@@ -77,6 +84,7 @@
         obj->id = id;
         obj->popularity = 0;
         atomic_set(&obj->refcnt, 1); /* The cache holds a reference */
+        spin_lock_init(&obj->lock);

         spin_lock_irqsave(&cache_lock, flags);
         __cache_add(obj);

Note that I decide that the popularity count should be protected by the cache_lock rather than the per-
object lock: this is because it (like the struct list_head inside the object) is logically part of the infrastructure.
This way, I don't need to grab the lock of every object in __cache_add when seeking the least popular.

I also decided that the id member is unchangeable, so I don't need to grab each object lock in
__cache_find() to examine the id: the object lock is only used by a caller who wants to read or
write the name field.

Note also that I added a comment describing what data was protected by which locks. This is extremely
important, as it describes the runtime behavior of the code, and can be hard to gain from just reading. And
as Alan Cox says, “Lock data, not code”.
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Chapter 8. Common Problems
Deadlock: Simple and Advanced

There is a coding bug where a piece of code tries to grab a spinlock twice: it will spin forever, waiting
for the lock to be released (spinlocks, rwlocks and mutexes are not recursive in Linux). This is trivial to
diagnose: not a stay-up-five-nights-talk-to-fluffy-code-bunnies kind of problem.

For a slightly more complex case, imagine you have a region shared by a softirq and user context. If you
use a spin_lock() call to protect it, it is possible that the user context will be interrupted by the softirq
while it holds the lock, and the softirq will then spin forever trying to get the same lock.

Both of these are called deadlock, and as shown above, it can occur even with a single CPU (although not
on UP compiles, since spinlocks vanish on kernel compiles with CONFIG_SMP=n. You'll still get data
corruption in the second example).

This complete lockup is easy to diagnose: on SMP boxes the watchdog timer or compiling with DE-
BUG_SPINLOCK set (include/linux/spinlock.h) will show this up immediately when it hap-
pens.

A more complex problem is the so-called 'deadly embrace', involving two or more locks. Say you have
a hash table: each entry in the table is a spinlock, and a chain of hashed objects. Inside a softirq handler,
you sometimes want to alter an object from one place in the hash to another: you grab the spinlock of
the old hash chain and the spinlock of the new hash chain, and delete the object from the old one, and
insert it in the new one.

There are two problems here. First, if your code ever tries to move the object to the same chain, it will
deadlock with itself as it tries to lock it twice. Secondly, if the same softirq on another CPU is trying to
move another object in the reverse direction, the following could happen:

Table 8.1. Consequences

CPU 1 CPU 2

Grab lock A -> OK Grab lock B -> OK

Grab lock B -> spin Grab lock A -> spin

The two CPUs will spin forever, waiting for the other to give up their lock. It will look, smell, and feel
like a crash.

Preventing Deadlock
Textbooks will tell you that if you always lock in the same order, you will never get this kind of deadlock.
Practice will tell you that this approach doesn't scale: when I create a new lock, I don't understand enough
of the kernel to figure out where in the 5000 lock hierarchy it will fit.

The best locks are encapsulated: they never get exposed in headers, and are never held around calls to non-
trivial functions outside the same file. You can read through this code and see that it will never deadlock,
because it never tries to grab another lock while it has that one. People using your code don't even need
to know you are using a lock.

A classic problem here is when you provide callbacks or hooks: if you call these with the lock held, you
risk simple deadlock, or a deadly embrace (who knows what the callback will do?). Remember, the other
programmers are out to get you, so don't do this.
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Overzealous Prevention Of Deadlocks
Deadlocks are problematic, but not as bad as data corruption. Code which grabs a read lock, searches a list,
fails to find what it wants, drops the read lock, grabs a write lock and inserts the object has a race condition.

If you don't see why, please stay the fuck away from my code.

Racing Timers: A Kernel Pastime
Timers can produce their own special problems with races. Consider a collection of objects (list, hash, etc)
where each object has a timer which is due to destroy it.

If you want to destroy the entire collection (say on module removal), you might do the following:

        /* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
           HUNGARIAN NOTATION */
        spin_lock_bh(&list_lock);

        while (list) {
                struct foo *next = list->next;
                del_timer(&list->timer);
                kfree(list);
                list = next;
        }

        spin_unlock_bh(&list_lock);
    

Sooner or later, this will crash on SMP, because a timer can have just gone off before the spin_lock_b-
h(), and it will only get the lock after we spin_unlock_bh(), and then try to free the element (which
has already been freed!).

This can be avoided by checking the result of del_timer(): if it returns 1, the timer has been deleted.
If 0, it means (in this case) that it is currently running, so we can do:

        retry:
                spin_lock_bh(&list_lock);

                while (list) {
                        struct foo *next = list->next;
                        if (!del_timer(&list->timer)) {
                                /* Give timer a chance to delete this */
                                spin_unlock_bh(&list_lock);
                                goto retry;
                        }
                        kfree(list);
                        list = next;
                }

                spin_unlock_bh(&list_lock);
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Another common problem is deleting timers which restart themselves (by calling add_timer() at the
end of their timer function). Because this is a fairly common case which is prone to races, you should
use del_timer_sync() (include/linux/timer.h) to handle this case. It returns the number of
times the timer had to be deleted before we finally stopped it from adding itself back in.
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Chapter 9. Locking Speed
There are three main things to worry about when considering speed of some code which does locking. First
is concurrency: how many things are going to be waiting while someone else is holding a lock. Second is
the time taken to actually acquire and release an uncontended lock. Third is using fewer, or smarter locks.
I'm assuming that the lock is used fairly often: otherwise, you wouldn't be concerned about efficiency.

Concurrency depends on how long the lock is usually held: you should hold the lock for as long as needed,
but no longer. In the cache example, we always create the object without the lock held, and then grab the
lock only when we are ready to insert it in the list.

Acquisition times depend on how much damage the lock operations do to the pipeline (pipeline stalls) and
how likely it is that this CPU was the last one to grab the lock (ie. is the lock cache-hot for this CPU): on a
machine with more CPUs, this likelihood drops fast. Consider a 700MHz Intel Pentium III: an instruction
takes about 0.7ns, an atomic increment takes about 58ns, a lock which is cache-hot on this CPU takes
160ns, and a cacheline transfer from another CPU takes an additional 170 to 360ns. (These figures from
Paul McKenney's  Linux Journal RCU article [http://www.linuxjournal.com/article.php?sid=6993]).

These two aims conflict: holding a lock for a short time might be done by splitting locks into parts (such
as in our final per-object-lock example), but this increases the number of lock acquisitions, and the results
are often slower than having a single lock. This is another reason to advocate locking simplicity.

The third concern is addressed below: there are some methods to reduce the amount of locking which
needs to be done.

Read/Write Lock Variants
Both spinlocks and mutexes have read/write variants: rwlock_t and struct rw_semaphore. These divide
users into two classes: the readers and the writers. If you are only reading the data, you can get a read
lock, but to write to the data you need the write lock. Many people can hold a read lock, but a writer must
be sole holder.

If your code divides neatly along reader/writer lines (as our cache code does), and the lock is held by
readers for significant lengths of time, using these locks can help. They are slightly slower than the normal
locks though, so in practice rwlock_t is not usually worthwhile.

Avoiding Locks: Read Copy Update
There is a special method of read/write locking called Read Copy Update. Using RCU, the readers can
avoid taking a lock altogether: as we expect our cache to be read more often than updated (otherwise the
cache is a waste of time), it is a candidate for this optimization.

How do we get rid of read locks? Getting rid of read locks means that writers may be changing the list
underneath the readers. That is actually quite simple: we can read a linked list while an element is being
added if the writer adds the element very carefully. For example, adding new to a single linked list called
list:

        new->next = list->next;
        wmb();
        list->next = new;
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The wmb() is a write memory barrier. It ensures that the first operation (setting the new element's next
pointer) is complete and will be seen by all CPUs, before the second operation is (putting the new element
into the list). This is important, since modern compilers and modern CPUs can both reorder instructions
unless told otherwise: we want a reader to either not see the new element at all, or see the new element
with the next pointer correctly pointing at the rest of the list.

Fortunately, there is a function to do this for standard struct list_head lists: list_add_rcu() (in-
clude/linux/list.h).

Removing an element from the list is even simpler: we replace the pointer to the old element with a pointer
to its successor, and readers will either see it, or skip over it.

        list->next = old->next;
    

There is list_del_rcu() (include/linux/list.h) which does this (the normal version poisons
the old object, which we don't want).

The reader must also be careful: some CPUs can look through the next pointer to start reading the contents
of the next element early, but don't realize that the pre-fetched contents is wrong when the next pointer
changes underneath them. Once again, there is a list_for_each_entry_rcu() (include/lin-
ux/list.h) to help you. Of course, writers can just use list_for_each_entry(), since there
cannot be two simultaneous writers.

Our final dilemma is this: when can we actually destroy the removed element? Remember, a reader might
be stepping through this element in the list right now: if we free this element and the next pointer changes,
the reader will jump off into garbage and crash. We need to wait until we know that all the readers who
were traversing the list when we deleted the element are finished. We use call_rcu() to register a
callback which will actually destroy the object once all pre-existing readers are finished. Alternatively,
synchronize_rcu() may be used to block until all pre-existing are finished.

But how does Read Copy Update know when the readers are finished? The method is this: firstly, the
readers always traverse the list inside rcu_read_lock()/rcu_read_unlock() pairs: these simply
disable preemption so the reader won't go to sleep while reading the list.

RCU then waits until every other CPU has slept at least once: since readers cannot sleep, we know that
any readers which were traversing the list during the deletion are finished, and the callback is triggered.
The real Read Copy Update code is a little more optimized than this, but this is the fundamental idea.

--- cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
+++ cache.c.rcupdate 2003-12-11 17:55:14.000000000 +1100
@@ -1,15 +1,18 @@
 #include <linux/list.h>
 #include <linux/slab.h>
 #include <linux/string.h>
+#include <linux/rcupdate.h>
 #include <linux/mutex.h>
 #include <asm/errno.h>

 struct object
 {
-        /* These two protected by cache_lock. */
+        /* This is protected by RCU */
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         struct list_head list;
         int popularity;

+        struct rcu_head rcu;
+
         atomic_t refcnt;

         /* Doesn't change once created. */
@@ -40,7 +43,7 @@
 {
         struct object *i;

-        list_for_each_entry(i, &cache, list) {
+        list_for_each_entry_rcu(i, &cache, list) {
                 if (i->id == id) {
                         i->popularity++;
                         return i;
@@ -49,19 +52,25 @@
         return NULL;
 }

+/* Final discard done once we know no readers are looking. */
+static void cache_delete_rcu(void *arg)
+{
+        object_put(arg);
+}
+
 /* Must be holding cache_lock */
 static void __cache_delete(struct object *obj)
 {
         BUG_ON(!obj);
-        list_del(&obj->list);
-        object_put(obj);
+        list_del_rcu(&obj->list);
         cache_num--;
+        call_rcu(&obj->rcu, cache_delete_rcu);
 }

 /* Must be holding cache_lock */
 static void __cache_add(struct object *obj)
 {
-        list_add(&obj->list, &cache);
+        list_add_rcu(&obj->list, &cache);
         if (++cache_num > MAX_CACHE_SIZE) {
                 struct object *i, *outcast = NULL;
                 list_for_each_entry(i, &cache, list) {
@@ -104,12 +114,11 @@
 struct object *cache_find(int id)
 {
         struct object *obj;
-        unsigned long flags;

-        spin_lock_irqsave(&cache_lock, flags);
+        rcu_read_lock();
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         obj = __cache_find(id);
         if (obj)
                 object_get(obj);
-        spin_unlock_irqrestore(&cache_lock, flags);
+        rcu_read_unlock();
         return obj;
 }

Note that the reader will alter the popularity member in __cache_find(), and now it doesn't hold
a lock. One solution would be to make it an atomic_t, but for this usage, we don't really care about races:
an approximate result is good enough, so I didn't change it.

The result is that cache_find() requires no synchronization with any other functions, so is almost as
fast on SMP as it would be on UP.

There is a further optimization possible here: remember our original cache code, where there were no
reference counts and the caller simply held the lock whenever using the object? This is still possible: if
you hold the lock, no one can delete the object, so you don't need to get and put the reference count.

Now, because the 'read lock' in RCU is simply disabling preemption, a caller which always has preemption
disabled between calling cache_find() and object_put() does not need to actually get and put
the reference count: we could expose __cache_find() by making it non-static, and such callers could
simply call that.

The benefit here is that the reference count is not written to: the object is not altered in any way, which
is much faster on SMP machines due to caching.

Per-CPU Data
Another technique for avoiding locking which is used fairly widely is to duplicate information for each
CPU. For example, if you wanted to keep a count of a common condition, you could use a spin lock and
a single counter. Nice and simple.

If that was too slow (it's usually not, but if you've got a really big machine to test on and can show that
it is), you could instead use a counter for each CPU, then none of them need an exclusive lock. See DE-
FINE_PER_CPU(), get_cpu_var() and put_cpu_var() (include/linux/percpu.h).

Of particular use for simple per-cpu counters is the local_t type, and the cpu_local_inc() and related
functions, which are more efficient than simple code on some architectures (include/asm/local.h).

Note that there is no simple, reliable way of getting an exact value of such a counter, without introducing
more locks. This is not a problem for some uses.

Data Which Mostly Used By An IRQ Handler
If data is always accessed from within the same IRQ handler, you don't need a lock at all: the kernel already
guarantees that the irq handler will not run simultaneously on multiple CPUs.

Manfred Spraul points out that you can still do this, even if the data is very occasionally accessed in user
context or softirqs/tasklets. The irq handler doesn't use a lock, and all other accesses are done as so:

 spin_lock(&lock);
 disable_irq(irq);
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 ...
 enable_irq(irq);
 spin_unlock(&lock);

The disable_irq() prevents the irq handler from running (and waits for it to finish if it's currently
running on other CPUs). The spinlock prevents any other accesses happening at the same time. Naturally,
this is slower than just a spin_lock_irq() call, so it only makes sense if this type of access happens
extremely rarely.

27



Chapter 10. What Functions Are Safe
To Call From Interrupts?

Many functions in the kernel sleep (ie. call schedule()) directly or indirectly: you can never call them while
holding a spinlock, or with preemption disabled. This also means you need to be in user context: calling
them from an interrupt is illegal.

Some Functions Which Sleep
The most common ones are listed below, but you usually have to read the code to find out if other calls
are safe. If everyone else who calls it can sleep, you probably need to be able to sleep, too. In particular,
registration and deregistration functions usually expect to be called from user context, and can sleep.

• Accesses to userspace:

• copy_from_user()

• copy_to_user()

• get_user()

• put_user()

• kmalloc(GFP_KERNEL)

• mutex_lock_interruptible() and mutex_lock()

There is a mutex_trylock() which does not sleep. Still, it must not be used inside interrupt context
since its implementation is not safe for that. mutex_unlock() will also never sleep. It cannot be
used in interrupt context either since a mutex must be released by the same task that acquired it.

Some Functions Which Don't Sleep
Some functions are safe to call from any context, or holding almost any lock.

• printk()

• kfree()

• add_timer() and del_timer()
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Mutex API reference

Name
mutex_init — initialize the mutex

Synopsis
mutex_init ( mutex);

Arguments
mutex the mutex to be initialized

Description
Initialize the mutex to unlocked state.

It is not allowed to initialize an already locked mutex.
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Name
mutex_is_locked — is the mutex locked

Synopsis
int mutex_is_locked (struct mutex * lock);

Arguments
lock the mutex to be queried

Description
Returns 1 if the mutex is locked, 0 if unlocked.
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Name
mutex_lock — acquire the mutex

Synopsis
void __sched mutex_lock (struct mutex * lock);

Arguments
lock the mutex to be acquired

Description
Lock the mutex exclusively for this task. If the mutex is not available right now, it will sleep until it can
get it.

The mutex must later on be released by the same task that acquired it. Recursive locking is not allowed.
The task may not exit without first unlocking the mutex. Also, kernel memory where the mutex resides
must not be freed with the mutex still locked. The mutex must first be initialized (or statically defined)
before it can be locked. memset-ing the mutex to 0 is not allowed.

( The CONFIG_DEBUG_MUTEXES .config option turns on debugging checks that will enforce the re-
strictions and will also do deadlock debugging. )

This function is similar to (but not equivalent to) down.
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Name
mutex_unlock — release the mutex

Synopsis
void __sched mutex_unlock (struct mutex * lock);

Arguments
lock the mutex to be released

Description
Unlock a mutex that has been locked by this task previously.

This function must not be used in interrupt context. Unlocking of a not locked mutex is not allowed.

This function is similar to (but not equivalent to) up.
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Name
ww_mutex_unlock — release the w/w mutex

Synopsis
void __sched ww_mutex_unlock (struct ww_mutex * lock);

Arguments
lock the mutex to be released

Description
Unlock a mutex that has been locked by this task previously with any of the ww_mutex_lock* functions
(with or without an acquire context). It is forbidden to release the locks after releasing the acquire context.

This function must not be used in interrupt context. Unlocking of a unlocked mutex is not allowed.

34



Mutex API reference

Name
mutex_lock_interruptible — acquire the mutex, interruptible

Synopsis
int __sched mutex_lock_interruptible (struct mutex * lock);

Arguments
lock the mutex to be acquired

Description
Lock the mutex like mutex_lock, and return 0 if the mutex has been acquired or sleep until the mutex
becomes available. If a signal arrives while waiting for the lock then this function returns -EINTR.

This function is similar to (but not equivalent to) down_interruptible.
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Name
mutex_trylock — try to acquire the mutex, without waiting

Synopsis
int __sched mutex_trylock (struct mutex * lock);

Arguments
lock the mutex to be acquired

Description
Try to acquire the mutex atomically. Returns 1 if the mutex has been acquired successfully, and 0 on
contention.

NOTE
this function follows the spin_trylock convention, so it is negated from the down_trylock return
values! Be careful about this when converting semaphore users to mutexes.

This function must not be used in interrupt context. The mutex must be released by the same task that
acquired it.
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Name
atomic_dec_and_mutex_lock — return holding mutex if we dec to 0

Synopsis
int atomic_dec_and_mutex_lock (atomic_t * cnt, struct mutex * lock);

Arguments
cnt the atomic which we are to dec

lock the mutex to return holding if we dec to 0

Description
return true and hold lock if we dec to 0, return false otherwise
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Futex API reference

Name
struct futex_q — The hashed futex queue entry, one per waiting task

Synopsis

struct futex_q {
  struct plist_node list;
  struct task_struct * task;
  spinlock_t * lock_ptr;
  union futex_key key;
  struct futex_pi_state * pi_state;
  struct rt_mutex_waiter * rt_waiter;
  union futex_key * requeue_pi_key;
  u32 bitset;
};  

Members
list priority-sorted list of tasks waiting on this futex

task the task waiting on the futex

lock_ptr the hash bucket lock

key the key the futex is hashed on

pi_state optional priority inheritance state

rt_waiter rt_waiter storage for use with requeue_pi

requeue_pi_key the requeue_pi target futex key

bitset bitset for the optional bitmasked wakeup

Description
We use this hashed waitqueue, instead of a normal wait_queue_t, so we can wake only the relevant ones
(hashed queues may be shared).

A futex_q has a woken state, just like tasks have TASK_RUNNING. It is considered woken when plist_n-
ode_empty(q->list) || q->lock_ptr == 0. The order of wakeup is always to make the first condition true,
then the second.

PI futexes are typically woken before they are removed from the hash list via the rt_mutex code. See
unqueue_me_pi.
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Name
get_futex_key — Get parameters which are the keys for a futex

Synopsis
int get_futex_key (u32 __user * uaddr, int fshared, union futex_key *
key, int rw);

Arguments
uaddr virtual address of the futex

fshared 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED

key address where result is stored.

rw mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)

Return
a negative error code or 0

The key words are stored in *key on success.

For shared mappings, it's (page->index, file_inode(vma->vm_file), offset_within_page). For private map-
pings, it's (uaddr, current->mm). We can usually work out the index without swapping in the page.

lock_page might sleep, the caller should not hold a spinlock.
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Name
fault_in_user_writeable — Fault in user address and verify RW access

Synopsis
int fault_in_user_writeable (u32 __user * uaddr);

Arguments
uaddr pointer to faulting user space address

Description
Slow path to fixup the fault we just took in the atomic write access to uaddr.

We have no generic implementation of a non-destructive write to the user address. We know that we
faulted in the atomic pagefault disabled section so we can as well avoid the #PF overhead by calling
get_user_pages right away.
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Name
futex_top_waiter — Return the highest priority waiter on a futex

Synopsis
struct futex_q * futex_top_waiter (struct futex_hash_bucket * hb, union
futex_key * key);

Arguments
hb the hash bucket the futex_q's reside in

key the futex key (to distinguish it from other futex futex_q's)

Description
Must be called with the hb lock held.
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Name
futex_lock_pi_atomic — Atomic work required to acquire a pi aware futex

Synopsis
int futex_lock_pi_atomic (u32 __user * uaddr, struct futex_hash_buck-
et * hb, union futex_key * key, struct futex_pi_state ** ps, struct
task_struct * task, int set_waiters);

Arguments
uaddr the pi futex user address

hb the pi futex hash bucket

key the futex key associated with uaddr and hb

ps the pi_state pointer where we store the result of the lookup

task the task to perform the atomic lock work for. This will be “current” except in the case
of requeue pi.

set_waiters force setting the FUTEX_WAITERS bit (1) or not (0)

Return
0 - ready to wait; 1 - acquired the lock; <0 - error

The hb->lock and futex_key refs shall be held by the caller.
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Name
__unqueue_futex — Remove the futex_q from its futex_hash_bucket

Synopsis
void __unqueue_futex (struct futex_q * q);

Arguments
q The futex_q to unqueue

Description
The q->lock_ptr must not be NULL and must be held by the caller.
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Name
requeue_futex — Requeue a futex_q from one hb to another

Synopsis
void requeue_futex (struct futex_q * q, struct futex_hash_bucket * hb1,
struct futex_hash_bucket * hb2, union futex_key * key2);

Arguments
q the futex_q to requeue

hb1 the source hash_bucket

hb2 the target hash_bucket

key2 the new key for the requeued futex_q

45



Futex API reference

Name
requeue_pi_wake_futex — Wake a task that acquired the lock during requeue

Synopsis
void requeue_pi_wake_futex (struct futex_q * q, union futex_key * key,
struct futex_hash_bucket * hb);

Arguments
q the futex_q

key the key of the requeue target futex

hb the hash_bucket of the requeue target futex

Description
During futex_requeue, with requeue_pi=1, it is possible to acquire the target futex if it is uncontended or
via a lock steal. Set the futex_q key to the requeue target futex so the waiter can detect the wakeup on the
right futex, but remove it from the hb and NULL the rt_waiter so it can detect atomic lock acquisition. Set
the q->lock_ptr to the requeue target hb->lock to protect access to the pi_state to fixup the owner later.
Must be called with both q->lock_ptr and hb->lock held.
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Futex API reference

Name
futex_proxy_trylock_atomic — Attempt an atomic lock for the top waiter

Synopsis
int futex_proxy_trylock_atomic (u32 __user * pifutex, struct fu-
tex_hash_bucket * hb1, struct futex_hash_bucket * hb2, union futex_key *
key1, union futex_key * key2, struct futex_pi_state ** ps, int set_wait-
ers);

Arguments
pifutex the user address of the to futex

hb1 the from futex hash bucket, must be locked by the caller

hb2 the to futex hash bucket, must be locked by the caller

key1 the from futex key

key2 the to futex key

ps address to store the pi_state pointer

set_waiters force setting the FUTEX_WAITERS bit (1) or not (0)

Description
Try and get the lock on behalf of the top waiter if we can do it atomically. Wake the top waiter if we
succeed. If the caller specified set_waiters, then direct futex_lock_pi_atomic to force setting the
FUTEX_WAITERS bit. hb1 and hb2 must be held by the caller.

Return
0 - failed to acquire the lock atomically; >0 - acquired the lock, return value is vpid of the top_waiter
<0 - error
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Futex API reference

Name
futex_requeue — Requeue waiters from uaddr1 to uaddr2

Synopsis
int futex_requeue (u32 __user * uaddr1, unsigned int flags, u32 __user
* uaddr2, int nr_wake, int nr_requeue, u32 * cmpval, int requeue_pi);

Arguments
uaddr1 source futex user address

flags futex flags (FLAGS_SHARED, etc.)

uaddr2 target futex user address

nr_wake number of waiters to wake (must be 1 for requeue_pi)

nr_requeue number of waiters to requeue (0-INT_MAX)

cmpval uaddr1 expected value (or NULL)

requeue_pi if we are attempting to requeue from a non-pi futex to a pi futex (pi to pi requeue is not
supported)

Description
Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire uaddr2 atomically on behalf
of the top waiter.

Return
>=0 - on success, the number of tasks requeued or woken; <0 - on error
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Futex API reference

Name
queue_me — Enqueue the futex_q on the futex_hash_bucket

Synopsis
void queue_me (struct futex_q * q, struct futex_hash_bucket * hb);

Arguments
q The futex_q to enqueue

hb The destination hash bucket

Description
The hb->lock must be held by the caller, and is released here. A call to queue_me is typically paired
with exactly one call to unqueue_me. The exceptions involve the PI related operations, which may use
unqueue_me_pi or nothing if the unqueue is done as part of the wake process and the unqueue state is
implicit in the state of woken task (see futex_wait_requeue_pi for an example).
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Futex API reference

Name
unqueue_me — Remove the futex_q from its futex_hash_bucket

Synopsis
int unqueue_me (struct futex_q * q);

Arguments
q The futex_q to unqueue

Description
The q->lock_ptr must not be held by the caller. A call to unqueue_me must be paired with exactly one
earlier call to queue_me.

Return
1 - if the futex_q was still queued (and we removed unqueued it); 0 - if the futex_q was already removed
by the waking thread
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Futex API reference

Name
fixup_owner — Post lock pi_state and corner case management

Synopsis
int fixup_owner (u32 __user * uaddr, struct futex_q * q, int locked);

Arguments
uaddr user address of the futex

q futex_q (contains pi_state and access to the rt_mutex)

locked if the attempt to take the rt_mutex succeeded (1) or not (0)

Description
After attempting to lock an rt_mutex, this function is called to cleanup the pi_state owner as well as handle
race conditions that may allow us to acquire the lock. Must be called with the hb lock held.

Return
1 - success, lock taken; 0 - success, lock not taken; <0 - on error (-EFAULT)
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Futex API reference

Name
futex_wait_queue_me — queue_me and wait for wakeup, timeout, or signal

Synopsis
void futex_wait_queue_me (struct futex_hash_bucket * hb, struct futex_q
* q, struct hrtimer_sleeper * timeout);

Arguments
hb the futex hash bucket, must be locked by the caller

q the futex_q to queue up on

timeout the prepared hrtimer_sleeper, or null for no timeout
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Futex API reference

Name
futex_wait_setup — Prepare to wait on a futex

Synopsis
int futex_wait_setup (u32 __user * uaddr, u32 val, unsigned int flags,
struct futex_q * q, struct futex_hash_bucket ** hb);

Arguments
uaddr the futex userspace address

val the expected value

flags futex flags (FLAGS_SHARED, etc.)

q the associated futex_q

hb storage for hash_bucket pointer to be returned to caller

Description
Setup the futex_q and locate the hash_bucket. Get the futex value and compare it with the expected val-
ue. Handle atomic faults internally. Return with the hb lock held and a q.key reference on success, and
unlocked with no q.key reference on failure.

Return
0 - uaddr contains val and hb has been locked; <1 - -EFAULT or -EWOULDBLOCK (uaddr does not
contain val) and hb is unlocked
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Futex API reference

Name
handle_early_requeue_pi_wakeup — Detect early wakeup on the initial futex

Synopsis
int handle_early_requeue_pi_wakeup (struct futex_hash_bucket * hb,
struct futex_q * q, union futex_key * key2, struct hrtimer_sleeper *
timeout);

Arguments
hb the hash_bucket futex_q was original enqueued on

q the futex_q woken while waiting to be requeued

key2 the futex_key of the requeue target futex

timeout the timeout associated with the wait (NULL if none)

Description
Detect if the task was woken on the initial futex as opposed to the requeue target futex. If so, determine
if it was a timeout or a signal that caused the wakeup and return the appropriate error code to the caller.
Must be called with the hb lock held.

Return
0 = no early wakeup detected; <0 = -ETIMEDOUT or -ERESTARTNOINTR
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Futex API reference

Name
futex_wait_requeue_pi — Wait on uaddr and take uaddr2

Synopsis
int futex_wait_requeue_pi (u32 __user * uaddr, unsigned int flags, u32
val, ktime_t * abs_time, u32 bitset, u32 __user * uaddr2);

Arguments
uaddr the futex we initially wait on (non-pi)

flags futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be the same type, no
requeueing from private to shared, etc.

val the expected value of uaddr

abs_time absolute timeout

bitset 32 bit wakeup bitset set by userspace, defaults to all

uaddr2 the pi futex we will take prior to returning to user-space

Description
The caller will wait on uaddr and will be requeued by futex_requeue to uaddr2 which must be PI
aware and unique from uaddr. Normal wakeup will wake on uaddr2 and complete the acquisition of the
rt_mutex prior to returning to userspace. This ensures the rt_mutex maintains an owner when it has waiters;
without one, the pi logic would not know which task to boost/deboost, if there was a need to.

We call schedule in futex_wait_queue_me when we enqueue and return there via the following--
1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue 2) wakeup on uaddr2 after
a requeue 3) signal 4) timeout

If 3, cleanup and return -ERESTARTNOINTR.

If 2, we may then block on trying to take the rt_mutex and return via: 5) successful lock 6) signal 7) timeout
8) other lock acquisition failure

If 6, return -EWOULDBLOCK (restarting the syscall would do the same).

If 4 or 7, we cleanup and return with -ETIMEDOUT.

Return
0 - On success; <0 - On error
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Futex API reference

Name
sys_set_robust_list — Set the robust-futex list head of a task

Synopsis
long sys_set_robust_list (struct robust_list_head __user * head, size_t
len);

Arguments
head pointer to the list-head

len length of the list-head, as userspace expects
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Futex API reference

Name
sys_get_robust_list — Get the robust-futex list head of a task

Synopsis
long sys_get_robust_list (int pid, struct robust_list_head __user
*__user * head_ptr, size_t __user * len_ptr);

Arguments
pid pid of the process [zero for current task]

head_ptr pointer to a list-head pointer, the kernel fills it in

len_ptr pointer to a length field, the kernel fills in the header size
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Chapter 13. Further reading
• Documentation/locking/spinlocks.txt: Linus Torvalds' spinlocking tutorial in the kernel

sources.

• Unix Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Program-
mers:

Curt Schimmel's very good introduction to kernel level locking (not written for Linux, but nearly every-
thing applies). The book is expensive, but really worth every penny to understand SMP locking. [ISBN:
0201633388]
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Chapter 14. Thanks
Thanks to Telsa Gwynne for DocBooking, neatening and adding style.

Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul Mackerras, Ruedi Aschwanden, Alan Cox,
Manfred Spraul, Tim Waugh, Pete Zaitcev, James Morris, Robert Love, Paul McKenney, John Ashby for
proofreading, correcting, flaming, commenting.
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Glossary
preemption Prior to 2.5, or when CONFIG_PREEMPT is unset, processes in user context in-

side the kernel would not preempt each other (ie. you had that CPU until you gave
it up, except for interrupts). With the addition of CONFIG_PREEMPT in 2.5.4,
this changed: when in user context, higher priority tasks can "cut in": spinlocks
were changed to disable preemption, even on UP.

bh Bottom Half: for historical reasons, functions with '_bh' in them often now refer to
any software interrupt, e.g. spin_lock_bh() blocks any software interrupt on
the current CPU. Bottom halves are deprecated, and will eventually be replaced
by tasklets. Only one bottom half will be running at any time.

Hardware Interrupt / Hardware
IRQ

Hardware interrupt request. in_irq() returns true in a hardware interrupt han-
dler.

Interrupt Context Not user context: processing a hardware irq or software irq. Indicated by the
in_interrupt() macro returning true.

SMP Symmetric Multi-Processor: kernels compiled for multiple-CPU machines.
(CONFIG_SMP=y).

Software Interrupt / softirq Software interrupt handler. in_irq() returns false; in_softirq() returns
true. Tasklets and softirqs both fall into the category of 'software interrupts'.

Strictly speaking a softirq is one of up to 32 enumerated software interrupts which
can run on multiple CPUs at once. Sometimes used to refer to tasklets as well (ie.
all software interrupts).

tasklet A dynamically-registrable software interrupt, which is guaranteed to only run on
one CPU at a time.

timer A dynamically-registrable software interrupt, which is run at (or close to) a giv-
en time. When running, it is just like a tasklet (in fact, they are called from the
TIMER_SOFTIRQ).

UP Uni-Processor: Non-SMP. (CONFIG_SMP=n).

User Context The kernel executing on behalf of a particular process (ie. a system call or trap)
or kernel thread. You can tell which process with the current macro.) Not to be
confused with userspace. Can be interrupted by software or hardware interrupts.

Userspace A process executing its own code outside the kernel.
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