Voltage and current regulator API

Liam Girdwood <l rg@l i m ogi c. co. uk>
Mark Brown, Wolfson Microelectronics
<br ooni e@pensour ce. wol f sonm cro. conp

Voltage and current regulator API
by Liam Girdwood and Mark Brown

Copyright © 2007-2008 Wolfson Microelectronics
Copyright © 2008 Liam Girdwood

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

O | gL oo (8 1o o R PO PRSPPI 1
GlOSSANY .ttt 1
2. CoNSUMEY AriVEr TNEEITACE ...ttt e e 2
Enabling and diSablinguoiiiiiiii e 2
1600]01 {10 U] 7= 1 o) o U TP PP PPPPPINS 2
CllDACKS ... 2
3. ReguIEtor driver INTEITACEcouei e ettt e 3
4. MBChINE INEEITACE ..oeeti ettt e e e e e e e e 4
SUPPITES ettt et e s 4
CONSITAINTS ...ttt e ettt e e e et bt e e e et bt e e et b e e e e bt eeeenaa s 4
B AP TEEIEINICE .. et een 5
struct pre_voltage change dalalcouuuiiiiiiiie e 6
struct regulator DUIK AaEao.uneie e 7
SEFUCE FEQUIBLOT _SEAEE ...ttt ettt e e e et e e e ana s 8
Struct regulation _CONSITAINTScciuti ettt e e e e e e 9
Struct regulator_CONSUMEY_SUPPIY ...ceerrneeiitteeeeti e e ettt e e eett e e e et eeeert e e e era e e eentneeeen 11
Struct reguIAtor TNt dBEA 12
SErUCE regUIBLOr_[INEAI _FBNGE ... eeeeei ettt et eeaa s 13
SEFUCE FEQUIBLOT OIS ..ttt ettt ettt e et e et e et e e e et e e e e aaa s 14
SEFUCE FEQUIBLOT _AESC ... ettt et e et e eeeba s 16
SEUCE FEQUIBLOT_CONFIG oevvt ettt e eaans 19
= [0 = (o o = AP P PP POPPPTORPPPIN 20
FEQUIBEON _GEL EXCIUSIVE ... ettt ettt e e 21
regulator_get OPLIONELccuuuiiiiii ettt e 22
=0 [0 = (o] o0 | PSP SPPPTPPN 23
regulator_register_SUPPIY _8lI8Suuniiiiiiiei e 24
regulator_unregister_SUPPIY_@liaSiiieiieiiii e 25
regulator_bulk_register_SUPPlY_@liascoouuuiiiiiiiee e 26
regulator_bulk_unregister SUPPIY_ali@Sveieiiiiiiiii e 27
FEQUIBEON _ENAIIE ...t et 28
FegUIBEON _diSADIE .. .oeeee e 29
regulator_force diSAIeooue i 30
regulator_disable deferredo 31
regulator is eNaDIEco.uiiii e e 32
regulator_Can_Change VOITAgEcuuuuiiiiii et 33
FEgUIBLON_COUNE_VOITBOES ceeeeiieeeeii ettt ettt ettt ettt e e e e e e e eneas 34
FegQUIBEON LISt VOITAGE ..ottt e eneens 35
regulator_get hardware VSEl regiSteroveiiiii e 36
regulator_list hardware VSE oo e 37
regulator_get liNEar _SEEP ...oevei i 38
regulator_iS SUPPOrEd VOITBOEceevriieiiii ettt e e e 39
FEQUIBEON_SEL VOITAJE ...ttt et enaas 40
regulator_Set VOItBgE tIMEiie e e 41
regulator_set voltage time SEl ... 42
FEQUIBEON _SYNC_VOITAOE ... eeeeii ettt ettt ettt ettt e e e e e e eeenan s 43
FEgQUIBEON _GEL VOITAGE ...oeeee ettt et e et e aeaas 44
regulator_set current TImit ... e e 45
regulator_get Current TIMit ... e e 46
(= oW 1= o s = Al 070 o (=P 47
= [U = (o o = i 10 L= TP PP TPPPPTTRPPPPPN 48
(=0 TU 1= o g = A [o PP 49

Voltage and current regulator API

regulator_allOW _DYPassuiiiiiii e 50
regulator register NOLITIENciiu i e e e e e eees 51
regulator_UNregister NOLITIErooun i e e e 52
=0 (U= (o g o 11 G o = S 53
regulator UK enablecooiiii e 54
regulator bUlK diSaIecconiiiiiii 55
regulator bulk _force disableooiiiiiiiii i 56
reguUIator DUIK FrEE ...ve e 57
regulator_notifier Call Chainoiiiiii 58
regulator_ MOOE t0 SEAIUScvvuieiii e e e e e e e e e e e et e e e aan s 59
= o1z (o g (=0 (= G 60
= o[z (o g 0] e £ (= 61
regulator SUSPENA PrEPEIEciuteeii e e et e et e e e et e e et e et e e et e e et e e et e e et eeaneaees 62
regulator_ suSPENd FINISNiii e 63
regulator_has full _CONSITAINTSoiiiiiiiiiieiii e e e e e e 64
(o (Yo 1= Ao [4Y/o = - PN 65
regulator gEL drVAaIacouniiiiiiei e 66
regulator SEt ArVAEIAoive i 67
10 1=V o 1= A0 o [68

Chapter 1. Introduction

Thisframework isdesigned to provide astandard kernel interface to control voltage and current regul ators.

The intention is to allow systems to dynamically control regulator power output in order to save power
and prolong battery life. This appliesto both voltage regulators (where voltage output is controllable) and
current sinks (where current limit is controllable).

Note that additional (and currently more complete) documentation is available in the Linux kernel source
under Docunent at i on/ power/ r egul at or.

Glossary

The regulator API uses a number of terms which may not be familiar:

Glossary

Regulator
Consumer
Power Domain

Power Management Integrated
Circuit

Electronic device that supplies power to other devices. Most regula-
tors can enable and disabl e their output and some can also control their
output voltage or current.

Electronic device which consumes power provided by a regulator.
These may either be static, requiring only afixed supply, or dynamic,
requiring active management of the regulator at runtime.

The electronic circuit supplied by agiven regulator, including the reg-
ulator and all consumer devices. The configuration of the regulator is
shared between all the components in the circuit.

An IC which contains numerous regulators and often also other sub-
systems. In an embedded system the primary PMIC is often equiva
lent to a combination of the PSU and southbridge in adesktop system.

Chapter 2. Consumer driver interface

This offersasimilar API to the kernel clock framework. Consumer drivers use get and put operations to
acquire and release regulators. Functions are provided to enable and disable the regulator and to get and
set the runtime parameters of the regulator.

When requesting regulators consumers use symbolic names for their supplies, such as "Vcc", which are
mapped into actual regulator devices by the machine interface.

A stub version of this API is provided when the regulator framework is not in use in order to minimise
the need to use ifdefs.

Enabling and disabling

Theregulator API provides reference counted enabling and disabling of regulators. Consumer devices use
ther egul at or _enabl e and r egul at or _di sabl e functions to enable and disable regulators.
Callsto the two functions must be balanced.

Note that since multiple consumers may be using a regulator and machine constraints may not allow the
regulator to be disabled there is no guarantee that calling r egul at or _di sabl e will actually cause the
supply provided by the regulator to be disabled. Consumer drivers should assume that the regulator may
be enabled at all times.

Configuration

Some consumer devices may need to be able to dynamically configure their supplies. For example, MMC
driversmay need to select the correct operating voltagefor their cards. Thismay be donewhiletheregulator
is enabled or disabled.

Ther egul at or _set _vol tage andregul ator_set _current limt functionsprovidethe
primary interface for this. Both take ranges of voltages and currents, supporting driversthat do not require
a specific vaue (eg, CPU frequency scaling normally permits the CPU to use a wider range of supply
voltages at lower frequencies but does not require that the supply voltage be lowered). Where an exact
value is required both minimum and maximum values should be identical.

Callbacks

Callbacks may also be registered for events such as regulation failures.

Chapter 3. Regulator driver interface

Driversfor regulator chips register the regulators with the regulator core, providing operations structures
to the core. A natifier interface allows error conditions to be reported to the core.

Registration should be triggered by explicit setup done by the platform, supplying a struct regula
tor_init_data for the regulator containing constraint and supply information.

Chapter 4. Machine interface

Thisinterface provides away to define how regulators are connected to consumers on a given system and
what the valid operating parameters are for the system.

Supplies

Regulator suppliesare specified using struct regulator_consumer_supply. Thisisdoneat driver registration
time as part of the machine constraints.

Constraints

Aswell asdefining the connections the machine interface al so provides constraints defining the operations
that clients are allowed to perform and the parameters that may be set. This is required since generally
regulator deviceswill offer moreflexibility than it is safeto use on agiven system, for example supporting
higher supply voltages than the consumers are rated for.

Thisisdone at driver registration time by providing a struct regulation_constraints.

The constraints may also specify an initial configuration for the regulator in the constraints, which is
particularly useful for use with static consumers.

Chapter 5. APl reference

Due to limitations of the kernel documentation framework and the existing layout of the source code the
entire regulator API is documented here.

API reference

Name
struct pre_voltage change data— Data sent with PRE_VOLTAGE_CHANGE event

Synopsis

struct pre_voltage_change_data {
unsi gned | ong ol d_uV;
unsi gned long mn_uV;
unsi gned | ong max_uV;

b
Members

old_ uvV Current voltage before change.
min_uV Min voltage we'll change to.

max_uV Max voltage we'll change to.

API reference

Name
struct regulator_bulk_data— Data used for bulk regulator operations.

Synopsis

struct regul ator_bul k_data {
const char * supply;
struct regul ator * consuner;

I

Members
supply The name of the supply. Initialised by the user before using the bulk regulator APIs.
consumer The regulator consumer for the supply. Thiswill be managed by the bulk API.

Description

The regulator APIs provide a series of r egul at or _bul k_ APl calls as a convenience to consumers
which require multiple supplies. This structure is used to manage data for these calls.

API reference

Name
struct regulator_state — regulator state during low power system states

Synopsis

struct regul ator_state {
int uVv,
unsi gned i nt node;
i nt enabl ed;

i nt disabled;
I
Members
uv Operating voltage during suspend.
mode Operating mode during suspend.

enabled Enabled during suspend.

disabled Disabled during suspend.

Description

This describes a regulators state during a system wide low power state. One of enabled or disabled must
be set for the configuration to be applied.

API reference

Name

struct regulation_constraints — regulator operating constraints.

Synopsis

struct regul ation_constraints {
const char * nane;
int mn_uV,
nt max_uV,;
nt uV_of fset;

nt max_uA;
nt ilimuA
nt system | oad;

unsi gned
unsi gned

[
[
[
int mn_uA;
[
[
[

int valid_nodes_mask;
i nt valid_ops_mask;

i nt input_uV;

struct regul ator_state state_disk;
struct regul ator_state state_mem
struct regul ator_state state_standby;
suspend_state_ t initial_state;

unsigned int initial_node;
unsi gned int ranp_del ay;
unsi gned int enable_tine;
unsi gned al ways_on: 1;
unsi gned boot _on: 1;
unsi gned apply_uV: 1;
unsi gned ranp_di sabl e: 1;
unsi gned soft_start:1;
unsi gned pul | _down: 1;
b
Members
name Descriptive name for the constraints, used for display purposes.
min_uV Smallest voltage consumers may set.
max_uV Largest voltage consumers may set.
uV_offset Offset applied to voltages from consumer to compensate for voltage drops.
min_uA Smallest current consumers may set.
max_uA Largest current consumers may set.
ilim_uA Maximum input current.
system load Load that isn't captured by any consumer requests.
valid_modes_mask Mask of modes which may be configured by consumers.
valid_ops mask Operations which may be performed by consumers.

API reference

input_uV Input voltage for regulator when supplied by another regulator.

state disk State for regulator when system is suspended in disk mode.

state_mem State for regulator when system is suspended in mem mode.

state_standby State for regulator when system is suspended in standby mode.

initial_state Suspend state to set by default.

initial_mode Mode to set at startup.

ramp_delay Time to settle down after voltage change (unit: uV/us)

enable time Turn-on time of the rails (unit: microseconds)

always on Set if the regulator should never be disabled.

boot_on Set if theregulator isenabled when the systemisinitially started. If theregulator

is not enabled by the hardware or bootloader then it will be enabled when the
constraints are applied.

apply_uv Apply the voltage constraint when initialising.

ramp_disable Disable ramp delay when initialising or when setting voltage.

soft_start Enable soft start so that voltage ramps slowly.

pull_down Enable pull down when regulator is disabled.
Description

This struct describes regulator and board/machine specific constraints.

10

API reference

Name

struct regulator_consumer_supply — supply -> device mapping

Synopsis

struct regul ator_consuner_supply {
const char * dev_nane;
const char * supply;

b
Members

dev_name Result of dev_nane for the consumer.

supply Name for the supply.

Description

Thismaps a supply nameto adevice. Use of dev_name allows support for buses which make struct device
available late such as 12C.

11

API reference

Name
struct regulator_init_data— regulator platform initialisation data.

Synopsis

struct regulator_init_data {
const char * supply_regul ator;
struct regul ation_constraints constraints;
i nt num _consuner _supplies;
struct regul ator_consuner_supply * consuner_suppli es;
int (* regulator_init) (void *driver_data);
void * driver_data;

I
Members
supply_regulator Parent regulator. Specified using the regulator name asit appearsin the
name field in sysfs, which can be explicitly set using the constraints
field 'name'.
constraints Constraints. These must be specified for the regulator to be usable.
num_consumer_supplies Number of consumer device supplies.
consumer_supplies Consumer device supply configuration.
regulator_init Callback invoked when the regulator has been registered.
driver_data Data passed to regulator_init.
Description

Initialisation constraints, our supply and consumers supplies.

12

API reference

Name

struct regulator_linear_range — specify linear voltage ranges

Synopsis

struct regul ator_Ilinear_range {
unsi gned int mn_uV,
unsi gned int min_sel;
unsi gned int max_sel;
unsi gned int uV_step;

b
Members

min_uvV Lowest voltage in range
min_sel Lowest selector for range
max_sel Highest selector for range

uv_step Step size

Description

Specify a range of voltages for regul at or _map_I| i nar_range and regul ator _list _lin-
ear _r ange.

13

API reference

Name

struct regulator_ops — regulator operations.

Synopsis

struct regul ator_ops {
int (* list_voltage) (struct regulator_dev *, unsigned sel ector);
int (* set_voltage) (struct regulator_dev *, int min_uV, int max_uV, unsigned *se
int (* map_voltage) (struct regulator_dev *, int mn_uV, int max_uV);
int (* set_voltage sel) (struct regul ator_dev *, unsigned selector);
int (* get_voltage) (struct regul ator_dev *);
int (* get_voltage sel) (struct regul ator_dev *);
int (* set_current_limt) (struct regulator_dev *,int mn_uA int nmax_uA);
int (* get_current _limt) (struct regulator_dev *);
int (* set_input_current limt) (struct regulator_dev *, int |limuA);
int (* enable) (struct regulator_dev *);
int (* disable) (struct regul ator_dev *);
int (* is_enabled) (struct regul ator_dev *);
int (* set_node) (struct regulator_dev *, unsigned int node);
unsigned int (* get _node) (struct regul ator_dev *);
int (* enable_tine) (struct regul ator_dev *);
int (* set_ranp_delay) (struct regulator_dev *, int ranp_delay);
int (* set_voltage time_sel) (struct regulator_dev *,unsigned int old selector,u
int (* set_soft _start) (struct regulator_dev *);
int (* get_status) (struct regul ator_dev *);
unsigned int (* get_ optinmmnode) (struct regulator_dev *, int input_uV,int outp
int (* set_load) (struct regulator_dev *, int |oad uA);
nt (* set_bypass) (struct regul ator_dev *dev, bool enable);
nt (* get bypass) (struct regul ator_dev *dev, bool *enable);
nt (* set_suspend voltage) (struct regulator_dev *, int uV);
nt (* set_suspend_enable) (struct regul ator_dev *);
nt (* set_suspend _disable) (struct regul ator_dev *);
nt (* set_suspend _nbde) (struct regulator_dev *, unsigned int node);

[
[
[
[
[
[
[
int (* set_pull_down) (struct regul ator_dev *);

1
Members

list_voltage Return one of the supported voltages, in microvolts; zero if the se-
lector indicates a voltage that is unusable on this system; or nega-
tive errno. Selectors range from zero to one less than regulator_de-
sc.n_voltages. Voltages may be reported in any order.

set_voltage Set the voltagefor theregulator within therange specified. Thedriver
should select the voltage closest to min_uV.

map_voltage Convert avoltage into a selector

set_voltage sel Set the voltage for the regulator using the specified selector.

get_voltage Return the currently configured voltage for the regulator.

get_voltage sel Return the currently configured voltage selector for the regulator.

14

API reference

set_current_limit

get_current_limit

set_input_current_limit

enable
disable

is enabled

set_mode
get_mode

enable_time

set_ramp_delay

set_voltage time sel

set soft start

get_status

get_optimum_mode

set load

set_bypass
get_bypass
set_suspend_voltage
set_suspend_enable
set_suspend_disable

set_suspend_mode

set_pull_down

Description

Configure a limit for a current-limited regulator. The driver should
select the current closest to max_uA.

Get the configured limit for a current-limited regulator.
Configure an input limit.

Configure the regulator as enabled.

Configure the regulator as disabled.

Return 1if theregulator isenabled, O if not. May also return negative
errno.

Set the configured operating mode for the regulator.
Get the configured operating mode for the regulator.

Time taken for the regulator voltage output voltage to stabilise after
being enabled, in microseconds.

Set the ramp delay for the regulator. The driver should select ramp
delay equal to or less than(closest) ramp_delay.

Time taken for the regulator voltage output voltage to stabilise after
being set to anew value, in microseconds. The function providesthe
from and to voltage selector, the function should return the worst
case.

Enable soft start for the regulator.

Return actual (not as-configured) status of regulator, asa REGULA-
TOR_STATUS value (or negative errno)

Get the most efficient operating mode for the regul ator when running
with the specified parameters.

Set the load for the regulator.

Set the regulator in bypass mode.

Get the regulator bypass mode state.

Set the voltage for the regulator when the system is suspended.
Mark the regulator as enabled when the system is suspended.
Mark the regulator as disabled when the system is suspended.

Set the operating mode for the regul ator when the system is suspend-
ed.

Configure the regulator to pull down when the regulator is disabled.

This struct describes regulator operations which can be implemented by regulator chip drivers.

15

API reference

Name

struct regulator_desc — Static regulator descriptor

Synopsis

struct
const char
const char
const char
const char
i nt
i nt
bool

i d;

*

*
*
*

regul ator _desc {

nane;

suppl y_nane;

of _match;
regul at or s_node;

(* of parse_cb) (struct device_node *,const struct

conti nuous_vol t age_r ange;

unsi gned n_vol t ages;
const struct

regul at or _ops * ops;

int irq;

enum regul ator _type type;
struct nodul e * owner

unsi gned int min_uV,

unsi gned int uV_step;
unsigned int |inear_mn_sel;
int fixed uV,

unsi gned int ranp_del ay;

i nt mn_dropout_uV,

const struct

i nt

regul ator_I|inear_range * |inear_ranges;
n_l i near _ranges;

const unsigned int * volt_table;

unsi gned i
unsi gned i
unsi gned i
unsi gned i
unsi gned i
unsi gned i
unsi gned i
unsi gned i
bool enabl
unsi gned i
unsi gned i
unsi gned i
unsi gned i

[

[

[

unsi gned
unsi gned
unsi gned

b
Members

name
supply_name

of _match

nt
nt
nt
nt
nt
nt
nt
nt
e i
nt
nt
nt
nt
nt
nt
nt

vsel _reg;

vsel mask;
apply_reg;
apply_bit;
enabl e_reg;
enabl e_nask;
enabl e_val ;

di sabl e_val ;
s_inverted;
bypass_reg;
bypass_nask;
bypass_val _on;
bypass_val _of f;
enabl e tine;
of f _on_del ay;

(* of _map_node) (unsigned int node);

I dentifying name for the regulator.
Identifying the regulator supply

Name used to identify regulator in DT.

regul at or _desc *, struct

16

API reference

regulators node

of parse cb

id

continuous_voltage range

n_voltages

ops

irq

type

owner

min_uV
uVv_step
linear_min_sel
fixed uv
ramp_delay
min_dropout_uV
linear_ranges
n_linear_ranges
volt_table

vsel reg
vsel_mask

apply_reg

apply_hit

enable reg
enable_mask

enable val

Name of node containing regulator definitionsin DT.

Optional callback called only if of_match is present. Will be called
for each regulator parsed from DT, during init_data parsing. The
regulator_config passed as argument to the callback will be a copy
of config passed to regulator_register, valid only for this particu-
lar call. Callback may freely change the config but it cannot store
it for later usage. Callback should return O on success or negative
ERRNO indicating failure.

Numerical identifier for the regulator.

Indicates if the regulator can set any voltage within constrains
range.

Number of selectors available for ops.l i st _vol t age.
Regulator operations table.

Interrupt number for the regulator.

Indicatesif the regulator is avoltage or current regulator.
Module providing the regulator, used for refcounting.
Voltage given by the lowest selector (if linear mapping)
Voltage increase with each selector (if linear mapping)
Minimal selector for starting linear mapping

Fixed voltage of rails.

Time to settle down after voltage change (unit: uV/us)
The minimum dropout voltage this regulator can handle
A constant table of possible voltage ranges.

Number of entriesinthel i near _r anges table.

V oltage mapping table (if table based mapping)

Register for selector when using regulator_regmap_X_voltage
Mask for register bitfield used for selector

Register for initiate voltage change on the output when using regu-
lator_set_voltage sel_regmap

Register hitfield used for initiate voltage change on the output when
using regulator_set voltage sel_regmap

Register for control when using regmap enable/disable ops
Mask for control when using regmap enabl e/disable ops

Enabling value for control when using regmap enable/disable ops

17

API reference

disable va

enable is inverted

bypass reg
bypass mask
bypass val_on
bypass val_off
enable time
off_on_delay

of_map_mode

Description

Disabling value for control when using regmap enable/disable ops

A flag to indicate set enable_mask bits to disable when using reg-
ulator_enable regmap and friends APIs.

Register for control when using regmap set_bypass

Mask for control when using regmap set_bypass

Enabling value for control when using regmap set_bypass
Disabling value for control when using regmap set_bypass
Time taken for initial enable of regulator (in uS).

guard time (in uS), before re-enabling a regulator

Maps ahardware mode defined in aDeviceTree to astandard mode

Each regulator registered with the core is described with a structure of thistype and a struct regulator_con-
fig. This structure contains the non-varying parts of the regulator description.

18

API reference

Name

struct regulator_config — Dynamic regulator descriptor

Synopsis

struct regul ator_config {

struct device * dev;

const struct regulator_init_data * init_data,;
void * driver_data;

struct device_node * of node;

struct regnmap * regnap;

bool ena_gpio_initialized;

i nt ena_gpi o;

unsi gned int ena_gpio_invert:1

unsi gned int ena_gpio_fl ags;

I
Members
dev struct device for the regulator
init_data platform provided init data, passed through by driver
driver_data private regulator data
of node OpenFirmware node to parse for device tree bindings (may be NULL).
regmap regmap to use for core regmap helpersif dev_get _r egnmap isinsuffi-
cient.
ena_gpio_initialized GPIO controlling regulator enable was properly initialized, meaning that
>=Qisavalid gpio identifier and < 0 is a non existent gpio.
ena gpio GPIO controlling regulator enable.
ena_gpio_invert Sense for GPIO enable control.
ena_gpio_flags Flagsto use when calling gpi o_r equest _one
Description

Each regulator registered with the coreis described with astructure of thistype and astruct regulator_desc.
This structure contains the runtime variable parts of the regulator description.

19

API reference

Name

regulator_get — lookup and obtain a reference to aregulator.

Synopsis

struct regulator * regul ator_get (struct device * dev, const char * id);

Arguments

dev devicefor regulator “ consumer”

id Supply name or regulator I1D.

Description

Returnsastruct regulator corresponding to the regulator producer, or I S_ERR condition containing errno.

Use of supply names configured viar egul at or _set _devi ce_suppl y isstrongly encouraged. Itis
recommended that the supply name used should match the name used for the supply and/or the relevant
device pinsin the datasheet.

20

API reference

Name
regulator_get _exclusive — obtain exclusive accessto a regulator.
Synopsis

struct regulator * regul ator_get_exclusive (struct device * dev, const
char * id);

Arguments

dev devicefor regulator “ consumer”

id Supply name or regulator I1D.

Description

Returnsastruct regulator corresponding to the regulator producer, or I S_ERR condition containing errno.
Other consumers will be unable to obtain this regulator while this reference is held and the use count for
the regulator will be initialised to reflect the current state of the regulator.

Thisisintended for use by consumerswhich cannot tol erate shared use of the regulator such asthose which
need to force the regulator off for correct operation of the hardware they are controlling.

Use of supply names configured viar egul at or _set devi ce_suppl y isstrongly encouraged. Itis
recommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.

21

API reference

Name

regulator_get_optional — obtain optional access to aregulator.
Synopsis

struct regulator * regulator_get _optional (struct device * dev, const
char * id);

Arguments

dev devicefor regulator “ consumer”

id Supply nameor regulator ID.
Description

Returnsastruct regulator corresponding to the regulator producer, or I S_ERR condition containing errno.

Thisisintended for use by consumers for devices which can have some supplies unconnected in normal
use, such as some MMC devices. It can alow the regulator core to provide stub suppliesfor other supplies

requested usingnormal r egul at or _get callswithout disrupting the operation of driversthat can handle
absent supplies.

Use of supply names configured viar egul at or _set devi ce_suppl y isstrongly encouraged. Itis

recommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.

22

API reference

Name

regulator_put — "free" the regulator source
Synopsis
void regul ator_put (struct regulator * regulator);

Arguments

regul at or regulator source

Note

drivers must ensure that all regulator_enable calls made on this regulator source are balanced by regula-
tor_disable calls prior to calling this function.

23

API reference

Name
regulator_register_supply_alias— Provide device alias for supply lookup

Synopsis

int regulator_register_supply_alias (struct device * dev, const char *
id, struct device * alias_dev, const char * alias_id);

Arguments
dev device that will be given as the regulator “ consumer”
id Supply name or regulator 1D

al i as_dev devicethat should be used to lookup the supply

alias_id Supply nameor regulator ID that should be used to lookup the supply

Description

All lookups for id on dev will instead be conducted for alias id on aias dev.

24

API reference

Name

regulator_unregister_supply_alias— Remove device adlias

Synopsis

voi d regul ator _unregi ster_supply_alias (struct device * dev, const char
*id);

Arguments
dev devicethat will be given as the regulator “consumer”

id Supply name or regulator ID

Description

Remove alookup aliasif one existsfor id on dev.

25

API reference

Name
regulator_bulk_register_supply_alias — register multiple aliases
Synopsis

int regulator_bulk register_supply_ alias (struct device * dev, const
char *const * id, struct device * alias_dev, const char *const * alias_id,
int num.id);

Arguments
dev device that will be given as the regulator “ consumer”
id List of supply names or regulator IDs

al i as_dev devicethat should be used to lookup the supply
alias_id Listof supply namesor regulator | Dsthat should be used to lookup the supply

num.i d Number of aliasesto register

Description

r et ur n 0 on success, an errno on failure.

This helper function allows driversto register several supply aliasesin one operation. If any of the aliases
cannot be registered any aliases that were registered will be removed before returning to the caler.

26

API reference

Name
regulator_bulk_unregister_supply_alias — unregister multiple aliases

Synopsis

voi d regul ator _bul k_unregi ster_supply_alias (struct device * dev,
char *const * id, int num.id);

Arguments
dev device that will be given as the regulator “ consumer”
id List of supply names or regulator IDs

num_id Number of aliasesto unregister

Description

This helper function allows drivers to unregister several supply aliases in one operation.

const

27

API reference

Name
regulator_enable — enable regulator output

Synopsis
int regul ator_enable (struct regulator * regulator);

Arguments

regul at or regulator source

Description

Request that the regulator be enabled with the regulator output at the predefined voltage or current value.
Cdllstor egul at or _enabl e must be balanced with callstor egul at or _di sabl e.

NOTE

the output value can be set by other drivers, boot loader or may be hardwired in the regulator.

28

API reference

Name
regulator_disable — disable regulator output

Synopsis
int regul ator_disable (struct regulator * regul ator);

Arguments

regul at or regulator source

Description

Disable the regulator output voltage or current. Callsto r egul at or _enabl e must be balanced with
calstor egul at or _di sabl e.

NOTE

thiswill only disabletheregulator output if no other consumer devices haveit enabled, the regulator device
supports disabling and machine constraints permit this operation.

29

API reference

Name
regulator_force disable — force disable regulator output

Synopsis
int regulator_force_disable (struct regulator * regulator);

Arguments

regul at or regulator source

Description

Forcibly disable the regulator output voltage or current.

NOTE

this *will* disable the regulator output even if other consumer devices have it enabled. This should be
used for situations when device damage will likely occur if the regulator is not disabled (e.g. over temp).

30

API reference

Name
regulator_disable_deferred — disable regulator output with delay

Synopsis

int regul ator_di sabl e_deferred (struct regulator * regulator, int mns);

Arguments

regul at or regulator source

ns miliseconds until the regulator is disabled
Description

Executer egul at or _di sabl e ontheregulator after adelay. Thisisintended for use with devices that
reguire some time to quiesce.

NOTE

thiswill only disabletheregulator output if no other consumer devices haveit enabled, theregulator device
supports disabling and machine constraints permit this operation.

31

API reference

Name
regulator_is_enabled — isthe regulator output enabled

Synopsis
int regulator_is_enabled (struct regulator * regul ator);

Arguments

regul at or regulator source

Description

Returns positive if the regulator driver backing the source/client has requested that the device be enabled,
zero if it hasn't, else a negative errno code.

Note that the device backing this regulator handle can have multiple users, so it might be enabled even if
regul at or _enabl e was never called for this particular source.

32

API reference

Name

regulator_can_change voltage — check if regulator can change voltage

Synopsis

i nt regul ator_can_change_vol tage (struct regul ator * regul ator);

Arguments

regul at or regulator source

Description

Returns positive if the regulator driver backing the source/client can change its voltage, false otherwise.
Useful for detecting fixed or dummy regulators and disabling voltage change logic in the client driver.

33

API reference

Name

regulator_count_voltages— count r egul at or _| i st _vol t age selectors

Synopsis

int regul ator_count _vol tages (struct regulator * regulator);

Arguments

regul at or regulator source

Description

Returns number of selectors, or negative errno. Selectors are numbered starting at zero, and typically
correspond to bitfieldsin hardware registers.

API reference

Name
regulator_list_voltage — enumerate supported voltages

Synopsis

int regulator_list_voltage (struct regulator * regulator, unsigned se-
| ector);

Arguments

regul at or regulator source

sel ector identify voltage to list

Context

can sleep

Description

Returns a voltage that can be passed tor egul at or _set _vol t age(), zero if this selector code can't
be used on this system, or a negative errno.

35

API reference

Name
regulator_get_hardware vsel_register — get the HW voltage selector register
Synopsis

i nt regul ator_get _hardware_vsel register (struct regulator * regul ator,
unsi gned * vsel _reg, unsigned * vsel _mask);

Arguments

regul at or regulator source
vsel reg voltage selector register, output parameter

vsel _mask mask for voltage selector bitfield, output parameter

Description

Returnsthe hardware register offset and bitmask used for setting the regulator voltage. Thismight be useful
when configuring voltage-scaling hardware or firmware that can make 12C requests behind the kernel's

back, for example.

On success, the output parametersvsel _reg andvsel _mask arefilled inand O isreturned, otherwise
anegative errno is returned.

36

API reference

Name
regulator_list_hardware vsel — get the HW-specific register value for a selector

Synopsis

int regulator_list_hardware_vsel (struct regul ator * regul ator, unsi gned
sel ector);

Arguments

regul at or regulator source

sel ector identify voltage to list

Description

Converts the selector to a hardware-specific voltage selector that can be directly written to the regulator
registers. The address of the voltage register can be determined by calling r egul at or _get _har d-
ware_vsel _register.

On error anegative errno is returned.

37

API reference

Name
regulator_get_linear_step — return the voltage step size between VSEL values

Synopsis

unsi gned int regulator_get linear_step (struct regulator * regulator);

Arguments

regul at or regulator source

Description

Returns the voltage step size between VSEL values for linear regulators, or return O if the regulator isn't
alinear regulator.

38

API reference

Name

regulator_is supported voltage — check if avoltage range can be supported

Synopsis

int regulator_is_supported voltage (struct regulator * regulator, int
mn_uV, int max_uV);

Arguments
regul at or Regulator to check.
m n_uV Minimum required voltage in uV.
max_uV Maximum required voltage in uV.
Description

Returns a boolean or a negative error code.

39

API reference

Name
regulator_set voltage — set regulator output voltage

Synopsis

int regulator_set voltage (struct regulator * regulator, int mn_uV,
i nt max_uV);

Arguments
regul at or regulator source
m n_uV Minimum required voltagein uVv
max_uV Maximum acceptable voltage in uvV
Description

Sets a voltage regulator to the desired output voltage. This can be set during any regulator state. IOW,
regulator can be disabled or enabled.

If the regulator is enabled then the voltage will change to the new value immediately otherwise if the
regulator is disabled the regulator will output at the new voltage when enabled.

NOTE

If the regulator is shared between several devices then the lowest request voltage that meets the system
constraints will be used. Regulator system constraints must be set for this regulator before calling this
function otherwise this call will fail.

40

API reference

Name
regulator_set voltage time — get raise/fall time

Synopsis

int regulator_set_voltage time (struct regulator * regulator, int
old_uV, int new uV);

Arguments
regul at or regulator source
ol d_uVv starting voltage in microvolts
new_uV target voltage in microvolts
Description

Provided with the starting and ending voltage, this function attemptsto cal culate the time in microseconds
required to rise or fall to this new voltage.

41

API reference

Name
regulator_set voltage time sel — get raise/fall time
Synopsis

int regulator_set_voltage tine_sel (struct regulator_dev * rdev, un-
signed int old_selector, unsigned int new sel ector);

Arguments

rdev regulator source device
ol d_sel ect or selector for starting voltage

new _sel ect or selector for target voltage

Description

Provided with the starting and target voltage selectors, this function returns time in microseconds required
torise or fal to this new voltage

Driversproviding ramp_delay in regulation_constraints can usethisastheirset _vol t age_t i ne_sel
operation.

42

API reference

Name
regulator_sync_voltage — re-apply last regulator output voltage

Synopsis

int regulator_sync_voltage (struct regulator * regulator);

Arguments

regul at or regulator source

Description

Re-apply the last configured voltage. Thisis intended to be used where some external control source the
consumer is cooperating with has caused the configured voltage to change.

43

API reference

Name
regulator_get voltage — get regulator output voltage

Synopsis
int regulator_get_voltage (struct regulator * regulator);

Arguments

regul at or regulator source

Description

This returns the current regulator voltagein uV.

NOTE

If the regulator is disabled it will return the voltage value. This function should not be used to determine
regulator state.

API reference

Name

regulator_set_current_limit — set regulator output current limit
Synopsis

int regulator_set_current_limt (struct regulator * regulator, int
m n_uA, int max_uA);

Arguments
regul at or regulator source
m n_uA Minimum supported current in uA
max_uA Maximum supported current in uA
Description

Sets current sink to the desired output current. This can be set during any regulator state. |OW, regulator
can be disabled or enabled.

If the regulator is enabled then the current will change to the new value immediately otherwise if the
regulator is disabled the regulator will output at the new current when enabled.

NOTE

Regulator system constraints must be set for this regulator before calling this function otherwise this call
will fail.

45

API reference

Name

regulator_get current_limit — get regulator output current
Synopsis
int regulator_get _current_limt (struct regulator * regulator);

Arguments

regul at or regulator source

Description

This returns the current supplied by the specified current sink in uA.

NOTE

If the regulator is disabled it will return the current value. This function should not be used to determine
regulator state.

46

API reference

Name
regulator_set mode — set regulator operating mode

Synopsis

int regulator_set_node (struct regulator * regulator, unsigned int

node) ;
Arguments

regul at or regulator source

node operating mode - one of the REGULATOR_MODE constants
Description

Set regulator operating mode to increase regulator efficiency or improve regulation performance.

NOTE

Regulator system constraints must be set for this regulator before calling this function otherwise this call
will fail.

47

API reference

Name
regulator_get mode — get regul ator operating mode

Synopsis

unsi gned int regul ator_get _node (struct regulator * regulator);

Arguments

regul at or regulator source

Description

Get the current regulator operating mode.

48

API reference

Name
regulator_set load — set regulator load

Synopsis

int regulator_set load (struct regulator * regulator, int uA_|oad);

Arguments
regul at or regulator source
uA_| oad load current
Description

Notifies the regulator core of anew deviceload. Thisisthen used by DRMS (if enabled by constraints) to
set the most efficient regulator operating mode for the new regulator loading.

Consumer devices notify their supply regulator of the maximum power they will require (can be taken
from device datasheet in the power consumption tables) when they change operationa status and hence
power state. Examples of operational state changes that can affect power

consumption are

0 Device is opened / closed. o Device I/O is about to begin or has just finished. o Device isidling in
between work.

Thisinformation is also exported via sysfs to userspace.

DRMSwill sum the total requested load on the regulator and change to the most efficient operating mode
if platform constraints allow.

On error anegative errno is returned.

49

API reference

Name

regulator_allow_bypass — allow the regulator to go into bypass mode

Synopsis

int regul ator_all ow bypass (struct regul ator * regul ator, bool enable);

Arguments

regul at or Regulator to configure

enabl e enable or disable bypass mode
Description

Allow the regulator to go into bypass mode if all other consumers for the regulator also enable bypass
mode and the machine constraints allow this. Bypass mode means that the regulator is simply passing the
input directly to the output with no regulation.

50

API reference

Name

regulator_register_notifier — register regulator event notifier

Synopsis

int regulator_register_notifier (struct regulator * regulator, struct
notifier_block * nb);

Arguments
regul at or regulator source
nb notifier block
Description

Register notifier block to receive regulator events.

51

API reference

Name

regulator_unregister_notifier — unregister regulator event notifier

Synopsis

int regulator_unregi ster_notifier (struct regulator * regulator, struct
notifier_block * nb);

Arguments
regul at or regulator source
nb notifier block
Description

Unregister regulator event notifier block.

52

API reference

Name
regulator_bulk_get — get multiple regulator consumers

Synopsis

int regulator_bul k_get (struct device * dev, int numconsumers,
regul at or _bul k_data * consumners);

Arguments

dev Deviceto supply
num consumner s Number of consumersto register

consuners Configuration of consumers; clients are stored here.

Description

r et ur n 0 on success, an errno on failure.

struct

This helper function allows drivers to get severa regulator consumers in one operation. If any of the
regulators cannot be acquired then any regulators that were allocated will be freed before returning to the

caler.

53

API reference

Name

regulator_bulk_enable — enable multiple regulator consumers

Synopsis

i nt regul ator_bul k_enabl e (int numconsunmers, struct regul ator_bul k_da-
ta * consumers);

Arguments

num consumer s Number of consumers

consuner s Consumer data; clients are stored here. r et ur n 0 on success, an errno on failure
Description

This convenience API allows consumers to enable multiple regulator clientsin asingle API call. If any
consumers cannot be enabled then any others that were enabled will be disabled again prior to return.

API reference

Name
regulator_bulk_disable — disable multiple regulator consumers

Synopsis

i nt regul at or _bul k_di sable (int num CONSUITer s, st ruct regul a-
tor_bul k_data * consumers);

Arguments

num consumer s Number of consumers

consuner s Consumer data; clients are stored here. r et ur n 0 on success, an errno on failure
Description

This convenience APl alows consumers to disable multiple regulator clientsin asingle API call. If any
consumers cannot be disabled then any others that were disabled will be enabled again prior to return.

55

API reference

Name

regulator_bulk_force_disable — force disable multiple regulator consumers
Synopsis

int regulator_bulk force_disable (int numconsumers, struct regula-
tor_bul k_data * consumers);

Arguments

num consumer s Number of consumers

consuner s Consumer data; clients are stored here. r et ur n 0 on success, an errno on failure
Description

This convenience API allows consumers to forcibly disable multiple regulator clientsin asingle API call.

NOTE

This should be used for situations when device damage will likely occur if the regulators are not disabled
(e.g. over temp). Although regulator_force disablefunction call for some consumers can return error num-
bers, the function is called for al consumers.

56

API reference

Name

regulator_bulk_free — free multiple regulator consumers

Synopsis

void regul ator_bul k_free (int numconsuners, struct regul ator_bul k_data
* consumers);

Arguments

num consumer s Number of consumers

consuners Consumer data; clients are stored here.
Description

This convenience API allows consumers to free multiple regulator clientsin asingle API call.

57

API reference

Name

regulator_notifier_call_chain — call regulator event notifier

Synopsis

int regulator_notifier_call_chain (struct regul ator_dev * rdev, unsi gned
| ong event, void * data);

Arguments
rdev regulator source
event notifier block

data callback-specific data

Description

Called by regulator driversto notify clients aregulator event has occurred. We also notify regulator clients
downstream. Note lock must be held by caller.

58

API reference

Name

regulator_mode to_status — convert a regulator mode into a status
Synopsis
int regul ator_node_to_status (unsigned int node);

Arguments

node Mode to convert

Description

Convert aregulator mode into a status.

59

API reference

Name
regulator_register — register regulator

Synopsis

struct regul ator_dev * regul ator_register (const struct regul ator_desc
* regul ator_desc, const struct regulator_config * cfg);

Arguments

regul at or _desc regulator to register

cfg runtime configuration for regulator
Description

Called by regulator driversto register aregulator. Returnsavalid pointer to struct regulator_dev on success
or an ERR_PTRon error.

60

API reference

Name
regulator_unregister — unregister regulator

Synopsis
void regul ator_unregi ster (struct regul ator_dev * rdev);

Arguments

rdev regulator to unregister

Description

Called by regulator driversto unregister aregulator.

61

API reference

Name

regulator_suspend_prepare — prepare regulators for system wide suspend
Synopsis

i nt regul ator_suspend_prepare (suspend_state_ t state);
Arguments

state system suspend state
Description

Configure each regulator with it's suspend operating parameters for state. This will usually be called by
machine suspend code prior to supending.

62

API reference

Name

regulator_suspend_finish — resume regulators from system wide suspend
Synopsis
i nt regul ator_suspend_finish (void);

Arguments

voi d noarguments

Description

Turn on regulators that might be turned off by regulator_suspend_prepare and that should be turned on
according to the regulators properties.

63

API reference

Name

regulator_has full_constraints — the system has fully specified constraints

Synopsis

void regul ator_has_full _constraints (void);

Arguments

voi d noarguments

Description

Calling thisfunction will cause the regulator API to disable al regulators which have a zero use count and
don't have an always_on constraint in alate_initcall.

Theintention is that this will become the default behaviour in afuture kernel release so users are encour-
aged to use this facility now.

API reference

Name
rdev_get_drvdata— get rdev regulator driver data

Synopsis

void * rdev_get _drvdata (struct regul ator_dev * rdev);

Arguments

rdev regulator

Description

Get rdev regulator driver private data. This call can be used in the regulator driver context.

65

API reference

Name
regulator_get drvdata— get regulator driver data

Synopsis

void * regul ator_get _drvdata (struct regulator * regulator);

Arguments
regul at or regulator

Description

Get regulator driver private data. This call can be used in the consumer driver context when non API
regulator specific functions need to be called.

66

API reference

Name
regulator_set drvdata— set regulator driver data

Synopsis
voi d regul ator_set _drvdata (struct regulator * regulator, void * data);

Arguments

regul at or regulator

dat a data

67

API reference

Name
rdev_get_id — get regulator ID

Synopsis
int rdev_get_id (struct regul ator_dev * rdev);

Arguments

rdev regulator

68

	Voltage and current regulator API
	Table of Contents
	Chapter 1. Introduction
	Glossary
	Glossary

	Chapter 2. Consumer driver interface
	Enabling and disabling
	Configuration
	Callbacks

	Chapter 3. Regulator driver interface
	Chapter 4. Machine interface
	Supplies
	Constraints

	Chapter 5. API reference
	struct pre_voltage_change_data
	struct regulator_bulk_data
	struct regulator_state
	struct regulation_constraints
	struct regulator_consumer_supply
	struct regulator_init_data
	struct regulator_linear_range
	struct regulator_ops
	struct regulator_desc
	struct regulator_config
	regulator_get
	regulator_get_exclusive
	regulator_get_optional
	regulator_put
	regulator_register_supply_alias
	regulator_unregister_supply_alias
	regulator_bulk_register_supply_alias
	regulator_bulk_unregister_supply_alias
	regulator_enable
	regulator_disable
	regulator_force_disable
	regulator_disable_deferred
	regulator_is_enabled
	regulator_can_change_voltage
	regulator_count_voltages
	regulator_list_voltage
	regulator_get_hardware_vsel_register
	regulator_list_hardware_vsel
	regulator_get_linear_step
	regulator_is_supported_voltage
	regulator_set_voltage
	regulator_set_voltage_time
	regulator_set_voltage_time_sel
	regulator_sync_voltage
	regulator_get_voltage
	regulator_set_current_limit
	regulator_get_current_limit
	regulator_set_mode
	regulator_get_mode
	regulator_set_load
	regulator_allow_bypass
	regulator_register_notifier
	regulator_unregister_notifier
	regulator_bulk_get
	regulator_bulk_enable
	regulator_bulk_disable
	regulator_bulk_force_disable
	regulator_bulk_free
	regulator_notifier_call_chain
	regulator_mode_to_status
	regulator_register
	regulator_unregister
	regulator_suspend_prepare
	regulator_suspend_finish
	regulator_has_full_constraints
	rdev_get_drvdata
	regulator_get_drvdata
	regulator_set_drvdata
	rdev_get_id

