lIbATA Developer's Guide

Jeff Garzik

libATA Developer's Guide

by Jeff Garzik
Copyright © 2003-2006 Jeff Garzik

The contents of this file are subject to the Open Software License version 1.1 that can be found at http://fedoraproject.org/wiki/Licensing:OSL 1.1
and isincluded herein by reference.

Alternatively, the contents of this file may be used under the terms of the GNU General Public License version 2 (the "GPL") as distributed in the
kernel source COPYING file, in which case the provisions of the GPL are applicable instead of the above. If you wish to allow the use of your
version of thisfile only under the terms of the GPL and not to allow others to use your version of this file under the OSL, indicate your decision
by deleting the provisions above and replace them with the notice and other provisions required by the GPL. If you do not delete the provisions
above, arecipient may use your version of thisfile under either the OSL or the GPL.

http://fedoraproject.org/wiki/Licensing:OSL1.1

Table of Contents

O g 11 oo 1o (o o PP 1
A] o = B L Y N PP 2
SErUCE B8 POMT_OPEIAIONS ...eeeeiti ettt ettt ettt e et et e e e e e e e e enaans 2
DiSaDIE ATA PO ettt e et e e e e 2
Post-IDENTIFY device CONfigUIationcoeuuuieririieiiiiie et 2

Set PIO/DMA MOUE ...ttt e e e et e e e e e e eees 2
Taskfile rEaO/WIITEe e e e e 3

PIO data rea0/WIITE ... e et e 3

ATA COMMANA EXECULEeneeeieeii et e e e e e et e e e et e e et e e ean e eanas 3
Per-cmd ATAPI DMA capabilities filter ... 3

Read specific ATA Shadow regiStersuu i e 3
Write specific ATA ShadOW FEgISIEru i 4
Select ATA deviCE ON DUSoeee e 4
Private tuning MEthodouiiiiii e 4
Control PCl IDE BMDMA ENJINE ...coetiiiiiiiiieeeeite ettt e e eenens 4
High-level taskfile NOOKSoooiiii e 5
Exception and probe handling (EH)coouiiiiiii e 5
Hardware interrupt handlingcooouuiiiiiii e 6
SATA PIY FEBOIIITE ..c.eui e 6

T T =g To IR 1o [0 VY o P 7

S EITOr NANGIING ..o 8
Origing Of COMIMENGSoiiiitieeiiit ettt e e e et e et e e e et eeeabaes 8
HOW COMMANGS @r€ ISSUBHuiiieiiii ettt e e e et e et e et e e e eeans 8
HOW COMMANAS @I PrOCESSEUuiiiiiiiee ettt ettt ettt ettt et e e e e e e ennes 9
How commands are COMPIELEAiiiiiiiieii e 9
et B o = 1 (0) PP UOPPTT 10
Problems with the CUrent EH e 10
A, [IDAEA LIDIary ..o e 12
= N 1T G 1= P 13
= N0 L=V = PP 14
=tz o 00010 [Y o= PSP TSPPPTR 15
1= N (o T PPN 16
ata T TOM FIS oo 17
Ata PACK XFEITNASK ...t ettt et e e e e e 18
ata UNPACK XFEIMESK ... it e et e e e e e e e 19
ata XFer MaskZ2MOUEcoiniiii e e 20
1= N = S 1010 (S 1= PN 21
ata Xfer MOdE2SNift ... 22
2t B 01010 LI (10 To [P PP SPPRTR 23
AA BV ClaSSITY et e 24
=t Lo B (10 To [T PP UPPPPTTRUPPPN 25
= N Lo B o= 1 oo [PSP PTRPPTR 26
AA T XFEIMBSK ... 27
= oI I 0= <o [o] (0 |V PP 28
= W o o I o L= VA (="='o [o PP 29
A CADIE AOWITE ...eeiie e e 30
A CADIE BOWITE . .eeiiie i e 31
ata CaDIE UNKIMOWN L .ueie e e e e e e e e et e et e e e e e e e e e e eanes 32
o = R o= o [T o g0 (PP 33
AA CADIE SAIA ...ivuii i 34
= W0 L=V = T PPN 35

[ibATA Developer's Guide

LSS = = A oo P 36
ata timiNG_CYCIEZMOUE ... ceeiiii e e e e e e eeas 37
= - W0 (O T =LA 1110 o < PP 38
e s IV L 1L G (== = AP 39
1SS r= N T S0 (= o100 g o PP 40
1SS r= N 1 S (== U 2= PP 41
1S r= N 10 S o 1 o0 PP 42
s N (0 0= (=== = S 43
Sata [INK_NardrESELiii e 44
1SS r= N (o B 4= 0 (1= = P 45
s N (0 0101 1 (== (PP 46
s W0 VS = W = (1 (=T 47
= N (o [(o o (= (= S P 48
1= NS o 1 49
2 W0 o o o)1 1= (= T 50
ata gC_COMPIELE MUITIPIE .. ceee e e e e e eeas 51
1SS r= = o V7 Lo 52
1SS r= NS o == o N 53
1SS r= = o 1 (= 54
sata SCr WHEE FIUSN ..eeie e 55
AEA LINK ONIINE oee e e e e e e e e 56
ata [INK OFflING .. ooee e e 57
s 01 A U = o P 58
s L0 A (=0 1= PP 59
AA NOSE AlIOC .ouiiiiie e e 60
ata host allOC PINFO c.uvuiiii e 61
1= WS - VL= L1 0)G S 62
= N (01 A ! P 63
AEA NOSE NIt .oeeee e 64
s W (0L Al =01 (= S P 65
s W (1S A o1 Y/ (= 66
AA NOSE AELACNiiie e 67
= W o Lo I (= 0.110)Y/= T o L= P 68
ata PlatfOrmM FEMOVE ONEiiii e e e e e e e e e e e aaaas 69
1 11 L= = o 70
s N1V L (= [(= P 71
sata |pm_ignore PhY BVENESu.iii e 72
5. 11hata Core INEEINEISeiieiiieeei et e et e e et e e e et e e e et e e eenanns 73
ata dev_PhYS TINK ..o 74
AEA FOICE ChI ..o 75
ata force lINK _TIMITS ...ouuiii e e e e eaa s 76
s R 0 A L= €117 P 77
s R0 oY 2101 o (T 78
1= W7o 100 N o) o P 79
ata tf read DlOCK ...ocveii 80
1= 1 0 1011 o [81
ata read Native MaX_adOrESSccvuiiiieiiii e e e 82
A8 SEL M _SECEOIS ouiititiit ittt ettt ettt et e e et e e e e e 83
BEA NP TESIZE .oe i 84
12 1 o L0 0]« T o S 85
e W G ol 01 (= 0= R © [86
s N == o1 1= 07 PP 87
s W oL T 10T = G 4o N o (o | 88
1= W0 L=V (== o I o 89

[ibATA Developer's Guide

1= W0 =V o 11 o 0= T 20
ALA DUS PrODE ..o 91
Sata PHNE TINK SEAEUS ...ieicc e e e e e e e e e e e e e aaas 92
sata dOWN_SPA TIMIt c.oee e 93
Sata Set SPA NEEAEH ... 94
ata down XFErmask [IMIToiiiiii e e e 95
s N1 LA (== @ 96
s W0 V= 0 ST L=/ ot 97
ata deV rereal 10 98
AlA AV TEVAIIAEIE ... ceve e 99
= W ISR L0111 (PN 100
CADIE IS AOWITE ..iie et e e e e e 101
AlA BV XFOIMASK ..oiie i 102
ata dev_Set XFEIMOOEceeiiii e e 103
s W0 VA L 0= = 0 1N 104
= I o L= P 105
atapi ChECK AMa ... i e e 106
= e RS o [(U] o T PRt 107
LYz o T oL = PP 108
1= 1 0 (o3 1= 1Y 1 11 S 109
1= o O 1 (== 110
1 0 o U < 111
ata PhYS TINK ONIINE ... e e e e e e eaaees 112
ata Phys HINK_OffliNE ...u.iie e e 113
1= 1 0 L=V 1 1 PP 114
1= W 110 T 115
1SS r= N 1 ST AR oo 116
1= 010 A= oo PPN 117
AtA FINAlIZE POI OPS .ivniiiii e e e e e 118
ata POt AEtBCR ..o 119
6. libata SCSI translation/EMUIBLIONcuuuiiieiiii et e e e e e ere e eaens 120
ata St DIOS PAIaIM ... e 121
ata SCSi_UNIOCK _NatiVe CAPACITY ...cevniiinieii e e e e e e eans 122
2= IS o T = Y/ I o) 1 o P 123
eI S s T = VAo = 1 (0, AP 124
__ata change queue depth ... 125
ata scsi_change queue depthcoii i 126
=1z IS o TR0 100 =0 1 1o [127
= NS o T 10101 (= T 128
AA SAS PO AIOC oovniii e e 129
A8 SAS POIT SIANT .. oivieiiii e 130
B8 SAS PIONT SIOP ettt 131
AlA SAS ASYNC PrOBE ... 132
2 = S 10 A1 1 S 133
s R S 010 A0 === (0P 134
ala SAS SAVE CONFIQUIE ...eveiiii e e e e e e e e e aaas 135
2= R SR 0 (0.0 (=0 1 1o [136
1= 10 (= G0 (= 0111 Y2 P 137
1= 1 @ .01 N o | 138
= = = G oo 1 P 139
= NS o o (ol 0=, A 140
2 0 L0] T = 0P 141
e e R (O = 1S = (0] S PP 142
= e o (= A I S < 0 PP 143

[ibATA Developer's Guide

atapi_drain NEEAEAuiiii i 144
RS e T = LA (0] oI - P 145
AtA SCS_FIUSN XIGE .oniiii i e 146
1S o ST 1 7= Y = o 147
SCSL 10 DA JEN oot 148
SCSI_ 16 DA JEN Lo 149
=z S s T/ (1= 150
ez IS o T L AL P 151
2 ez RS o T = 1 - (T 152
AEA SCH TBUF B .iuniiii e e 153
=z NS o T4 01U o LU | PN 154
ata SCS_TBUF il oo e 155
= ez NS o= o) o T 1 0o R [P 156
= = IS o= o) o T 1 2o N 0O PP 157
=z S o= To) o T 1 0o R > O P 158
= ez IS o= To) o T 1 0o R > P 159
ez S o= To) o T 0o R S PP 160
= = NS o= 0] o T 1[0 o o R 161
0100 = o o P 162
s W0 = 1S SR o] oo [163
o W0 = 1S SR 0 11 PP 164
A8 MSENSE TW_TECOVETY iuuitiitetieietett ettt et et e et r et e et et et et et et et r et e et et e et n et e e r et eeaees 165
eIz S s [0 O T 10100 (ST = = - P 166
eIz e Lo o T == o oo H 167
=1z IS o= 1o o B (= oo Al 10 [0SR 168
7= 1o = | PR 169
= = NS o= T 11010 o =2 170
ALA SCI_PASS TIIU ... e 171
ata format_dSM M AESCr ...ouveiii e 172
ata fOrmat SCt WITE SAMEiiie e e e e e eaes 173
ata SCS Wt SAME XIAL .oove i e 174
= ez IS o= T0) o B 10711 0| A1 o P 175
ata SCSI_report ZoNeS COMPIELEive it ee e e e e e e e e e e e e e e e e eaaees 176
ata MSEIECt CACING ... 177
= W0 = L= A 0 1 (o 178
ata SCS_MOAE SEIECE XIAL c.vuiiii i 179
Ata GEL XIA FUNC .oeei e 180
Ala SCS_AUMP COD L. e 181
ata SCS_OffliNE BV ..ooveiie e 182
eIz IS s T (= 0010V I o .Y AN 183
ata scsi_media change NOLITYociviiii e e 184
= = NS o= T 01011 o) LU To 185
IS s TV = g o 186
EE IS s T (YA (=< o 187
7. ATA €Tors and EXCEPLIONS .. .cuuuiiii et e et e e e e e e e e et e e et e e et e e e e e et e e et e eernaeeees 188
(W= o g I = (0] =N 188
L Y YT = o PP 188
ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION)cccccvvvevinnnnnnn. 188
ATAPI device CHECK CONDITIONcuuuiiiiiiiieieiiiieeeeii e e e e e e s 190
ATA device error (NCQ) ..ovvuiiiiieiii e e e e e e e e e eaa e 190
ATA DUS BITOF ..t e et e e et e e e et e e e et e eeneen 190

O I o UL = o PSP 191

(= (oo 410 = (o] o TP 191
UNKNOWN €rror (IMEOUL)cvvveieei et e e e e e e e e e e e e e e e e e e et e e et e e eaaeees 191

Vi

[ibATA Developer's Guide

Hotplug and power management EXCEPLIONSeevuuieiiiieiiieeeiiieeieeee e e e eaneeens 191

[e I = w0V VA ox (o) S 191
Clearing error CONAILIONciuuneiiiici e e e e e e et e e e e eaaees 191

RESEL .ttt ettt e e et e e a e a1 191
RECONTIQUIE traNSPOITvviiii e e e e e e et e et e e e aanas 193

I e B o1 D 11 (= 1 7= 194
ich_pata Cable dELECEc.uuiiii i e 195

T o = 01 (== = AP 196
PHX_SEL PIOMOOE . .ovuiiiiiieii e e e e e e e e e e et e et e et e e e e eaas 197
do_pata SEt dMAMOOEuiiii e e e e 198

TS =i 0|17 01010 o L= P 199

o g TS = Ao 10100 To TP 200

TTD N 41= e L0 g G = - - S 201

T D L o = PN 202

I vz R I 1= 1 0 PN 203
LS IR = A 100 o L= 204

LS I L=V o 1 o 205

0T I 1 7= 01 206

Vii

Chapter 1. Introduction

libATA is alibrary used inside the Linux kernel to support ATA host controllers and devices. libATA
providesan ATA driver API, classtransportsfor ATA and ATAPI devices, and SCSI<->ATA trandation
for ATA devices according to the T10 SAT specification.

This Guide documents the libATA driver API, library functions, library internals, and a couple sample
ATA low-level drivers.

Chapter 2. libata Driver API

struct ata_port_operations is defined for every low-level libata hardware driver, and it controls how the
low-level driver interfaces with the ATA and SCSI layers.

FIS-based driverswill hook into the system with ->qc_prep() and ->qc_issue() high-level hooks. Hardware
which behaves in a manner similar to PCI IDE hardware may utilize several generic helpers, defining at
a bare minimum the bus I/O addresses of the ATA shadow register blocks.

struct ata_port_operations
Disable ATA port

void (*port _disable) (struct ata_port *);

Called from ata_bus probe() error path, as well as when unregistering from the SCSI module (rmmod,
hot unplug). This function should do whatever needs to be done to take the port out of use. In most cases,
ata port_disable() can be used as this hook.

Called from ata_bus_probe() on afailed probe. Called from ata_scsi_release().

Post-IDENTIFY device configuration

void (*dev_config) (struct ata port *, struct ata_device *);

Called after IDENTIFY [PACKET] DEVICE is issued to each device found. Typically used to apply
device-specific fixups prior to issue of SET FEATURES - XFER MODE, and prior to operation.

This entry may be specified asNULL in ata_port_operations.

Set PIO/DMA mode

void (*set_pionpode) (struct ata port *, struct ata_device *);

void (*set_dmanode) (struct ata port *, struct ata_device *);

void (*post_set_npde) (struct ata_port *);

unsigned int (*node_filter) (struct ata_port *, struct ata_device *, unsigned int)

Hooks called prior to the issue of SET FEATURES - XFER MODE command. The optional ->mode_fil-
ter() hook iscalled when libata has built amask of the possible modes. Thisis passed to the->mode filter()
function which should return amask of valid modes after filtering those unsuitable due to hardware limits.
Itisnot valid to use this interface to add modes.

dev->pio_mode and dev->dma_mode are guaranteed to be valid when ->set_piomode() and when ->set_d-
mamode() is called. The timings for any other drive sharing the cable will also be valid at this point. That
isthe library records the decisions for the modes of each drive on a channel before it attempts to set any
of them.

libata Driver APl

->post_set_ mode() is called unconditionally, after the SET FEATURES - XFER MODE command com-
pletes successfully.

->set piomode() is always called (if present), but ->set_dma _mode() isonly called if DMA ispossible.

Taskfile read/write

void (*sff_tf_load) (struct ata port *ap, struct ata taskfile *tf);
void (*sff_tf_read) (struct ata port *ap, struct ata taskfile *tf);

->tf_load() iscalled toload the given taskfileinto hardwareregisters/ DMA buffers. ->tf_read() iscalledto
read the hardware registers/ DMA buffers, to obtain the current set of taskfile register values. Most drivers
for taskfile-based hardware (PIO or MMIO) use ata sff tf load() and ata_sff_tf read() for these hooks.

PIO data read/write

void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);

All bmdma-style drivers must implement this hook. Thisisthelow-level operation that actually copiesthe
data bytes during a PIO data transfer. Typically the driver will choose one of ata sff data xfer_noirq(),
ata_sff_data xfer(), or ata_sff_data xfer32().

ATA command execute

void (*sff_exec_command) (struct ata_port *ap, struct ata_taskfile *tf);

causes an ATA command, previously loaded with ->tf_load(), to be initiated in hardware. Most drivers
for taskfile-based hardware use ata_sff_exec_command() for this hook.

Per-cmd ATAPI DMA capabilities filter

int (*check_atapi_dm) (struct ata_queued_cnd *qc);

Allow low-level driver to filter ATA PACKET commands, returning a status indicating whether or not it
isOK to use DMA for the supplied PACKET command.

This hook may be specified as NULL, in which case libatawill assume that atapi dma can be supported.

Read specific ATA shadow registers

u8 (*sff_check_status)(struct ata_port *ap);
u8 (*sff_check_altstatus)(struct ata_port *ap);

libata Driver APl

Reads the Statusg/AltStatus ATA shadow register from hardware. On some hardware, reading the Status

register hasthe side effect of clearing the interrupt condition. Most drivers for taskfile-based hardware use
ata sff _check status() for this hook.

Write specific ATA shadow register

void (*sff_set devctl)(struct ata port *ap, u8 ctl);

Write the device control ATA shadow register to the hardware. Most drivers don't need to define this.

Select ATA device on bus

void (*sff_dev_select)(struct ata_port *ap, unsigned int device);

Issuesthe low-level hardware command(s) that causes one of N hardware devicesto be considered 'sel ect-
ed' (active and available for use) on the ATA bus. This generally has no meaning on FIS-based devices.

Most drivers for taskfile-based hardware use ata_sff _dev_select() for this hook.

Private tuning method

void (*set_node) (struct ata port *ap);

By default libata performs drive and controller tuning in accordance with the ATA timing rules and also
applies blacklists and cable limits. Some controllers need special handling and have custom tuning rules,
typicaly raid controllers that use ATA commands but do not actually do drive timing.

Warning

Thishook should not be used to replace the standard controller tuning logic when a controller has
quirks. Replacing the default tuning logic in that case would bypass handling for drive and bridge
quirks that may be important to data reliability. If a controller needsto filter the mode selection
it should use the mode _filter hook instead.

Control PCI IDE BMDMA engine

void (*bndma_setup) (struct ata queued cnd *qc);
void (*bndma_start) (struct ata queued cnd *qc);
void (*bndma_stop) (struct ata_port *ap);

u8 (*bmdna_status) (struct ata_port *ap);

When setting up an IDE BMDMA transaction, these hooks arm (->bmdma_setup), fire (->bmdma_start),

and halt (->bmdma_stop) the hardware's DMA engine. ->bmdma_status is used to read the standard PClI
IDE DMA Status register.

libata Driver APl

These hooks are typically either no-ops, or smply not implemented, in FIS-based drivers.

Most legacy IDE drivers use ata bmdma_setup() for the bmdma_setup() hook. ata_bmdma._setup() will
write the pointer to the PRD table to the IDE PRD Table Address register, enable DMA in the DMA
Command register, and call exec_command() to begin the transfer.

Most legacy IDE driversuseata_bmdma_start() for the bmdma_start() hook. ata_bmdma_start() will write
the ATA_DMA_START flag to the DMA Command register.

Many legacy IDE drivers use ata_bmdma_stop() for the bmdma_stop() hook. ata_bmdma_stop() clears
the ATA_DMA_START flag in the DMA command register.

Many legacy IDE drivers use ata_bmdma_status() as the bmdma_status() hook.

High-level taskfile hooks

void (*qc_prep) (struct ata_queued_cnd *qc);
int (*gc_issue) (struct ata_queued_cnd *qc);

Higher-level hooks, these two hooks can potentially supercede several of the above taskfile/DMA engine
hooks. ->qc_prep is caled after the buffers have been DMA-mapped, and is typically used to populate
the hardware's DM A scatter-gather table. Most drivers use the standard ata__qc_prep() hel per function, but
more advanced driversroll their own.

->(c_issueis used to make acommand active, once the hardware and S/G tables have been prepared. IDE
BMDMA drivers use the helper function ata_qc_issue prot() for taskfile protocol-based dispatch. More
advanced drivers implement their own ->qc_issue.

ata_qc_issue prot() calls ->tf_load(), ->bmdma_setup(), and ->bmdma_start() as necessary to initiate a
transfer.

Exception and probe handling (EH)

void (*eng_ tineout) (struct ata port *ap);
void (*phy_reset) (struct ata_port *ap);

Deprecated. Use ->error_handler() instead.

void (*freeze) (struct ata_port *ap);
void (*thaw) (struct ata_port *ap);

ata port_freeze() is called when HSM violations or some other condition disrupts normal operation of the
port. A frozen port is not allowed to perform any operation until the port isthawed, which usually follows
a successful reset.

The optional ->freeze() callback can be used for freezing the port hardware-wise (e.g. mask interrupt and
stop DMA engine). If a port cannot be frozen hardware-wise, the interrupt handler must ack and clear
interrupts unconditionally while the port is frozen.

libata Driver APl

The optional ->thaw() callback is called to perform the opposite of ->freeze(): prepare the port for normal
operation once again. Unmask interrupts, start DMA engine, etc.

void (*error_handler) (struct ata_port *ap);

->error_handler() is a driver's hook into probe, hotplug, and recovery and other exceptional conditions.
The primary responsibility of an implementation isto call ata do_eh() or ata_bmdma_drive _eh() with a
set of EH hooks as arguments:

‘prereset’ hook (may be NULL) is called during an EH reset, before any other actions are taken.

'postreset’ hook (may be NULL) is called after the EH reset is performed. Based on existing conditions,
severity of the problem, and hardware capabilities,

Either 'softreset' (may be NULL) or 'hardreset' (may be NULL) will be caled to perform the low-level
EH reset.

void (*post_internal _cnd) (struct ata_queued_cnd *qc);

Perform any hardware-specific actions necessary to finish processing after executing a probe-time or EH-
time command via ata_exec_internal ().

Hardware interrupt handling

irqreturn_t (*irg_handler)(int, void *, struct pt_regs *);
void (*irg_clear) (struct ata_port *);

->irgq_handler is the interrupt handling routine registered with the system, by libata. ->irq_clear is called
during probe just before the interrupt handler is registered, to be sure hardware is quiet.

The second argument, dev_instance, should be cast to a pointer to struct ata_host_set.

Most legacy IDE drivers use ata sff_interrupt() for the irq_handler hook, which scans all ports in the
host_set, determines which queued command was active (if any), and calls ata_sff _host_intr(ap,qc).

Most legacy IDE drivers use ata_ sff_irq_clear() for theirq_clear() hook, which simply clearsthe interrupt
and error flagsin the DMA status register.

SATA phy read/write

int (*scr_read) (struct ata port *ap, unsigned int sc_reg,
u32 *val);
int (*scr_wite) (struct ata port *ap, unsigned int sc_reg,
u32 val);

Read and write standard SATA phy registers. Currently only used if ->phy reset hook called the sa
ta phy reset() helper function. sc reg is one of SCR_STATUS, SCR_CONTROL, SCR_ERROR, or
SCR_ACTIVE.

libata Driver APl

Init and shutdown

int (*port_start) (struct ata_port *ap);
void (*port_stop) (struct ata_port *ap);
void (*host_stop) (struct ata_host_set *host_set);

->port_start() is called just after the data structures for each port are initialized. Typically thisis used to
alloc per-port DMA buffers/ tables/ rings, enable DMA engines, and similar tasks. Some drivers also use
this entry point as a chance to allocate driver-private memory for ap->private data.

Many driversuse ataport_start() asthishook or call it from their own port_start() hooks. ata port_start()
allocates space for alegacy IDE PRD table and returns.

->port_stop() iscalled after ->host_stop(). Its solefunctionisto release DMA/memory resources, now that
they are no longer actively being used. Many drivers also free driver-private data from port at thistime.

->host_stop() iscalled after all ->port_stop() calls have completed. The hook must finalize hardware shut-
down, release DMA and other resources, etc. This hook may be specified as NULL, in which caseit is
not called.

Chapter 3. Error handling

This chapter describes how errors are handled under libata. Readers are advised to read SCSI EH (Docu-
mentation/scsi/scsi_eh.txt) and ATA exceptions doc first.

Origins of commands

In libata, a command is represented with struct ata_queued_cmd or gc. qc's are preallocated during port
initialization and repetitively used for command executions. Currently only one qc is allocated per port
but yet-to-be-merged NCQ branch allocates one for each tag and maps each qc to NCQ tag 1-to-1.

libatacommands can originatefrom two sources- libataitself and SCSI midlayer. libatainternal commands
are used for initialization and error handling. All normal blk requests and commands for SCSI emulation
are passed as SCSI commands through queuecommand callback of SCSI host templ ate.

How commands are issued

Internal commands

SCSI commands

First, gc is alocated and initialized using ata gc_new_init(). Although
ata_gc_new_init() doesn't implement any wait or retry mechanism when gc
is not available, internal commands are currently issued only during initial-
ization and error recovery, so no other command is active and allocation is
guaranteed to succeed.

Once dlocated qc's taskfile is initialized for the command to be execut-
ed. gc currently has two mechanisms to notify completion. One is via qc-
>complete fn() callback and the other is completion gc->waiting. gc->com-
plete_fn() callback is the asynchronous path used by normal SCSI trandated
commands and gc->waiting is the synchronous (issuer sleepsin process con-
text) path used by internal commands.

Onceinitialization is complete, host_set lock is acquired and the gc isissued.

All libata drivers use ata scsi_queuecmd() as hostt->queuecommand call-
back. scmds can either be simulated or translated. No qc is involved in pro-
cessing a simulated scmd. The result is computed right away and the scmd is
completed.

For atranslated scmd, ata_gc_new_init() is invoked to alocate a qc and the
scmd is tranglated into the gc. SCSI midlayer's completion notification func-
tion pointer is stored into gc->scsidone.

gc->complete fn() callback is used for completion notification. ATA
commands use ata scsi_gc_complete() while ATAPI commands use at-
api_qc_complete(). Both functions end up calling gc->scsidone to notify up-
per layer when the qc is finished. After translation is completed, thegcisis
sued with ata_qc_issue().

Note that SCSI midlayer invokes hostt->queuecommand while holding
host_set lock, so all above occur while holding host_set lock.

Error handling

How commands are processed

Depending on which protocol and which controller are used, commands are processed differently. For the
purpose of discussion, a controller which uses taskfile interface and al standard callbacks is assumed.

Currently 6 ATA command protocols are used. They can be sorted into the following four categories
according to how they are processed.

ATA NO DATA or DMA

ATA PIO

ATAPI NODATA or DMA

ATAPI PIO

ATA_PROT_NODATA and ATA_PROT_DMA fall into this category.
These types of commands don't require any software intervention onceis-
sued. Device will raise interrupt on completion.

ATA_PROT_PIOisinthiscategory. libata currently implements PIO with
polling. ATA_NIEN bit is set to turn off interrupt and pio_task on ata wq
performs polling and 10O.

ATA_PROT_ATAPI_NODATA and ATA_PROT_ATAPI_DMA arein
this category. packet task is used to poll BSY bit after issuing PACKET
command. Once BSY is turned off by the device, packet task transfers
CDB and hands off processing to interrupt handler.

ATA_PROT_ATAPI isin this category. ATA_NIEN bit is set and, asin
ATAPI NODATA or DMA, packet_task submits cdb. However, after sub-
mitting cdb, further processing (data transfer) is handed off to pio_task.

How commands are completed

Once issued, al qc's are either completed with ata_qc_complete() or time out. For commands which are
handled by interrupts, ata_host_intr() invokes ata_gc_complete(), and, for PIO tasks, pio_task invokes
ata_gc_complete(). In error cases, packet_task may also complete commands.

ata_gc_complete() does the following.

1. DMA memory is unmapped.

2. ATA_QCFLAG_ACTIVE iscleared from gc->flags.

3. gc->complete fn() callback is invoked. If the return value of the callback is not zero. Completion is
short circuited and ata_gc_complete() returns.

4. ata qc_complete() is called, which does

a. qc->flagsis cleared to zero.

b. ap->active_tag and qc->tag are poisoned.

C. gc->waiting is cleared & completed (in that order).

d. qcisdeallocated by clearing appropriate bit in ap->gactive.

So, it basically notifies upper layer and deallocates gc. One exception is short-circuit path in #3 which is

used by atapi_gc_complete().

For al non-ATAPI commands, whether it fails or not, almost the same code path istaken and very little er-
ror handling takes place. A qc iscompleted with success statusif it succeeded, with failed status otherwise.

Error handling

However, failed ATAPI commands require more handling as REQUEST SENSE is needed to acquire
sense data. If an ATAPI command fails, ata gc_complete() is invoked with error status, which in turn
invokes atapi_qc_complete() via gc->complete fn() callback.

This makes atapi_gc_complete() set scmd->result to SAM_STAT_CHECK_CONDITION, complete the
scmd and return 1. Asthe sense data is empty but scmd->result is CHECK CONDITION, SCSI midlayer
will invoke EH for the scmd, and returning 1 makes ata_qc_complete() to return without deall ocating the
gc. Thisleads usto ata_scsi_error() with partially completed qc.

ata scsi_error()

ata scsi_error() is the current transportt->eh_strategy handler() for libata. As discussed above, this will
be entered in two cases - timeout and ATAPI error completion. Thisfunction callslow level libatadriver's
eng_timeout() callback, the standard callback for which is ata_eng_timeout(). It checks if aqc is active
and callsata gc_timeout() on the qc if so. Actual error handling occursin ata_qc_timeout().

If EH isinvoked for timeout, ata_qc_timeout() stops BMDMA and completes the qc. Note that as we're
currently in EH, we cannot call scsi_done. Asdescribedin SCSI EH doc, arecovered scmd should be either
retried with scsi_queue_insert() or finished with scsi_finish_command(). Here, we override qc->scsidone
with scsi_finish_command() and calls ata_qc_complete().

If EH isinvoked due to a failed ATAPI qc, the gc here is completed but not deallocated. The purpose
of this half-completion is to use the qc as place holder to make EH code reach this place. This is a bit
hackish, but it works.

Oncecontrol reacheshere, the qcisdeallocated by invoking __ata gc_complete() explicitly. Then, internal
gc for REQUEST SENSE is issued. Once sense data is acquired, scmd is finished by directly invoking
scsi_finish_command() on the scmd. Note that aswe already have completed and deall ocated the gc which
was associated with the scmd, we don't need to/cannot call ata_gc_complete() again.

Problems with the current EH

 Error representation is too crude. Currently any and all error conditions are represented with ATA
STATUS and ERROR registers. Errors which aren't ATA device errors are treated as ATA device er-
rors by setting ATA_ERR bit. Better error descriptor which can properly represent ATA and other er-
rors/exceptionsis needed.

* When handling timeouts, no action is taken to make device forget about the timed out command and
ready for new commands.

» EH handling viaata scsi_error() is not properly protected from usual command processing. On EH en-
trance, the deviceis not in quiescent state. Timed out commands may succeed or fail any time. pio_task
and atapi_task may still be running.

» Too weak error recovery. Devices / controllers causing HSM mismatch errors and other errors quite
often require reset to return to known state. Also, advanced error handling is necessary to support fea-
tures like NCQ and hotplug.

» ATA errorsaredirectly handled in the interrupt handler and PIO errorsin pio_task. Thisis problematic
for advanced error handling for the following reasons.

First, advanced error handling often requires context and internal gc execution.

Second, even asimple failure (say, CRC error) needs information gathering and could trigger complex
error handling (say, resetting & reconfiguring). Having multiple code paths to gather information, enter
EH and trigger actions makes life painful.

10

Error handling

Third, scattered EH code makes implementing low level drivers difficult. Low level drivers override
libata callbacks. If EH is scattered over several places, each affected callbacks should perform its part
of error handling. This can be error prone and painful.

11

Chapter 4. libata Library

12

libata Library

Name

ata link_next — link iteration helper
Synopsis

struct ata_link * ata_|link_next (struct ata_link * Iink, struct ata_port
* ap, enumata_link_iter_npode node);

Arguments

I i nk thepreviouslink, NULL to start
ap ATA port containing links to iterate

node iteration mode, one of ATA LITER *

LOCKING

Host lock or EH context.

RETURNS

Pointer to the next link.

13

libata Library

Name

ata_dev_next — device iteration helper
Synopsis

struct ata _device * ata_dev_next (struct ata_device * dev,
ata link * link, enum ata_dev_iter_node node);

Arguments

dev thepreviousdevice, NULL to start
i nk ATA link containing devicesto iterate

node iteration mode, one of ATA_DITER *

LOCKING

Host lock or EH context.

RETURNS

Pointer to the next device.

struct

14

libata Library

Name
atapi_cmd_type — Determine ATAPI command type from SCSI opcode

Synopsis
int atapi_cnd_type (u8 opcode);

Arguments

opcode SCSI opcode

Description

Determine ATAPI command type from opcode.

LOCKING

None.

RETURNS

ATAPI_{ READ|WRITEJREAD_CD|PASS THRU|MISC}

15

libata Library

Name
ata tf to fis— Convert ATA taskfileto SATA FIS structure
Synopsis
void ata_tf_to fis (const struct ata_taskfile * tf, u8 pnp, int is_cnd,
ug8 * fis);
Arguments
tf Taskfile to convert
prp Port multiplier port

is_cmd ThisFISisfor command

fis Buffer into which datawill output

Description

Converts astandard ATA taskfileto a Serial ATA FIS structure (Register - Host to Device).

LOCKING

Inherited from caller.

16

libata Library

Name
ata tf from fis— Convert SATA FISto ATA taskfile

Synopsis
void ata_tf _fromfis (const u8 * fis, struct ata_taskfile * tf);

Arguments

fi s Buffer from which datawill be input

tf Taskfile to output

Description

Convertsaseria ATA FIS structure to astandard ATA taskfile.

LOCKING

Inherited from caller.

17

libata Library

Name

ata_pack xfermask — Pack pio, mwdma and udma masksinto xfer_mask
Synopsis

unsi gned | ong ata_pack xfermask (unsigned | ong pio_mask, unsigned | ong
mvdme_mask, unsi gned | ong udma_nask) ;

Arguments
pi 0o_mask pio_mask
mvma_rmask mwdma_mask
udma_mask udma mask

Description

Pack pi o_nmask, mdna_nask and udnma_nask into asingle unsigned int xfer_mask.

LOCKING

None.

RETURNS

Packed xfer_mask.

18

libata Library

Name

ata_unpack_xfermask — Unpack xfer_mask into pio, mwdma and udma masks

Synopsis

voi d ata_unpack_xfermask (unsigned |ong xfer_mask, unsigned |ong * pi-
o_mask, unsigned |ong * mwmdma_nask, unsigned |ong * udma_mask);

Arguments

xfer _mask xfer_mask to unpack
pi o_mask resulting pio_mask
mvdme_mask resulting mwdma_mask

udma_nask resulting udma _mask

Description

Unpack xf er _mask into pi o_mask, mmdma_mask and udma_nmask. Any NULL distination masks
will beignored.

19

libata Library

Name
ata xfer_mask2mode — Find matching XFER_* for the given xfer_mask

Synopsis
u8 ata_xfer_mask2nmode (unsigned | ong xfer_mask);

Arguments

xfer_mask xfer_mask of interest

Description

Return matching XFER_* value for xf er _mask. Only the highest bit of xf er _nmask is considered.

LOCKING

None.

RETURNS

Matching XFER_* value, Oxff if no match found.

20

libata Library

Name
ata xfer_mode2mask — Find matching xfer_mask for XFER_*

Synopsis
unsi gned | ong ata_xfer_node2mask (u8 xfer_node);

Arguments

xfer _mode XFER * of interest

Description

Return matching xfer_mask for xf er _node.

LOCKING

None.

RETURNS

Matching xfer_mask, 0 if no match found.

21

libata Library

Name
ata xfer_mode2shift — Find matching xfer_shift for XFER_*

Synopsis
int ata_xfer_node2shift (unsigned | ong xfer_node);

Arguments

xfer _mode XFER * of interest

Description

Return matching xfer_shift for xf er _node.

LOCKING

None.

RETURNS

Matching xfer_shift, -1 if no match found.

22

libata Library

Name

ata_ mode_string — convert xfer_mask to string
Synopsis
const char * ata node_string (unsigned | ong xfer_mask);

Arguments

xfer _mask mask of bits supported; only highest bit counts.

Description

Determine string which represents the highest speed (highest bit in nrodenask).

LOCKING

None.

RETURNS

Constant C string representing highest speed listed in node_nask, or the constant C string “<n/a>".

23

libata Library

Name
ata_dev_classify — determine device type based on ATA-spec signature

Synopsis
unsigned int ata_dev_classify (const struct ata_taskfile * tf);

Arguments

tf ATA taskfileregister set for deviceto beidentified

Description

Determine from taskfile register contents whether adeviceis ATA or ATAPI, as per “ Signature and per-
sistence” section of ATA/PI spec (volume 1, sect 5.14).

LOCKING

None.

RETURNS

Device type, ATA_DEV_ATA, ATA DEV_ATAPI , ATA DEV_PMP, ATA DEV_ZAC, or ATA DE-
V_UNKNOWN the event of failure.

24

libata Library

Name
ata_id_string — Convert IDENTIFY DEVICE page into string

Synopsis

void ata id_string (const ul6é * id, unsigned char * s, unsigned int
of s, unsigned int |en);

Arguments

id IDENTIFY DEVICE results we will examine
S string into which datais output
of s offset into identify device page

| en length of string to return. must be an even number.

Description

The stringsinthe IDENTIFY DEVICE page are broken up into 16-bit chunks. Run through the string, and
output each 8-bit chunk linearly, regardless of platform.

LOCKING

caler.

25

libata Library

Name
ata_id_c_string — Convert IDENTIFY DEVICE pageinto C string

Synopsis

void ata_id_c_string (const ul6é * id, unsigned char * s, unsigned int
of s, unsigned int |en);

Arguments

id IDENTIFY DEVICE results we will examine
S string into which datais output
of s offset into identify device page

| en length of string to return. must be an odd number.

Description

This function isidentical to ata_id_string except that it trims trailing spaces and terminates the resulting
string with null. | en must be actual maximum length (even number) + 1.

LOCKING

caler.

26

libata Library

Name
ata_id_xfermask — Compute xfermask from the given IDENTIFY data
Synopsis
unsi gned long ata_id_xfermask (const ul6 * id);
Arguments
i d IDENTIFY datato compute xfer mask from
Description
Compute the xfermask for this device. Thisis not astrivial asit seemsif we must consider early devices
correctly.
FIXME
pre IDE drive timing (do we care ?).
LOCKING
None.
RETURNS
Computed xfermask

27

libata Library

Name
ata pio_need_iordy — check if iordy needed
Synopsis
unsi gned int ata_pio_need_iordy (const struct ata_device * adev);
Arguments
adev ATA device
Description
Check if the current speed of the device requires IORDY . Used by various controllers for chip configu-
ration.

28

libata Library

Name
ata do dev read id — default ID read method
Synopsis
unsigned int ata_do _dev_read_id (struct ata device * dev, struct
ata_taskfile * tf, ul6é * id);
Arguments
dev device
tf proposed taskfile
id databuffer
Description

Issue the identify taskfile and hand back the buffer containing identify data. For some RAID controllers
and for pre ATA devices this function is wrapped or replaced by the driver

29

libata Library

Name
ata_cable_40wire — return 40 wire cable type

Synopsis
int ata _cable_40wire (struct ata_port * ap);

Arguments

ap port

Description

Helper method for drivers which want to hardwire 40 wire cable detection.

30

libata Library

Name
ata_cable 80wire — return 80 wire cable type

Synopsis
int ata _cable_80wire (struct ata_port * ap);

Arguments

ap port

Description

Helper method for drivers which want to hardwire 80 wire cable detection.

31

libata Library

Name

ata _cable_unknown — return unknown PATA cable.
Synopsis
int ata_cabl e_unknown (struct ata_port * ap);

Arguments

ap port

Description

Helper method for drivers which have no PATA cable detection.

32

libata Library

Name
ata cable ignore — return ignored PATA cable.

Synopsis
int ata_cable_ignore (struct ata_port * ap);

Arguments

ap port

Description

Helper method for drivers which don't use cable type to limit transfer mode.

33

libata Library

Name
ata cable sata— return SATA cabletype

Synopsis
int ata_cable_sata (struct ata_port * ap);

Arguments

ap port

Description

Helper method for drivers which have SATA cables

libata Library

Name

ata_dev_pair — return other device on cable

Synopsis

struct ata device * ata_dev_pair (struct ata_device * adev);

Arguments

adev device

Description

Obtain the other device on the same cable, or if noneis present NULL isreturned

35

libata Library

Name
sata set spd — set SATA spd according to spd limit

Synopsis
int sata_set_spd (struct ata_ link * |ink);
Arguments

link Linktoset SATA spdfor

Description

Set SATA spd of | i nk according to sata_spd_limit.

LOCKING

Inherited from caller.

RETURNS

0 if spd doesn't need to be changed, 1 if spd has been changed. Negative errno if SCR registers are inac-
cessible.

36

libata Library

Name

ata_timing_cycle2mode — find xfer mode for the specified cycle duration
Synopsis

u8 ata_timng_cycle2node (unsigned int xfer_shift, int cycle);
Arguments

xfer_shift ATA_SHIFT_* valuefor transfer type to examine.

cycle cycledurationin ns
Description

Return matching xfer mode for cycl e. The returned mode is of the transfer type specified by
xfer_shift.If cycl e istoo slow for xf er _shi ft, Oxff is returned. If cycl e is faster than the
fastest known mode, the fasted mode is returned.

LOCKING

None.

RETURNS

Matching xfer_mode, Oxff if no match found.

37

libata Library

Name
ata_do_set_mode — Program timings and issue SET FEATURES - XFER
Synopsis
int ata do_set _node (struct ata_link * Ilink, struct ata_device **

r failed_dev);

Arguments
[ink link on which timings will be programmed
r_fail ed_dev outparameter for failed device
Description

Standard implementation of the function used to tune and set ATA device disk transfer mode (PIO3, UD-
MAG, etc.). If at a_dev_set _node fails, pointer to thefailing deviceisreturnedinr _f ai | ed_dev.

LOCKING

PCl/etc. bus probe sem.

RETURNS

0 on success, hegative errno otherwise

38

libata Library

Name
ata wait_after_reset — wait for link to become ready after reset

Synopsis

int ata wait_after_reset (struct ata_ link * [|ink,
l[ine, int (*check_ready) (struct ata_link *link));

Arguments
i nk link to be waited on
deadl i ne deadline jiffies for the operation

check_ready calback to check link readiness

Description

Wait for | i nk to become ready after reset.

LOCKING

EH context.

RETURNS

0if i nke isready beforedeadl i ne; otherwise, -errno.

unsi gned | ong dead-

39

libata Library

Name
sata link_debounce — debounce SATA phy status

Synopsis

int sata_link_debounce (struct ata_link * link, const unsigned long *
par ams, unsigned | ong deadline);

Arguments
[ink ATA link to debounce SATA phy status for
par ams timing parameters{ interval, duratinon, timeout } in msec

deadl i ne deadlinejiffiesfor the operation

Description

Make sure SStatus of | i nk reaches stable state, determined by holding the same value where DET is not
1for duration polled every i nt erval , beforet i neout . Timeout constraints the beginning of the
stable state. Because DET gets stuck at 1 on some controllers after hot unplugging, this functions waits
until timeout then returns 0 if DET is stable at 1.

t i meout isfurther limited by deadl i ne. The sooner of the two is used.

LOCKING

Kernel thread context (may sleep)

RETURNS

0 on success, -errno on failure.

40

libata Library

Name

sata link_resume — resume SATA link
Synopsis

int sata_link_resume (struct ata link * link, const unsigned long *
par ams, unsigned | ong deadline);

Arguments
i nk ATA link to resume SATA
par ams timing parameters{ interval, duratinon, timeout } in msec

deadl i ne deadlinejiffiesfor the operation

Description

Resume SATA phy | i nk and debounceit.

LOCKING

Kernel thread context (may sleep)

RETURNS

0 on success, -errno on failure.

41

libata Library

Name
sata link_scr_Ipm — manipulate SControl |PM and SPM fields

Synopsis

int sata_link_scr_Ipm(struct ata_link * link, enumata_| pm policy pol -
icy, bool spm wakeup);

Arguments

[ink ATA link to manipulate SControl for
policy LPM policy to configure
spm wakeup initiate LPM transition to active state
Description
Manipulatethe IPM field of the SControl register of | i nk accordingtopol i cy.IfpolicyisATA _LP-

M_MAX_POWER and spm wakeup ist r ue, the SPM field is manipulated to wake up the link. This
function also clears PHYRDY _CHG before returning.

LOCKING

EH context.

RETURNS

0 on success, -errno otherwise.

42

libata Library

Name
ata std_prereset — prepare for reset

Synopsis

int ata std _prereset (struct ata_link * |ink, unsigned | ong deadline);
Arguments

i nk ATA link to be reset

deadl i ne deadlinejiffiesfor the operation
Description

I i nk isabout to bereset. Initialize it. Failure from prereset makes libata abort whole reset sequence and

give up that port, so prereset should be best-effort. It doesits best to prepare for reset sequence but if things
go wrong, it should just whine, not fail.

LOCKING

Kernel thread context (may sleep)

RETURNS

0 on success, -errno otherwise.

43

libata Library

Name
sata link_hardreset — reset link via SATA phy reset

Synopsis

int sata link_hardreset (struct ata_link * link, const unsigned |ong
* timng, unsigned |ong deadline, bool * online, int (*check_ready)
(struct ata_link *));

Arguments
i nk link to reset
timng timing parameters { interval, duratinon, timeout } in msec
deadl i ne deadline jiffies for the operation
online optional out parameter indicating link onlineness

check_ready optional callback to check link readiness

Description
SATA phy-reset | i nk using DET bits of SControl register. After hardreset, link readiness is wait-

ed upon using at a_wai t _ready if check_ready is specified. LLDs are allowed to not specify
check_r eady and wait itself after this function returns. Device classification is LLD's responsibility.

*onl i ne isset to oneiff reset succeeded and | i nk isonline after reset.

LOCKING

Kernel thread context (may sleep)

RETURNS

0 on success, -errno otherwise.

libata Library

Name
sata std_hardreset — COMRESET w/o waiting or classification

Synopsis

int sata_std_hardreset (struct ata_link * link, unsigned int * class,
unsi gned | ong deadl i ne);

Arguments
i nk link to reset
cl ass resulting class of attached device

deadl i ne deadlinejiffiesfor the operation

Description

Standard SATA COMRESET w/o waiting or classification.

LOCKING

Kernel thread context (may sleep)

RETURNS

Oif link offline, -EAGAIN if link online, -errno on errors.

45

libata Library

Name
ata std _postreset — standard postreset callback

Synopsis

void ata_std_postreset (struct ata_link * |ink, unsigned int * classes);
Arguments

[ink the target ata link

cl asses classesof attached devices

Description

This function is invoked after a successful reset. Note that the device might have been reset more than
once using different reset methods before postreset is invoked.

LOCKING

Kernel thread context (may sleep)

46

libata Library

Name
ata dev_set feature— Issue SET FEATURES - SATA FEATURES

Synopsis

unsigned int ata_dev_set feature (struct ata_device * dev, u8 enable,
u8 feature);

Arguments

dev Device to which command will be sent

enabl e Whether to enable or disable the feature

feature Thesector count represents the feature to set
Description

Issue SET FEATURES - SATA FEATURES command to device dev on port ap with sector count

LOCKING

PCl/etc. bus probe sem.

RETURNS

0 on success, AC_ERR_* mask otherwise.

47

libata Library

Name
ata std_qc_defer — Check whether a gc needs to be deferred

Synopsis
int ata_std_qc_defer (struct ata_queued_cnd * qc);

Arguments

gc ATA command in question

Description
Non-NCQ commands cannot run with any other command, NCQ or not. As upper layer only knows the

gueue depth, we are responsible for maintaining exclusion. Thisfunction checks whether anew command
gc can beissued.

LOCKING

spin_lock_irgsave(host lock)

RETURNS

ATA_DEFER * if deferring is needed, O otherwise.

48

libata Library

Name

ata sg_init — Associate command with scatter-gather table.
Synopsis

void ata_sg init (struct ata _queued_cnd * gc, struct scatterlist * sg,
unsigned int n_elen);

Arguments
qc Command to be associated
sg Scatter-gather table.

n_el em Number of elementsin /g table.

Description

Initialize the data-related elements of queued_cmd qc to point to a scatter-gather table sg, containing
n_el emelements.

LOCKING

spin_lock_irgsave(host lock)

49

libata Library

Name

ata_gc_complete — Complete an active ATA command
Synopsis
void ata_gc_conmplete (struct ata_queued_cnd * qc);

Arguments

gc Command to complete

Description

Indicate to the mid and upper layers that an ATA command has completed, with either an ok or not-ok
status.

Refrain from calling this function multiple times when successfully completing multiple NCQ commands.
ata_qc_conpl ete_mul ti pl e should be used instead, which will properly update IRQ expect state.

LOCKING

spin_lock_irgsave(host lock)

50

libata Library

Name

ata_gc_complete_multiple — Complete multiple gcs successfully
Synopsis
int ata_gc_conplete nultiple (struct ata_port * ap, u32 qc_active);
Arguments
ap port in question
gc_active new qc_active mask
Description
Completein-flight commands. Thisfunctionsis meant to be called from low-level driver'sinterrupt routine
to completerequestsnormally. ap->qc_activeandqc_act i ve iscompared and commands are completed
accordingly.

Always use this function when compl eting multiple NCQ commands from |RQ handlersinstead of calling
at a_qc_conpl et e multiple timesto keep IRQ expect status properly in sync.

LOCKING

spin_lock_irgsave(host lock)

RETURNS

Number of completed commands on success, -errno otherwise.

51

libata Library

Name

sata scr_valid — test whether SCRs are accessible
Synopsis

int sata_scr_valid (struct ata_link * l|ink);
Arguments

[ink ATA link to test SCR accessibility for
Description

Test whether SCRs are accessiblefor | i nk.
LOCKING

None.
RETURNS

1if SCRsare accessible, 0 otherwise.

52

libata Library

Name
sata scr_read — read SCR register of the specified port

Synopsis
int sata_scr_read (struct ata_link * link, int reg, u32 * val);

Arguments

i nk ATA link to read SCR for
reg SCRtoread

val Place to store read value

Description

Read SCR register r eg of | i nk into *val . Thisfunction is guaranteed to succeed if | i nk isap->link,
the cable type of the port is SATA and the port implements ->scr_read.

LOCKING

Noneif | i nk isap->link. Kernel thread context otherwise.

RETURNS

0 on success, negative errno on failure.

53

libata Library

Name
sata scr_write — write SCR register of the specified port

Synopsis
int sata_scr_wite (struct ata_link * link, int reg, u32 val);

Arguments

i nk ATA link to write SCR for
reg SCRtowrite

val value to write

Description

Writeval to SCRregister r eg of | i nk. Thisfunction is guaranteed to succeed if | i nk isap->link, the
cable type of the port is SATA and the port implements ->scr_read.

LOCKING

Noneif | i nk isap->link. Kernel thread context otherwise.

RETURNS

0 on success, negative errno on failure.

libata Library

Name
sata scr_write flush — write SCR register of the specified port and flush

Synopsis
int sata_scr_wite flush (struct ata_link * link, int reg, u32 val);

Arguments

i nk ATA link to write SCR for
reg SCRtowrite

val value to write

Description

Thisfunction isidentical tosat a_scr_wri t e except that this function performs flush after writing to
the register.

LOCKING

Noneif | i nk isap->link. Kernel thread context otherwise.

RETURNS

0 on success, negative errno on failure.

55

libata Library

Name

ata link_online — test whether the given link isonline
Synopsis
bool ata_link_online (struct ata_ link * link);

Arguments

i nk ATA link to test

Description
Test whether | i nk isonline. Thisisidentical toat a_phys_| i nk_onl i ne whenthere'sno slavelink.

When there's a dlave link, this function should only be called on the master link and will return true if
any of M/Slinksisonline.

LOCKING

None.

RETURNS

Trueif the port online statusis available and online.

56

libata Library

Name
ata link_offline— test whether the given link is offline

Synopsis
bool ata_link offline (struct ata link * |ink);

Arguments

i nk ATA link to test

Description
Test whether | i nk is offline. Thisisidentical to at a_phys_| i nk_of f| i ne when there's no slave

link. When there's a dlave link, this function should only be called on the master link and will return true
if both M/S links are offline.

LOCKING

None.

RETURNS

Trueif the port offline status is available and offline.

57

libata Library

Name
ata_host_suspend — suspend host
Synopsis
int ata_host_suspend (struct ata_host * host, pmnessage_t mesg);
Arguments
host host to suspend
mesg PM message
Description

Suspend host . Actual operation is performed by port suspend.

58

libata Library

Name
ata_host_resume — resume host
Synopsis
voi d ata_host _resume (struct ata_host * host);
Arguments
host host to resume
Description

Resume host . Actua operation is performed by port resume.

59

libata Library

Name

ata host_alloc — allocate and init basic ATA host resources
Synopsis
struct ata_host * ata _host_alloc (struct device * dev, int max_ports);

Arguments

dev generic device this host is associated with

max_ports maximum number of ATA ports associated with this host

Description

Allocate and initialize basic ATA host resources. LLD calls this function to allocate a host, initidlizes it
fully and attaches it using at a_host _regi st er.

max_port s portsare allocated and host->n_portsisinitialized to max_port s. Thecaller isallowed to
decrease host->n_ports before calling at a_host _r egi st er. The unused ports will be automatically
freed on registration.

RETURNS

Allocate ATA host on success, NULL on failure.

LOCKING

Inherited from calling layer (may sleep).

60

libata Library

Name
ata_host_alloc_pinfo — alloc host and init with port_info array
Synopsis
struct ata _host * ata_host_alloc_pinfo (struct device * dev, const
struct ata_port_info *const * ppi, int n_ports);
Arguments
dev generic device this host is associated with
ppi array of ATA port_info to initialize host with

n_ports number of ATA ports attached to this host

Description

Allocate ATA host and initialize with info from ppi . If NULL terminated, ppi may contain fewer entries
thann_ports. Thelast entry will be used for the remaining ports.

RETURNS

Allocate ATA host on success, NULL on failure.

LOCKING

Inherited from calling layer (may sleep).

61

libata Library

Name
ata slave link_init — initialize dave link
Synopsis

int ata_slave_link_init (struct ata _port * ap);

Arguments

ap porttoinitiaize slavelink for

Description

Create and initialize dlave link for ap. This enables dave link handling on the port.

Inlibata, a port containslinks and alink contains devices. Thereissingle host link but if aPMPis attached
to it, there can be multiple fan-out links. On SATA, there's usually a single device connected to alink but
PATA and SATA controllers emulating TF based interface can have two - master and slave.

However, thereareafew controllerswhich don't fit into this abstraction too well - SATA controllerswhich
emulate TF interface with both master and slave devices but also have separate SCR register sets for each
device. These controllers need separate links for physical link handling (e.g. onlineness, link speed) but
should be treated like atraditional M/S controller for everything else (e.g. command issue, softreset).

slave_link islibata's way of handling this class of controllers without impacting core layer too much. For
anything other than physical link handling, the default host link is used for both master and slave. For
physical link handling, separate ap->dlave link is used. All dirty details are implemented inside libata
core layer. From LLD's POV, the only differenceis that prereset, hardreset and postreset are called once
more for the dave link, so the reset sequence looks like the following.

prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> softreset(M) -> postreset(M) -> postreset(S)

Note that softreset iscalled only for the master. Softreset resets both M/S by definition, so SRST on master
should handle both (the standard method will work just fine).

LOCKING

Should be called before host is registered.

RETURNS

0 on success, -errno on failure.

62

libata Library

Name
ata_host_start — start and freeze ports of an ATA host

Synopsis
int ata_host_start (struct ata_host * host);

Arguments

host ATA host to start ports for

Description
Start and then freeze ports of host . Started statusisrecorded in host->flags, so thisfunction can be called

multiple times. Ports are guaranteed to get started only once. If host->ops isn't initialized yet, its set to
the first non-dummy port ops.

LOCKING

Inherited from calling layer (may sleep).

RETURNS

Oif al ports are started successfully, -errno otherwise.

63

libata Library

Name

ata_host_init — Initialize a host struct for sas (ipr, libsas)
Synopsis

void ata_host _init (struct ata_host * host, struct device * dev, struct
ata_port_operations * ops);

Arguments

host hosttoinitialize
dev device host is attached to

ops port_ops

libata Library

Name
ata_host_register — register initialized ATA host

Synopsis
int ata_host_register (struct ata_host * host, struct scsi_host_tenplate
* sht);

Arguments

host ATA host to register

sht template for SCSI host

Description

Register initialized ATA host. host isallocatedusingat a_host _al | oc and fully initialized by LLD.
This function starts ports, registershost with ATA and SCSI layers and probe registered devices.

LOCKING

Inherited from calling layer (may sleep).

RETURNS

0 on success, -errno otherwise.

65

libata Library

Name
ata_host_activate — start host, request IRQ and register it
Synopsis
int ata _host_activate (struct ata_host * host, int irq, irq_handler _t

i rq_handl er, unsigned long irqg_flags, struct scsi_host_tenplate * sht);

Arguments
host target ATA host
irq IRQ to request

i rq_handl er irgq_handler used when requesting IRQ
irqg_flags irq_flags used when requesting IRQ
sht scsi_host_template to use when registering the host

Description
After alocating an ATA host and initializing it, most libata L L Ds perform three steps to activate the host
- start host, request IRQ and register it. This helper takes necessasry arguments and performs the three
stepsin one go.

An invalid IRQ skips the IRQ registration and expects the host to have set polling mode on the port. In
thiscase, i r g_handl er should be NULL.

LOCKING

Inherited from calling layer (may sleep).

RETURNS

0 on success, -errno otherwise.

66

libata Library

Name
ata_host_detach — Detach al ports of an ATA host

Synopsis
voi d ata_host_detach (struct ata_host * host);

Arguments

host Host to detach

Description

Detach al ports of host .

LOCKING

Kernel thread context (may sleep).

67

libata Library

Name

ata pci_remove_one— PCI layer callback for device removal
Synopsis
void ata_pci_renmove_one (struct pci_dev * pdev);

Arguments

pdev PCI device that was removed

Description

PCI layer indicates to libata via this hook that hot-unplug or module unload event has occurred. Detach
all ports. Resource releaseis handled via devres.

LOCKING

Inherited from PCI layer (may sleep).

68

libata Library

Name

ata platform_remove_one — Platform layer callback for device removal
Synopsis
int ata_platformrenove_one (struct platformdevice * pdev);

Arguments

pdev Platform device that was removed

Description

Platform layer indicatesto libataviathishook that hot-unplug or module unload event has occurred. Detach
all ports. Resource releaseis handled via devres.

LOCKING

Inherited from platform layer (may sleep).

69

libata Library

Name
ata msleep — ATA EH owner aware msleep

Synopsis

void ata_mnsleep (struct ata_port * ap, unsigned int nsecs);
Arguments

ap ATA port to attribute the sleep to

nsecs duration to sleep in milliseconds
Description

Sleeps msecs. If the current task is owner of ap's EH, the ownership is released before going to sleep

and reacquired after the sleep is complete. IOW, other ports sharing the ap->host will be allowed to own
the EH while this task is sleeping.

LOCKING

Might sleep.

70

libata Library

Name

ata wait_register — wait until register value changes
Synopsis

u32 ata_wait_register (struct ata port * ap, void __iomem * reg, u32
mask, u32 val, unsigned long interval, unsigned |long tineout);

Arguments
ap ATA port to wait register for, can be NULL
reg 10O-mapped register
mask Mask to apply to read register value
val Wait condition

i nterval pollinginterval in milliseconds

ti meout timeout in milliseconds

Description

Waiting for some bits of register to change is a common operation for ATA controllers. This function
reads 32bit LE 10-mapped register r eg and tests for the following condition.

(*reg & mask) !=va

If the condition ismet, it returns; otherwise, the processisrepeated after i nt er val _nsec until timeout.

LOCKING

Kernel thread context (may sleep)

RETURNS

Thefinal register value.

71

libata Library

Name
sata Ipm_ignore_phy events — test if PHY event should be ignored

Synopsis
bool sata | pm.ignore phy events (struct ata_ link * |ink);

Arguments

i nk Link receiving the event

Description

Test whether the received PHY event has to be ignored or not.

RETURNS

Trueif the event has to be ignored.

72

Chapter 5. libata Core Internals

73

libata Core Internals

Name
ata_dev_phys link — find physical link for adevice

Synopsis
struct ata link * ata_dev_phys link (struct ata_device * dev);

Arguments

dev ATA deviceto look up physical link for

Description

L ook up physical link which dev isattached to. Note that thisis different from dev->link only when dev
ison davelink. For al other cases, it's the same as dev->link.

LOCKING

Don't care.

RETURNS

Pointer to the found physical link.

74

libata Core Internals

Name

ata force_cbl — force cable type according to libata.force
Synopsis
void ata_force_cbl (struct ata_port * ap);

Arguments

ap ATA port of interest

Description

Force cabletype according to libata.force and whine about it. The last entry which has matching port num-
ber isused, soit can be specified as part of deviceforce parameters. For example, both “a:40c,1.00:udma4”
and “1.00:40c,udma4” have the same effect.

LOCKING

EH context.

75

libata Core Internals

Name

ata force_link_limits— force link limits according to libata.force
Synopsis

void ata_force_link limts (struct ata_link * link);
Arguments

i nk ATA link of interest

Description

Force link flags and SATA spd limit according to libata.force and whine about it. When only the port
part is specified (e.g. 1:), the limit appliesto al links connected to both the host link and all fan-out ports
connected via PMP. If the device part is specified as 0 (e.g. 1.00:), it specifiesthe first fan-out link not the
host link. Device number 15 always pointsto the host link whether PM P is attached or not. If the controller
has slave link, device number 16 pointsto it.

LOCKING

EH context.

76

libata Core Internals

Name

ata force xfermask — force xfermask according to libata.force
Synopsis
void ata_force_xfermask (struct ata_device * dev);

Arguments

dev ATA device of interest

Description

Force xfer_mask according to libata.force and whine about it. For consistency with link selection, device
number 15 selects the first device connected to the host link.

LOCKING

EH context.

77

libata Core Internals

Name

ata force_horkage — force horkage according to libata.force
Synopsis
void ata_force_horkage (struct ata_device * dev);

Arguments

dev ATA device of interest

Description

Force horkage according to libata.force and whine about it. For consistency with link selection, device
number 15 selects the first device connected to the host link.

LOCKING

EH context.

78

libata Core Internals

Name

ata_rwemd_protocol — set taskfile r/'w commands and protocol
Synopsis

int ata_rwend_protocol (struct ata taskfile * tf, struct ata_device *
dev);

Arguments

tf command to examine and configure

dev devicetf belongsto

Description

Examine the device configuration and tf->flags to cal culate the proper read/write commands and protocol
to use.

LOCKING

caler.

79

libata Core Internals

Name
ata tf read block — Read block address from ATA taskfile

Synopsis
u64 ata_tf _read_block (const struct ata taskfile * tf, struct ata_device
* dev);

Arguments

tf ATA taskfile of interest

dev ATA devicet f belongsto

LOCKING

None.

Read block addressfromt f . Thisfunction can handle all three address formats - LBA, LBA48 and CHS.
tf->protocol and flags select the address format to use.

RETURNS

Block addressread fromt f .

80

libata Core Internals

Name
ata build_rw_tf — Build ATA taskfile for given read/write request

Synopsis

int ata_build rwtf (struct ata_taskfile * tf, struct ata_device * dev,
u64 bl ock, u32 n_block, unsigned int tf_flags, unsigned int tag, int

cl ass);
Arguments
tf Target ATA taskfile
dev ATA devicet f belongsto
bl ock Block address

n_bl ock Number of blocks

tf_flags RW/FUA etc...

t ag tag

cl ass 10 priority class
LOCKING

None.

Build ATA taskfilet f for read/write request described by bl ock, n_bl ock,tf_fl ags andt ag on
dev.

RETURNS

0 on success, -ERANGE if the request istoo large for dev, -EINVAL if the request isinvalid.

81

libata Core Internals

Name
ata read native max_address — Read native max address

Synopsis

int ata_read_native_max_address (struct ata_device * dev, u64 * max_sec-
tors);

Arguments

dev target device

max_sectors out parameter for the result native max address

Description

Perform an LBA48 or LBA?28 native size query upon the device in question.

RETURNS

0 on success, -EACCES if command is aborted by the drive. -EIO on other errors.

82

libata Core Internals

Name

ata_set_max_sectors — Set max sectors
Synopsis
int ata_set_max_sectors (struct ata_device * dev, u64 new sectors);

Arguments

dev target device

new_sectors new max sectorsvalue to set for the device

Description

Set max sectors of dev tonew_sect or s.

RETURNS

0 on success, -EACCES if command is aborted or denied (due to previous non-volatile SET_MAX) by
the drive. -EIO on other errors.

83

libata Core Internals

Name

ata_hpa _resize — Resize a device with an HPA set
Synopsis
int ata_hpa_resize (struct ata_device * dev);

Arguments

dev Devicetoresize

Description

Read the size of an LBA28 or LBA48 disk with HPA features and resize it if required to the full size of
the media. The caller must check the drive has the HPA feature set enabled.

RETURNS

0 on success, -errno on failure.

libata Core Internals

Name
ata_dump_id — IDENTIFY DEVICE info debugging output

Synopsis
void ata_dunp_id (const ul6 * id);
Arguments

i d IDENTIFY DEVICE pageto dump

Description

Dump selected 16-bit words from the given IDENTIFY DEVICE page.

LOCKING

caler.

85

libata Core Internals

Name

ata exec internal_sg — execute libatainternal command

Synopsis

unsi gned ata_exec_internal _sg (struct ata_device * dev, struct ata_task-
file * tf, const u8 * cdb, int dma_dir, struct scatterlist * sgl, un-
signed int n_elem unsigned |long tineout);

Arguments
dev Device to which the command is sent
tf Taskfile registers for the command and the result
cdb CDB for packet command

dma_dir Datatransfer direction of the command
sgl sg list for the data buffer of the command
n_el em Number of sgentries

ti meout Timeoutin msecs (O for default)

Description
Executes libata internal command with timeout. t f contains command on entry and result on return.

Timeout and error conditions are reported via return value. No recovery action is taken after acommand
times out. It's caller's duty to clean up after timeout.

LOCKING

None. Should be called with kernel context, might sleep.

RETURNS

Zero on success, AC_ERR_* mask on failure

86

libata Core Internals

Name
ata_exec_internal — execute libata internal command
Synopsis

unsi gned ata_exec_internal (struct ata_device * dev, struct ata_taskfile
* tf, const u8 * cdb, int dma_dir, void * buf, unsigned int buflen,
unsi gned long tinmeout);

Arguments
dev Device to which the command is sent
tf Taskfile registers for the command and the result
cdb CDB for packet command

dma_dir Datatransfer direction of the command
buf Data buffer of the command
bufl en Length of data buffer

ti meout Timeoutin msecs (O for default)

Description

Wrapper around at a_exec_i nt er nal _sg which takes simple buffer instead of sg list.

LOCKING

None. Should be called with kernel context, might sleep.

RETURNS

Zero on success, AC_ERR_* mask on failure

87

libata Core Internals

Name
ata_pio_mask_no_iordy — Return the non IORDY mask
Synopsis
u32 ata_pio_mask_no_iordy (const struct ata_device * adev);
Arguments
adev ATA device
Description

Compute the highest mode possible if we are not using iordy. Return -1 if no iordy mode is available.

88

libata Core Internals

Name
ata dev_read id — Read ID datafrom the specified device

Synopsis

int ata dev_read_id (struct ata_device * dev, unsigned int * p_class,
unsigned int flags, ul6é * id);

Arguments

dev target device
p_cl ass pointer to class of the target device (may be changed)
fl ags ATA_READID_* flags

id buffer to read IDENTIFY datainto

Description

Read ID data from the specified device. ATA_CMD_ID_ATA is performed on ATA devices and
ATA _CMD _ID_ATAPI on ATAPI devices. ThisfunctionalsoissuesATA_CMD_INIT DEV_PARAMS
for preeATA4 drives.

FIXME

ATA_CMD_ID_ATA isoptional for early drives and right now we abort if we hit that case.

LOCKING

Kernel thread context (may sleep)

RETURNS

0 on success, -errno otherwise.

89

libata Core Internals

Name

ata_dev_configure — Configure the specified ATA/ATAPI device
Synopsis

int ata_dev_configure (struct ata_device * dev);
Arguments

dev Target deviceto configure
Description

Configure dev according to dev->id. Generic and low-level driver specific fixups are also applied.
LOCKING

Kernel thread context (may sleep)
RETURNS

0 on success, -errno otherwise

90

libata Core Internals

Name
ata_bus _probe — Reset and probe ATA bus

Synopsis
int ata_bus_probe (struct ata_port * ap);

Arguments

ap Busto probe

Description

Master ATA bus probing function. Initiates a hardware-dependent bus reset, then attemptsto identify any
devices found on the bus.

LOCKING

PCl/etc. bus probe sem.

RETURNS

Zero on success, hegative errno otherwise.

91

libata Core Internals

Name
sata print_link_status— Print SATA link status
Synopsis
void sata_print_link status (struct ata_ link * |ink);
Arguments
I ink SATA link to printk link status about
Description
This function prints link speed and status of a SATA link.
LOCKING
None.

92

libata Core Internals

Name

sata_down_spd_limit — adjust SATA spd limit downward
Synopsis

int sata_down_spd |imt (struct ata link * link, u32 spd_limt);
Arguments

[ink Link to adjust SATA spd limit for

spd_linit Additiona limit

Description

Adjust SATA spd limit of | i nk downward. Note that this function only adjusts the limit. The change
must be applied using sat a_set _spd.

If spd_|i mt isnon-zero, the speed is limited to equal to or lower than spd_| i m t if such speed is
supported. If spd_| i mi t isslower than any supported speed, only thelowest supported speedisallowed.

LOCKING

Inherited from caller.

RETURNS

0 on success, hegative errno on failure

93

libata Core Internals

Name
sata set spd _needed — is SATA spd configuration needed

Synopsis

int sata_set_spd _needed (struct ata_link * |ink);
Arguments

i nk Linkin question

Description

Test whether the spd limit in SControl matches| i nk->sata spd_limit. Thisfunction is used to determine
whether hardreset is necessary to apply SATA spd configuration.

LOCKING

Inherited from caller.

RETURNS

1if SATA spd configuration is needed, O otherwise.

94

libata Core Internals

Name

ata_down_xfermask_limit — adjust dev xfer masks downward
Synopsis
int ata_down_xfermask |imt (struct ata_device * dev, unsigned int sel);

Arguments

dev Deviceto adjust xfer masks

sel ATA_DNXFER_* selector

Description

Adjust xfer masks of dev downward. Note that this function does not apply the change. Invoking
at a_set _node afterwardswill apply the limit.

LOCKING

Inherited from caller.

RETURNS

0 on success, hegative errno on failure

95

libata Core Internals

Name
ata wait_ready — wait for link to become ready

Synopsis

int ata_wait_ready (struct ata_link * I'ink, unsigned | ong deadline, int
(*check_ready) (struct ata_link *link));

Arguments
i nk link to be waited on
deadl i ne deadline jiffies for the operation

check_ready calback to check link readiness

Description

Wait for | i nk to becomeready. check_r eady should return positive number if | i nk isready, 0 if it
isn't, -ENODEV if link doesn't seem to be occupied, other errno for other error conditions.

Transient -ENODEV conditions are allowed for ATA_TMOUT_FF_WAIT.

LOCKING

EH context.

RETURNS

Oif I i nke isready before deadl i ne; otherwise, -errno.

96

libata Core Internals

Name

ata_dev_same device — Determine whether new |D matches configured device
Synopsis

int ata_dev_sane_device (struct ata device * dev, unsigned int
new cl ass, const ul6 * new_id);

Arguments

dev device to compare against
new_cl ass classof the new device

new_ id IDENTIFY page of the new device

Description

Comparenew_cl ass and new i d against dev and determine whether dev isthe device indicated by
new cl ass andnew i d.

LOCKING

None.

RETURNS

1if dev matchesnew cl ass and new_i d, O otherwise.

97

libata Core Internals

Name
ata dev_reread id — Re-read IDENTIFY data
Synopsis
int ata dev_reread_id (struct ata device * dev, unsigned int rea-
did_fl ags);
Arguments
dev target ATA device

readi d_fl ags readID flags

Description

Re-read IDENTIFY page and make sure dev is till attached to the port.

LOCKING

Kernel thread context (may sleep)

RETURNS

0 on success, hegative errno otherwise

98

libata Core Internals

Name
ata dev_revalidate — Revalidate ATA device

Synopsis

int ata_dev_revalidate (struct ata_device * dev, unsigned int new cl ass,
unsi gned int readid_flags);

Arguments
dev deviceto revalidate
new_cl ass new class code

readi d_flags readID flags

Description

Re-read IDENTIFY page, make sure dev is till attached to the port and reconfigure it according to the
new IDENTIFY page.

LOCKING

Kernel thread context (may sleep)

RETURNS

0 on success, negative errno otherwise

99

libata Core Internals

Name

ata is 40wire — check drive side detection
Synopsis
int ata_ is_40wire (struct ata_device * dev);

Arguments

dev device

Description

Perform drive side detection decoding, alowing for device vendors who can't follow the documentation.

100

libata Core Internals

Name
cable is 40wire — 40/80/SATA decider

Synopsis
int cable_is_40wire (struct ata_port * ap);

Arguments

ap port to consider

Description

This function encapsulates the policy for speed management in one place. At the moment we don't cache
the result but thereisagood case for setting ap->cbl to the result when we are called with unknown cables

(and figuring out if it impacts hotplug at all).

Return 1 if the cable appears to be 40 wire.

101

libata Core Internals

Name

ata_dev_xfermask — Compute supported xfermask of the given device
Synopsis
void ata_dev_xfermask (struct ata_device * dev);

Arguments

dev Deviceto compute xfermask for

Description

Compute supported xfermask of dev and storeitin dev->* _mask. Thisfunctionisresponsiblefor applying
all known limits including host controller limits, device blacklist, etc...

LOCKING

None.

102

libata Core Internals

Name

ata dev_set xfermode — Issue SET FEATURES - XFER MODE command
Synopsis

unsi gned int ata_dev_set xfermpde (struct ata_device * dev);
Arguments

dev Deviceto which command will be sent
Description

Issue SET FEATURES - XFER MODE command to device dev on port ap.
LOCKING

PCl/etc. bus probe sem.
RETURNS

0 on success, AC_ERR_* mask otherwise.

103

libata Core Internals

Name
ata_dev_init_params— Issue INIT DEV PARAMS command

Synopsis

unsigned int ata_dev_init_paranms (struct ata_device * dev, ul6 heads,
ulé sectors);

Arguments

dev Device to which command will be sent
heads Number of heads (taskfile parameter)

sectors Number of sectors (taskfile parameter)

LOCKING

Kernel thread context (may sleep)

RETURNS

0 on success, AC_ERR_* mask otherwise.

104

libata Core Internals

Name

ata sg_clean — Unmap DMA memory associated with command
Synopsis
void ata_sg_clean (struct ata_queued_cnmd * qc);

Arguments

gc Command containing DMA memory to be released

Description

Unmap all mapped DMA memory associated with this command.

LOCKING

spin_lock_irgsave(host lock)

105

libata Core Internals

Name
atapi_check_dma— Check whether ATAPI DMA can be supported

Synopsis
i nt atapi_check_dma (struct ata_queued_cmd * qc);

Arguments

gc Metadata associated with taskfile to check

Description

Allow low-level driver to filter ATA PACKET commands, returning a status indicating whether or not it
isOK to use DMA for the supplied PACKET command.

LOCKING

spin_lock_irgsave(host lock)

RETURNS

0 when ATAPI DMA can be used nonzero otherwise

106

libata Core Internals

Name

ata sg_setup — DMA-map the scatter-gather table associated with a command.
Synopsis

int ata_sg_setup (struct ata_queued_cnmd * (c);
Arguments

gc Command with scatter-gather table to be mapped.
Description

DMA-map the scatter-gather table associated with queued cmd qc.
LOCKING

spin_lock_irgsave(host lock)
RETURNS

Zero on success, negative on error.

107

libata Core Internals

Name

swap_buf_|el6 — swap halves of 16-bit wordsin place
Synopsis

void swap_buf _|el6 (ul6é * buf, unsigned int buf_words);
Arguments

buf Buffer to swap

buf words Number of 16-bit wordsin buffer.

Description

Swap halves of 16-bit words if needed to convert from little-endian byte order to native cpu byte order,
or vice-versa

LOCKING

Inherited from caller.

108

libata Core Internals

Name

ata_gc_new_init — Request an available ATA command, and initialize it

Synopsis

struct ata_queued_cnd * ata _qc_new init (struct ata_device * dev, int
tag);

Arguments
dev Device from whom we request an available command structure
tag tag

LOCKING

None.

109

libata Core Internals

Name

ata_qc_free— free unused ata_queued _cmd
Synopsis
void ata_gc_free (struct ata_queued_cnd * qc);

Arguments

gc Command to complete

Description

Designed to free unused ata_queued cmd object in case something prevents using it.

LOCKING

spin_lock_irgsave(host lock)

110

libata Core Internals

Name

ata_qc_issue — issue taskfile to device
Synopsis
void ata_gc_issue (struct ata_queued_cnmd * qc);

Arguments

gc command to issueto device

Description

Prepare an ATA command to submission to device. Thisincludes mapping the datainto aDMA-able area,
filling in the S/G table, and finally writing the taskfile to hardware, starting the command.

LOCKING

spin_lock_irgsave(host lock)

111

libata Core Internals

Name
ata_phys link_online — test whether the given link is online

Synopsis
bool ata_phys_link_online (struct ata_link * |ink);

Arguments

i nk ATA link to test

Description

Test whether | i nk isonline. Note that thisfunction returns O if online status of | i nk cannot be obtained,
so ata link_online(link) !=!ata link_offline(link).

LOCKING

None.

RETURNS

Trueif the port online statusis available and online.

112

libata Core Internals

Name
ata phys link_offline — test whether the given link is offline

Synopsis
bool ata_phys_link offline (struct ata link * |ink);

Arguments

i nk ATA link to test

Description

Test whether | i nk isoffline. Notethat thisfunction returns O if offline statusof | i nk cannot be obtained,
so ata link_online(link) !=!ata link_offline(link).

LOCKING

None.

RETURNS

Trueif the port offline status is available and offline.

113

libata Core Internals

Name

ata dev_init — Initialize an ata_device structure
Synopsis
void ata_dev_init (struct ata_device * dev);

Arguments

dev Device structuretoinitiaize

Description

Initialize dev in preparation for probing.

LOCKING

Inherited from caller.

114

libata Core Internals

Name
ata link_init — Initialize an ata_link structure

Synopsis
void ata link_init (struct ata_port * ap, struct ata_link * link, int
pnp) ;

Arguments

ap ATA port link is attached to
i nk Link structuretoinitialize
prmp Port multiplier port number

Description

Initiaizel i nk.

LOCKING

Kernel thread context (may sleep)

115

libata Core Internals

Name

sata link_init_spd — Initialize link->sata_spd_limit
Synopsis

int sata_link_init_spd (struct ata_link * |ink);
Arguments

l'i nk Link to configure sata_spd_limit for
Description

Initidize| i nk->[hw_]sata_spd_limit to the currently configured value.
LOCKING

Kernel thread context (may sleep).
RETURNS

0 on success, -errno on failure.

116

libata Core Internals

Name

ata_port_alloc — allocate and initialize basic ATA port resources
Synopsis

struct ata_port * ata port_alloc (struct ata _host * host);
Arguments

host ATA host this allocated port belongsto
Description

Allocate and initialize basic ATA port resources.
RETURNS

Allocate ATA port on success, NULL on failure.
LOCKING

Inherited from calling layer (may sleep).

117

libata Core Internals

Name

ata finalize port_ops— finalize ata_port_operations
Synopsis

void ata_finalize_port_ops (struct ata_port_operations * ops);
Arguments

ops ata port_operationsto finaize

Description

An ata_port_operations can inherit from another ops and that ops can again inherit from another. Thiscan
go on as many times as necessary as long as there is no loop in the inheritance chain.

Opstables are finalized when the host is started. NULL or unspecified entries are inherited from the closet
ancestor which has the method and the entry is populated with it. After finalization, the ops table directly
pointsto all the methods and ->inherits is no longer necessary and cleared.

Using ATA_OP_NULL, inheriting ops can force a method to NULL.

LOCKING

None.

118

libata Core Internals

Name
ata_port_detach — Detach ATA port in prepration of device removal

Synopsis
void ata_port_detach (struct ata_port * ap);

Arguments

ap ATA port to be detached

Description

Detach all ATA devices and the associated SCSI devices of ap; then, remove the associated SCSI host.
ap is guaranteed to be quiescent on return from this function.

LOCKING

Kernel thread context (may sleep).

119

Chapter 6. libata SCSI translation/
emulation

120

libata SCSI translation/emulation

Name
ata std_bios param — generic bios head/sector/cylinder calculator used by sd.

Synopsis

int ata_std_bios_param (struct scsi_device * sdev, struct bl ock_device
* bdev, sector_t capacity, int geoni]);

Arguments
sdev SCSI device for which BIOS geometry isto be determined
bdev block device associated with sdev

capacity capacity of SCSI device
geoni] location to which geometry will be output
Description

Generic bios head/sector/cylinder calculator used by sd. Most BIOSes nowadays expect a XX X/255/16
(CHS) mapping. Some situations may arise where the disk is not bootable if thisis not used.

LOCKING

Defined by the SCSI layer. We don't redlly care.

RETURNS

Zero.

121

libata SCSI translation/emulation

Name

ata scsi_unlock_native capacity — unlock native capacity
Synopsis
void ata_scsi_unlock_native_capacity (struct scsi_device * sdev);

Arguments

sdev SCSI device to adjust device capacity for

Description

This function is caled if a partition on sdev extends beyond the end of the device. It requests EH to
unlock HPA.

LOCKING

Defined by the SCSI layer. Might sleep.

122

libata SCSI translation/emulation

Name
ata scsi_slave config — Set SCSI device attributes

Synopsis
int ata_scsi_slave_config (struct scsi_device * sdev);

Arguments

sdev SCSI deviceto examine

Description

Thisis called before we actualy start reading and writing to the device, to configure certain SCSI mid-
layer behaviors.

LOCKING

Defined by SCSI layer. We don't really care.

123

libata SCSI translation/emulation

Name
ata scsi_slave destroy — SCSI device is about to be destroyed

Synopsis

void ata_scsi_slave_destroy (struct scsi_device * sdev);
Arguments

sdev SCSI device to be destroyed

Description

sdev is about to be destroyed for hot/warm unplugging. If this unplugging was initiated by libata as
indicated by NULL dev->sdev, this function doesn't have to do anything. Otherwise, SCSI layer initiated
warm-unplug isin progress. Clear dev->sdev, schedule the device for ATA detach and invoke EH.

LOCKING

Defined by SCSI layer. We don't really care.

124

libata SCSI translation/emulation

Name
__ata change _queue_depth — helper for ata_scsi_change queue_depth
Synopsis
int __ata change_queue_depth (struct ata_port * ap, struct scsi_device
* sdev, int queue_depth);
Arguments
ap ATA port to which the device change the queue depth
sdev SCSI device to configure queue depth for
gueue_dept h new queue depth
Description

libsas and libata have different approaches for associating a sdev to its ata_port.

125

libata SCSI translation/emulation

Name
ata scsi_change queue depth — SCSI callback for queue depth config
Synopsis
int ata_scsi_change_queue_depth (struct scsi_device * sdev, int

gueue_dept h);

Arguments
sdev SCSI device to configure queue depth for
gueue_dept h new queue depth

Description

This s libata standard hostt->change_queue_depth callback. SCSI will call into this callback when user
tries to set queue depth via sysfs.

LOCKING

SCSl layer (we don't care)

RETURNS

Newly configured queue depth.

126

libata SCSI translation/emulation

Name

ata scsi_queuecmd — Issue SCSI cdb to libata-managed device

Synopsis

int ata_scsi_queuecnd (struct Scsi_Host * shost, struct scsi_cmd *
cmd) ;

Arguments

shost SCSI host of command to be sent

cnd SCSI command to be sent

Description
In some cases, this function translates SCSI commands into ATA taskfiles, and queues the taskfiles to be
sent to hardware. In other cases, this function simulates a SCSI device by evaluating and responding to

certain SCSI commands. This creates the overall effect of ATA and ATAPI devices appearing as SCS
devices.

LOCKING

ATA host lock

RETURNS

Returnvaluefrom __ata_scsi _queuecnd if cnd can be queued, O otherwise.

127

libata SCSI translation/emulation

Name
ata scsi_simulate — simulate SCSI command on ATA device

Synopsis
void ata_scsi_simulate (struct ata_device * dev, struct scsi_cmd *
cmd) ;

Arguments

dev thetarget device

cmd SCSI command being sent to device.

Description

Interprets and directly executes a select list of SCSI commands that can be handled internally.

LOCKING

spin_lock_irgsave(host lock)

128

libata SCSI translation/emulation

Name
ata sas port_aloc — Allocate port for a SAS attached SATA device

Synopsis

struct ata_port * ata _sas_port_alloc (struct ata_host * host,
ata_port_info * port_info, struct Scsi_Host * shost);

Arguments

host ATA host container for all SAS ports

port _i nfo Informationfrom low-level host driver

shost SCSI host that the scsi deviceis attached to
LOCKING

PCl/etc. bus probe sem.
RETURNS

ata_port pointer on success/ NULL on failure.

struct

129

libata SCSI translation/emulation

Name
ata sas port_start — Set port up for dma.

Synopsis
int ata_sas_port_start (struct ata_port * ap);
Arguments
ap Porttoinitidize
Description

Called just after data structures for each port areinitialized.

May beused astheport _st art entry in ata port_operations.

LOCKING

Inherited from caller.

130

libata SCSI translation/emulation

Name

ata_sas port_stop— Undo at a_sas_port_start
Synopsis
void ata_sas_port_stop (struct ata_port * ap);

Arguments

ap Portto shut down

Description

May be used astheport _st op entry in ata_port_operations.

LOCKING

Inherited from caller.

131

libata SCSI translation/emulation

Name
ata sas async_probe — simply schedule probing and return

Synopsis

voi d ata_sas_async_probe (struct ata port * ap);

Arguments
ap Porttoprobe

Description

For batch scheduling of probe for sas attached ata devices, assumes the port has aready been through
ata_sas_port _init

132

libata SCSI translation/emulation

Name
ata_sas port_init — Initialize a SATA device
Synopsis
int ata_sas_port_init (struct ata_port * ap);
Arguments
ap SATA port toinitialize
LOCKING
PCl/etc. bus probe sem.
RETURNS

Zero on SuCCess, NoN-zero on error.

133

libata SCSI translation/emulation

Name
ata sas port_destroy — Destroy a SATA port allocated by ata sas port_aloc

Synopsis
void ata_sas_port_destroy (struct ata_port * ap);

Arguments

ap SATA port to destroy

134

libata SCSI translation/emulation

Name

ata sas dave configure— Default lave _config routine for libata devices

Synopsis

int ata_sas_slave_configure (struct scsi_device * sdev, struct ata_port
* ap);

Arguments

sdev SCSI device to configure

ap ATA port to which SCS| deviceis attached

RETURNS

Zero.

135

libata SCSI translation/emulation

Name

ata sas gqueuecmd — Issue SCSI cdb to libata-managed device

Synopsis

int ata_sas_queuecnd (struct scsi_cmd * cnd, struct ata_port * ap);

Arguments

cnmd SCSI command to be sent

ap ATA port to which the command is being sent

RETURNS

Returnvaluefrom __at a_scsi _queuecnd if cnd can be queued, O otherwise.

136

libata SCSI translation/emulation

Name
ata_get_identity — Handler for HDIO_GET_IDENTITY ioctl

Synopsis

int ata get_identity (struct ata_port * ap, struct scsi_device * sdev,
void __user * arg);

Arguments
ap target port
sdev SCSI deviceto get identify datafor

arg User buffer areafor identify data

LOCKING

Defined by the SCSI layer. We don't redlly care.

RETURNS

Zero on Success, negative errno on error.

137

libata SCSI translation/emulation

Name
ata cmd ioctl — Handler for HDIO_DRIVE_CMD ioctl

Synopsis
int ata_cnmd_ioctl (struct scsi_device * scsidev, void __user * arg);

Arguments

scsi dev Deviceto which we are issuing command

arg User provided data for issuing command

LOCKING

Defined by the SCSI layer. We don't really care.

RETURNS

Zero on success, negative errno on error.

138

libata SCSI translation/emulation

Name
ata task_ioctl — Handler for HDIO_DRIVE _TASK ioctl

Synopsis
int ata task ioctl (struct scsi_device * scsidev, void __user * arg);

Arguments

scsi dev Deviceto which we are issuing command

arg User provided data for issuing command

LOCKING

Defined by the SCSI layer. We don't really care.

RETURNS

Zero on success, negative errno on error.

139

libata SCSI translation/emulation

Name

ata scsi_gc_new — acquire new ata_queued _cmd reference

Synopsis

struct ata_queued_cnd * ata_scsi _qgc_new (struct ata_device * dev, struct
scsi_cmd * cmd) ;

Arguments

dev ATA device to which the new command is attached

cmd SCSI command that originated this ATA command

Description

Obtain areferenceto an unused ata_queued _cmd structure, which isthe basic libata structure representing
asingle ATA command sent to the hardware.

If a command was available, fill in the SCSI-specific portions of the structure with information on the
current command.

LOCKING

spin_lock_irgsave(host lock)

RETURNS

Command alocated, or NULL if none available.

140

libata SCSI translation/emulation

Name
ata_ dump_status— user friendly display of error info

Synopsis
void ata_dunp_status (unsigned id, struct ata_taskfile * tf);

Arguments

i d idof theportinquestion
tf ptrtofilled out taskfile
Description

Decode and dump the ATA error/status registers for the user so that they have some idea what really
happened at the non make-believe layer.

LOCKING

inherited from caller

141

libata SCSI translation/emulation

Name

ata to_sense error — convert ATA error to SCSI error
Synopsis

void ata_to_sense_error (unsigned id, u8 drv_stat, u8 drv_err, u8 * sk,
u8 * asc, u8 * ascq, int verbose);

Arguments
id ATA device number
drv_stat vauecontainedin ATA status register

drv_err value contained in ATA error register

sk the sense key wel'll fill out
asc the additional sense code we'll fill out
ascq the additional sense code qualifier well fill out

ver bose be verbose

Description

Converts an ATA error into a SCSI error. Fill out pointersto SK, ASC, and ASCQ bytes for later usein
fixed or descriptor format sense blocks.

LOCKING

spin_lock_irgsave(host lock)

142

libata SCSI translation/emulation

Name

ata_gen ata sense — generate a SCS| fixed sense block
Synopsis
void ata_gen_ata_sense (struct ata_queued_cnmd * qc);

Arguments

gc Command that we are erroring out

Description

Generate sense block for afailed ATA command gc. Descriptor format is used to accommodate LBA48
block address.

LOCKING

None.

143

libata SCSI translation/emulation

Name
atapi_drain_needed — Check whether data transfer may overflow

Synopsis
i nt atapi_drain_needed (struct request * rq);

Arguments

rq requestto be checked

Description

ATAPI commands which transfer variable length data to host might overflow due to application error or
hardare bug. This function checks whether overflow should be drained and ignored for r equest .

LOCKING

None.

RETURNS

1if ; otherwise, O.

144

libata SCSI translation/emulation

Name
ata scsi_start_stop xlat — Trandate SCSI START STOP UNIT command

Synopsis

unsigned int ata_scsi_start_stop xlat (struct ata_queued_cnmd * qc);
Arguments

gc Storagefor translated ATA taskfile

Description

Sets up an ATA taskfile to issue STANDBY (to stop) or READ VERIFY (to start). Perhaps these com-
mands should be preceded by CHECK POWER MODE to see what power mode the deviceisaready in.
[See SAT revision 5 at www.t10.0rg]

LOCKING

spin_lock_irgsave(host lock)

RETURNS

Zero on Success, NoN-zero on error.

145

libata SCSI translation/emulation

Name

ata scsi_flush_xlat — Translate SCSI SYNCHRONIZE CACHE command
Synopsis

unsigned int ata_scsi_flush_xlat (struct ata_queued_cnmd * qc);
Arguments

gc Storagefor translated ATA taskfile
Description

Setsup an ATA taskfile to issue FLUSH CACHE or FLUSH CACHE EXT.
LOCKING

spin_lock_irgsave(host lock)
RETURNS

Zero on Success, NoN-zero on error.

146

libata SCSI translation/emulation

Name
scsi_6 Iba len — Get LBA and transfer length

Synopsis

void scsi_6_Iba len (const u8 * cdb, u64 * plba, u32 * plen);

Arguments

cdb SCSI command to trans ate
pl ba theLBA

pl en thetransfer length

Description

Calculate LBA and transfer length for 6-byte commands.

147

libata SCSI translation/emulation

Name
scsi_10 |ba len — Get LBA and transfer length

Synopsis

void scsi_10 I ba_len (const u8 * cdb, u64 * plba, u32 * plen);

Arguments

cdb SCSI command to trans ate
pl ba theLBA

pl en thetransfer length

Description

Calculate LBA and transfer length for 10-byte commands.

148

libata SCSI translation/emulation

Name
scsi_16 |ba len — Get LBA and transfer length

Synopsis

void scsi_16 | ba_len (const u8 * cdb, u64 * plba, u32 * plen);

Arguments

cdb SCSI command to trans ate
pl ba theLBA

pl en thetransfer length

Description

Calculate LBA and transfer length for 16-byte commands.

149

libata SCSI translation/emulation

Name

ata scsi_verify xlat — Trandate SCSI VERIFY command into an ATA one
Synopsis

unsigned int ata_scsi_verify xlat (struct ata_queued_cnd * qc);
Arguments

gc Storagefor translated ATA taskfile
Description

Converts SCSI VERIFY command to an ATA READ VERIFY command.
LOCKING

spin_lock_irgsave(host lock)
RETURNS

Zero on Success, NoN-zero on error.

150

libata SCSI translation/emulation

Name

ata scsi_rw_xlat — Translate SCSI r/w command into an ATA one
Synopsis
unsigned int ata_scsi_rw xlat (struct ata_queued_cnmd * qc);

Arguments

gc Storagefor translated ATA taskfile

Description

Convertsany of six SCS| read/write commandsinto the ATA counterpart, including starting sector (LBA),
sector count, and taking into account the device's LBA48 support.

Commands READ 6, READ 10, READ 16,WRI TE_6,WRI TE_10, and WRI TE_16 are currently sup-
ported.

LOCKING

spin_lock_irgsave(host lock)

RETURNS

Zero on success, NoN-zero on error.

151

libata SCSI translation/emulation

Name

ata scsi_trandlate — Trandate then issue SCSI command to ATA device
Synopsis

int ata_scsi_translate (struct ata_device * dev, struct scsi_cmmd * cnd,
ata_xlat_func_t xlat_func);

Arguments
dev ATA device to which the command is addressed
cnd SCSI command to execute

xlat_func Actor whichtrandatescnd to an ATA taskfile

Description

Our ->queueconmmand function has decided that the SCSI command issued can be directly translated
into an ATA command, rather than handled internally.

Thisfunction setsup anata_queued_cmd structurefor the SCSI command, and sendsthat ata_ queued_cmd
to the hardware.

Thexlat_func argument (actor) returns O if ready to execute ATA command, else 1 to finish trandlation. If
lisreturned then cmd->result (and possibly cmd->sense_buffer) are assumed to be set reflecting an error
condition or clean (early) termination.

LOCKING

spin_lock_irgsave(host lock)

RETURNS

0 on success, SCSI_ML_QUEUE_DEVICE_BUSY if the command needs to be deferred.

152

libata SCSI translation/emulation

Name
ata scsi_rbuf_get — Map response buffer.

Synopsis

void * ata_scsi_rbuf_get (struct scsi_cmmd * cnd, bool copy_in, unsigned
long * flags);

Arguments

cmd SCSI command containing buffer to be mapped.
copy_i n copy infrom user buffer

fl ags unsigned long variable to store irq enable status

Description

Prepare buffer for smulated SCSI commands.

LOCKING

spin_lock_irgsave(ata_scsi_rbuf_lock) on success

RETURNS

Pointer to response buffer.

153

libata SCSI translation/emulation

Name
ata_scsi_rbuf_put — Unmap response buffer.

Synopsis

void ata_scsi _rbuf_put (struct scsi_cmd * cnd, bool copy_out, unsigned
long * flags);

Arguments

cmd SCSI command containing buffer to be unmapped.
copy_out copy out result

fl ags fl ags passedtoat a_scsi _rbuf _get

Description

Returns rbuf buffer. The result is copied to cnd's buffer if copy_back istrue.

LOCKING

Unlocks atascsi_rbuf_lock.

154

libata SCSI translation/emulation

Name

ata scsi_rbuf_fill — wrapper for SCSI command simulators
Synopsis

void ata_scsi _rbuf _fill (struct ata_scsi_args * args, unsigned int (*ac-
tor) (struct ata_scsi_args *args, u8 *rbuf));

Arguments
args device IDENTIFY data/ SCSI command of interest.
act or Callback hook for desired SCSI command simulator
Description
Takes care of the hard work of simulating a SCSI command... Mapping the response buffer, calling the
command'shandler, and handling the handler'sreturn value. Thisreturn valueindicateswhether the handler

wishes the SCSI command to be completed successfully (0), or not (in which case cmd->result and sense
buffer are assumed to be set).

LOCKING

spin_lock_irgsave(host lock)

155

libata SCSI translation/emulation

Name
ata scsiop_ing_std — Simulate INQUIRY command

Synopsis
unsi gned int ata_scsiop_inqg_std (struct ata_scsi_args * args, u8 * rbuf);

Arguments

args deviceIDENTIFY data/ SCSI command of interest.

rbuf Response buffer, to which simulated SCSI cmd output is sent.

Description

Returns standard device identification data associated with non-VPD INQUIRY command output.

LOCKING

spin_lock_irgsave(host lock)

156

libata SCSI translation/emulation

Name
ata scsiop_ing_00 — Simulate INQUIRY VPD page 0, list of pages

Synopsis
unsi gned int ata_scsiop_ing_00 (struct ata_scsi_args * args, u8 * rbuf);

Arguments

args deviceIDENTIFY data/ SCSI command of interest.

rbuf Response buffer, to which simulated SCSI cmd output is sent.

Description

Returnslist of inquiry VPD pages available.

LOCKING

spin_lock_irgsave(host lock)

157

libata SCSI translation/emulation

Name
ata scsiop_ing_80 — Simulate INQUIRY VPD page 80, device serial number

Synopsis
unsi gned int ata_scsiop_ing_80 (struct ata_scsi_args * args, u8 * rbuf);

Arguments

args deviceIDENTIFY data/ SCSI command of interest.

rbuf Response buffer, to which simulated SCSI cmd output is sent.

Description

Returns ATA device serial number.

LOCKING

spin_lock_irgsave(host lock)

158

libata SCSI translation/emulation

Name
ata_scsiop_ing_83 — Simulate INQUIRY VPD page 83, device identity

Synopsis

unsi gned int ata_scsiop_ing_83 (struct ata_scsi_args * args, u8 * rbuf);
Arguments

args device I DENTIFY data/ SCSI command of interest.

rbuf Response buffer, to which simulated SCSI cmd output is sent.
Yields two logical unit device identification designators

- vendor specific ASCII containing the ATA serial number - SAT defined “t10 vendor id based” containing
ASCII vendor name (“ATA "), model and serial numbers.

LOCKING

spin_lock_irgsave(host lock)

159

libata SCSI translation/emulation

Name
ata_scsiop_ing_89 — Simulate INQUIRY VPD page 89, ATA info

Synopsis
unsi gned int ata_scsiop_ing_89 (struct ata_scsi_args * args, u8 * rbuf);

Arguments

args deviceIDENTIFY data/ SCSI command of interest.

rbuf Response buffer, to which simulated SCSI cmd output is sent.

Description

Yields SAT-specified ATA VPD page.

LOCKING

spin_lock_irgsave(host lock)

160

libata SCSI translation/emulation

Name

ata_scsiop_noop — Command handler that simply returns success.
Synopsis

unsi gned int ata_scsiop_noop (struct ata_scsi_args * args, u8 * rbuf);
Arguments

args deviceIDENTIFY data/ SCSI command of interest.

rbuf Response buffer, to which simulated SCSI cmd output is sent.

Description

No operation. Simply returns successto caller, to indicate that the caller should successfully complete this
SCSI command.

LOCKING

spin_lock_irgsave(host lock)

161

libata SCSI translation/emulation

Name

modecpy — Prepare response for MODE SENSE
Synopsis

voi d nodecpy (u8 * dest, const u8 * src, int n, bool changeable);
Arguments

dest output buffer

src data being copied

n length of mode page

changeabl e whether changeable parameters are requested

Description

Generate a generic MODE SENSE page for either current or changeable parameters.

LOCKING

None.

162

libata SCSI translation/emulation

Name

ata_msense_caching — Simulate MODE SENSE caching info page
Synopsis

unsi gned int ata_msense_caching (ul6é * id, u8 * buf, bool changeable);
Arguments

id device IDENTIFY data

buf output buffer

changeabl e whether changeable parameters are requested

Description

Generate a caching info page, which conditionally indicates write caching to the SCSI layer, depending
on device capabilities.

LOCKING

None.

163

libata SCSI translation/emulation

Name
ata_ msense_control — Simulate MODE SENSE control mode page

Synopsis

unsi gned int ata nsense_control (struct ata_device * dev, u8 * buf,
bool changeabl e);

Arguments
dev ATA device of interest
buf output buffer

changeabl e whether changeable parameters are requested

Description

Generate a generic MODE SENSE control mode page.

LOCKING

None.

164

libata SCSI translation/emulation

Name

ata msense rw_recovery — Simulate MODE SENSE r/w error recovery page
Synopsis
unsi gned int ata_msense_rw recovery (u8 * buf, bool changeable);

Arguments

buf output buffer

changeabl e whether changeable parameters are requested

Description

Generate a generic MODE SENSE r/w error recovery page.

LOCKING

None.

165

libata SCSI translation/emulation

Name
ata scsiop_mode_sense — Simulate MODE SENSE 6, 10 commands

Synopsis
unsi gned int ata_scsi op_npde_sense (struct ata_scsi_args * args, u8 *
rbuf);

Arguments

args deviceIDENTIFY data/ SCSI command of interest.
rbuf Response buffer, to which simulated SCSI cmd output is sent.

Description

Simulate MODE SENSE commands. Assume this is invoked for direct access devices (e.g. disks) only.
There should be no block descriptor for other device types.

LOCKING

spin_lock_irgsave(host lock)

166

libata SCSI translation/emulation

Name
ata scsiop_read cap — Simulate READ CAPACITY[16] commands

Synopsis
unsigned int ata_scsiop_read_cap (struct ata scsi_args * args, u8 *
rbuf);

Arguments

args deviceIDENTIFY data/ SCSI command of interest.

rbuf Response buffer, to which simulated SCSI cmd output is sent.

Description

Simulate READ CAPACITY commands.

LOCKING

None.

167

libata SCSI translation/emulation

Name
ata scsiop_report_luns — Simulate REPORT LUNS command

Synopsis
unsigned int ata_scsiop_report_luns (struct ata_scsi_args * args,
* rbuf);

Arguments

args deviceIDENTIFY data/ SCSI command of interest.

rbuf Response buffer, to which simulated SCSI cmd output is sent.

Description

Simulate REPORT LUNS command.

LOCKING

spin_lock_irgsave(host lock)

ug

168

libata SCSI translation/emulation

Name
atapi_xlat — Initialize PACKET taskfile
Synopsis
unsigned int atapi_xlat (struct ata_queued cnd * qc);
Arguments
gc command structure to be initialized
LOCKING
spin_lock_irgsave(host lock)
RETURNS

Zero on success, non-zero on failure.

169

libata SCSI translation/emulation

Name

ata scsi_find_dev — lookup ata_device from scsi_cmnd
Synopsis

struct ata device * ata_scsi_find_dev (struct ata_port * ap, const
struct scsi_device * scsidev);

Arguments

ap ATA port to which the device is attached

scsi dev SCSI device from which we derive the ATA device
Description

Given various information provided in struct scsi_cmnd, map that onto an ATA bus, and using that map-
ping determine which ata_device is associated with the SCSI command to be sent.

LOCKING

spin_lock_irgsave(host lock)

RETURNS

Associated ATA device, or NULL if not found.

170

libata SCSI translation/emulation

Name
ata scsi_pass_thru — convert ATA pass-thru CDB to taskfile

Synopsis
unsi gned int ata_scsi_pass_thru (struct ata_queued_cnd * qc);

Arguments

gc command structure to beinitialized

Description

Handles either 12 or 16-byte versions of the CDB.

RETURNS

Zero on success, non-zero on failure.

171

libata SCSI translation/emulation

Name
ata format_dsm_trim_descr — SATL Write Sameto DSM Trim

Synopsis

size_t ata format_dsmtrimdescr (struct scsi_cmmd * cnd, u32 trnax,
u64 sector, u32 count);

Arguments

cmd SCSI command being translated
trmax Maximum number of entriesthat will fit in sector_size bytes.
sector Starting sector

count Total Range of request in logical sectors

Description
Rewrite the WRITE SAME descriptor to be aDSM TRIM little-endian formatted descriptor.
48 Range Length

47
OLBA

Range Length of O isignored. LBA's should be sorted order and not overlap.

NOTE

thisis the same format as ADD LBA(S) TO NV CACHE PINNED SET

Return

Number of bytes copied into sglist.

172

libata SCSI translation/emulation

Name
ata format_sct_write_ same — SATL Write Sameto ATA SCT Write Same
Synopsis
size_t ata format_sct_wite_sanme (struct scsi_cmd * cnd,
nunj ;
Arguments

cnd SCSI command being translated
| ba Starting sector

num Number of sectors to be zero'd.

Description

Rewrite the WRITE SAME payload to be an SCT Write Same formatted descriptor.

NOTE

Writes a pattern (0's) in the foreground.

Return

Number of bytes copied into sglist.

u64 | ba,

u64

173

libata SCSI translation/emulation

Name
ata scsi_write_same xlat — SATL Write Sameto ATA SCT Write Same

Synopsis

unsigned int ata_scsi_wite_same_xlat (struct ata_queued_cmd * qc);

Arguments

gc Command to be trandated

Description

Translate a SCSI WRITE SAME command to be either a DSM TRIM command or an SCT Write Same
command. Based on WRITE SAME has the UNMAP flag When set translate to DSM TRIM When clear

translate to SCT Write Same

174

libata SCSI translation/emulation

Name
ata_scsiop_maint_in — Simulate a subset of MAINTENANCE_IN

Synopsis
unsigned int ata_scsiop_maint_in (struct ata scsi_args * args, u8 *
rbuf);

Arguments

args device MAINTENANCE _IN data/ SCSI command of interest.

rbuf Response buffer, to which simulated SCSI cmd output is sent.

Description

Yields asubset to satisfy scsi _report _opcode

LOCKING

spin_lock_irgsave(host lock)

175

libata SCSI translation/emulation

Name

ata scsi_report_zones complete — convert ATA output
Synopsis
void ata_scsi_report_zones_conplete (struct ata_queued_cmd * qc);

Arguments

gc command structure returning the data

Description

Convert T-13 little-endian field representation into T-10 big-endian field representation. What a mess.

176

libata SCSI translation/emulation

Name
ata_mselect_caching — Simulate MODE SELECT for caching info page

Synopsis

int ata_nsel ect_caching (struct ata queued_cnmd * qc, const u8 * buf,
int len, ul6e * fp);

Arguments

gc Storagefor trandated ATA taskfile
buf input buffer
| en number of valid bytesin the input buffer

fp out parameter for thefailed field on error

Description

Prepare a taskfile to modify caching information for the device.

LOCKING

None.

177

libata SCSI translation/emulation

Name
ata mselect_control — Simulate MODE SELECT for control page

Synopsis

int ata_nselect_control (struct ata queued_cnmd * qc, const u8 * buf,
int len, ule * fp);

Arguments

gc Storagefor trandated ATA taskfile
buf input buffer
| en number of valid bytesin the input buffer

fp out parameter for thefailed field on error

Description

Prepare a taskfile to modify caching information for the device.

LOCKING

None.

178

libata SCSI translation/emulation

Name
ata scsi_mode select xlat — Simulate MODE SELECT 6, 10 commands

Synopsis
unsi gned int ata_scsi_node_sel ect_xlat (struct ata_queued_cnd * qc);

Arguments

gc Storagefor translated ATA taskfile

Description

Convertsa MODE SELECT command to an ATA SET FEATURES taskfile. Assume thisisinvoked for
direct access devices (e.g. disks) only. There should be no block descriptor for other device types.

LOCKING

spin_lock_irgsave(host lock)

179

libata SCSI translation/emulation

Name
ata get xlat_func — check if SCSI to ATA trandlation is possible

Synopsis

ata xlat_func_t ata _get xlat_func (struct ata_device * dev, u8 cnd);
Arguments

dev ATA device

cmd SCSI command opcode to consider

Description

Look up the SCSI command given, and determine whether the SCSI command is to be trandated or ssim-
ulated.

RETURNS

Pointer to trandation function if possible, NULL if not.

180

libata SCSI translation/emulation

Name
ata scsi_dump_cdb — dump SCSI command contents to dmesg
Synopsis
void ata_scsi_dunp_cdb (struct ata_port * ap, struct scsi_cmd * cnd);
Arguments
ap ATA port to which the command was being sent
cmd SCSI command to dump
Description

Prints the contents of a SCSI command viapr i nt k.

181

libata SCSI translation/emulation

Name
ata scsi_offline_dev — offline attached SCSI device

Synopsis
int ata_scsi_offline_dev (struct ata_device * dev);

Arguments

dev ATA deviceto offline attached SCSI device for

Description

Thisfunction is called from at a_eh_hot pl ug and responsible for taking the SCSI device attached to
dev offline. Thisfunction is called with host lock which protects dev->sdev against clearing.

LOCKING

spin_lock_irgsave(host lock)

RETURNS

1if attached SCSI device exists, O otherwise.

182

libata SCSI translation/emulation

Name

ata scsi_remove dev — remove attached SCSI device
Synopsis
void ata_scsi_renove_dev (struct ata_device * dev);

Arguments

dev ATA deviceto remove attached SCSI device for

Description

This function is called from at a_eh_scsi _hot pl ug and responsible for removing the SCSI device
attached to dev.

LOCKING

Kernel thread context (may sleep).

183

libata SCSI translation/emulation

Name

ata scsi_media_change_notify — send media change event
Synopsis
voi d ata_scsi_mnedi a_change_notify (struct ata_device * dev);

Arguments

dev Pointer to the disk device with media change event

Description

Tell the block layer to send a media change notification event.

LOCKING

spin_lock_irgsave(host lock)

184

libata SCSI translation/emulation

Name
ata scsi_hotplug — SCSI part of hotplug

Synopsis
void ata_scsi_hotplug (struct work_struct * work);

Arguments

wor k Pointer to ATA port to perform SCSI hotplug on

Description
Perform SCSI part of hotplug. It's executed from a separate workqueue after EH completes. Thisis heces-

sary because SCSI hot plugging requires working EH and hot unplugging is synchronized with hot plug-
ging with amutex.

LOCKING

Kernel thread context (may sleep).

185

libata SCSI translation/emulation

Name

ata scsi_user_scan — indication for user-initiated bus scan
Synopsis

int ata_scsi_user_scan (struct Scsi_Host * shost, unsigned int channel,
unsigned int id, u64 lun);

Arguments

shost SCSI host to scan

channel Channél to scan

id ID to scan

[un LUN to scan
Description

Thisfunction is called when user explicitly requests bus scan. Set probe pending flag and invoke EH.
LOCKING

SCSl layer (we don't care)
RETURNS

Zero.

186

libata SCSI translation/emulation

Name

ata scsi_dev_rescan — initiatescsi _rescan_devi ce
Synopsis
void ata_scsi_dev_rescan (struct work_struct * work);

Arguments

wor k Pointer to ATA port to performscsi _rescan_devi ce

Description

After ATA pass thru (SAT) commands are executed successfully, libata need to propagate the changes
to SCSI layer.

LOCKING

Kernel thread context (may sleep).

187

Chapter 7. ATA errors and exceptions

This chapter tries to identify what error/exception conditions exist for ATA/ATAPI devices and describe
how they should be handled in implementation-neutral way.

The term 'error' is used to describe conditions where either an explicit error condition is reported from
device or acommand has timed out.

The term 'exception’ is either used to describe exceptional conditions which are not errors (say, power or
hotplug events), or to describe both errors and non-error exceptional conditions. Where explicit distinction
between error and exception is necessary, the term 'non-error exception' is used.

Exception categories

Exceptions are described primarily with respect to legacy taskfile + bus master IDE interface. If a con-
troller provides other better mechanism for error reporting, mapping those into categories described below
shouldn't be difficult.

In the following sections, two recovery actions - reset and reconfiguring transport - are mentioned. These
are described further in the section called “EH recovery actions”.

HSM violation

This error isindicated when STATUS value doesn't match HSM requirement during issuing or execution
any ATA/ATAPI command.

Examples

 ATA_STATUSdoesn't contain !BSY && DRDY && !DRQ while trying to issue a command.
» IBSY && 'DRQ during PIO data transfer.

* DRQ on command completion.

» IBSY && ERR after CDB transfer starts but before the last byte of CDB is transferred. ATA/ATAPI
standard states that " The device shall not terminate the PACKET command with an error before the last
byte of the command packet has been written" in the error outputs description of PACKET command
and the state diagram doesn't include such transitions.

In these cases, HSM is violated and not much information regarding the error can be acquired from
STATUS or ERROR register. IOW, this error can be anything - driver bug, faulty device, controller and/
or cable.

As HSM is violated, reset is necessary to restore known state. Reconfiguring transport for lower speed
might be helpful too as transmission errors sometimes cause this kind of errors.

ATA/ATAPI device error (non-NCQ / non-CHECK
CONDITION)

These are errors detected and reported by ATA/ATAPI devices indicating device problems. For thistype
of errors, STATUS and ERROR register values are valid and describe error condition. Note that some of
ATA bus errors are detected by ATA/ATAPI devices and reported using the same mechanism as device
errors. Those cases are described later in this section.

188

ATA errors and exceptions

For ATA commands, thistype of errors are indicated by !BSY & & ERR during command execution and
on completion.

For ATAPI commands,

* IBSY && ERR && ABRT right after issuing PACKET indicates that PACKET command is not sup-
ported and fallsin this category.

* IBSY && ERR(==CHK) && !ABRT &fter the last byte of CDB is transferred indicates CHECK
CONDITION and doesn't fall in this category.

* IBSY && ERR(==CHK) && ABRT dafter the last byte of CDB is transferred * probably* indicates
CHECK CONDITION and doesn't fall in this category.

Of errors detected as above, the followings are not ATA/ATAPI device errors but ATA bus errors and
should be handled according to the section called “ATA bus error”.

CRC error during data transfer Thisisindicated by ICRC bit in the ERROR register and meansthat
corruption occurred during datatransfer. Upto ATA/ATAPI-7, the
standard specifies that this bit is only applicable to UDMA trans-
fers but ATA/ATARPI-8 draft revision 1f says that the bit may be
applicable to multiword DMA and PIO.

ABRT error during datatransfer or - Upto ATA/ATARPI-7, the standard specifiesthat ABRT could be set

on completion on|CRC errorsand on caseswhere adeviceisnot ableto completea
command. Combined with the fact that MWDMA and PIO transfer
errorsaren't allowed to use ICRC bit upto ATA/ATAPI-7, it seems
toimply that ABRT bit alone could indicate transfer errors.

However, ATA/ATAPI-8 draft revision 1f removes the part that
ICRC errors can turn on ABRT. So, thisiskind of gray area. Some
heuristics are needed here.

ATA/ATAPI device errors can be further categorized as follows.

Mediaerrors Thisisindicated by UNC bit in the ERROR register. ATA devices
reports UNC error only after certain number of retries cannot re-
cover the data, so there's nothing much else to do other than noti-

fying upper layer.

READ and WRITE commands report CHS or LBA of the first
failed sector but ATA/ATAPI standard specifies that the amount
of transferred data on error completion isindeterminate, so we can-
not assume that sectors preceding the failed sector have been trans-
ferred and thus cannot compl ete those sectors successfully as SCSI
does.

Mediachanged / mediachangere- <<TODQO: fill here>>

guested error

Address error This is indicated by IDNF bit in the ERROR register. Report to
upper layer.

Other errors Thiscan beinvalid command or parameter indicated by ABRT ER-

ROR bit or some other error condition. Note that ABRT bit canin-
dicatealot of thingsincluding ICRC and Address errors. Heuristics
needed.

189

ATA errors and exceptions

Depending on commands, not all STATUS/ERROR bits are applicable. These non-applicable bits are
marked with "na" in the output descriptions but up to ATA/ATAPI-7 no definition of "na" can be found.
However, ATA/ATAPI-8 draft revision 1f describes"N/A" asfollows.

3.2.3.3aN/A A keyword theindicatesafield hasno defined valuein this standard
and should not be checked by the host or device. N/A fields should
be cleared to zero.

S0, it seems reasonable to assume that "na" bits are cleared to zero by devices and thus need no explicit
masking.

ATAPI device CHECK CONDITION

ATAPI device CHECK CONDITION error isindicated by set CHK bit (ERR bit) in the STATUS register
after thelast byte of CDB istransferred for aPACKET command. For thiskind of errors, sense datashould
be acquired to gather information regarding the errors. REQUEST SENSE packet command should be
used to acquire sense data.

Once sense data is acquired, this type of errors can be handled similarly to other SCSI errors. Note that
sense data may indicate ATA bus error (e.g. Sense Key 04h HARDWARE ERROR && ASC/ASCQ
47h/00h SCSI PARITY ERROR). In such cases, the error should be considered as an ATA bus error and
handled according to the section called “ATA bus error”.

ATA device error (NCQ)

NCQ command error is indicated by cleared BSY and set ERR bit during NCQ command phase (one or
more NCQ commands outstanding). Although STATUS and ERROR registers will contain valid values
describing the error, READ LOG EXT isrequired to clear the error condition, determine which command
has failed and acquire more information.

READ LOG EXT Log Page 10h reports which tag has failed and taskfile register values describing the
error. With thisinformation the failed command can be handled asanormal ATA command error asin the
section called “ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION)” and &l other in-flight
commands must be retried. Note that this retry should not be counted - it's likely that commands retried
this way would have completed normally if it were not for the failed command.

Notethat ATA buserrors can bereported as ATA device NCQ errors. This should be handled as described
in the section called “ATA bus error”.

If READ LOG EXT Log Page 10h fails or reports NQ, we're thoroughly screwed. This condition should
be treated according to the section called “HSM violation”.

ATA bus error

ATA bus error means that data corruption occurred during transmission over ATA bus (SATA or PATA).
Thistype of errors can be indicated by

* ICRC or ABRT error as described in the section called “ATA/ATAPI device error (non-NCQ / non-
CHECK CONDITION)”".

* Controller-specific error completion with error information indicating transmission error.

» On some controllers, command timeout. In this case, there may be a mechanism to determine that the
timeout is due to transmission error.

190

ATA errors and exceptions

» Unknown/random errors, timeouts and all sorts of weirdities.

As described above, transmission errors can cause wide variety of symptoms ranging from device ICRC
error to random device lockup, and, for many cases, there is no way to tell if an error condition is due
to transmission error or not; therefore, it's necessary to employ some kind of heuristic when dealing with
errors and timeouts. For example, encountering repetitive ABRT errors for known supported command
islikely toindicate ATA bus error.

Once it's determined that ATA bus errors have possibly occurred, lowering ATA bus transmission speed
isone of actionswhich may alleviate the problem. See the section called “ Reconfigure transport” for more
information.

PCI bus error

Data corruption or other failures during transmission over PCI (or other system bus). For standard BMD-
MA, thisisindicated by Error bit in the BMDMA Status register. Thistype of errors must be logged as it
indicates something is very wrong with the system. Resetting host controller is recommended.

Late completion

This occurs when timeout occurs and the timeout handler finds out that the timed out command has com-
pleted successfully or with error. This is usually caused by lost interrupts. This type of errors must be
logged. Resetting host controller is recommended.

Unknown error (timeout)

This is when timeout occurs and the command is still processing or the host and device are in unknown
state. When this occurs, HSM could be in any valid or invalid state. To bring the device to known state
and make it forget about the timed out command, resetting is necessary. The timed out command may
be retried.

Timeouts can also be caused by transmission errors. Refer to the section called “ATA buserror” for more
details.

Hotplug and power management exceptions

<<TODO: fill here>>

EH recovery actions

Cleari

Reset

This section discusses several important recovery actions.

ng error condition

Many controllers require its error registers to be cleared by error handler. Different controllers may have
different requirements.

For SATA, it's strongly recommended to clear at least SError register during error handling.

During EH, resetting is necessary in the following cases.

191

ATA errors and exceptions

e HSM isin unknown or invalid state

e HBA isin unknown or invalid state

EH needs to make HBA/device forget about in-flight commands
» HBA/device behaves weirdly

Resetting during EH might be agood idearegardless of error condition to improve EH robustness. Whether
to reset both or either one of HBA and device depends on situation but the following scheme is recom-
mended.

* When it's known that HBA isin ready state but ATA/ATAPI device is in unknown stete, reset only
device.

« |f HBA isin unknown state, reset both HBA and device.

HBA resetting isimplementation specific. For acontroller complying to taskfile/BMDMA PCI IDE, stop-
ping active DMA transaction may be sufficient iff BMDMA state is the only HBA context. But even
mostly taskfile/BMDMA PCI IDE complying controllers may have implementation specific requirements
and mechanism to reset themselves. This must be addressed by specific drivers.

OTOH, ATA/ATAPI standard describesin detail waysto reset ATA/ATAPI devices.

PATA hardware reset Thisis hardware initiated device reset signalled with asserted PA-
TA RESET- signal. There is no standard way to initiate hardware
reset from software although some hardware provides registers that
alow driver to directly tweak the RESET- signal.

Software reset Thisisachieved by turning CONTROL SRST bit onfor at |east 5us.
Both PATA and SATA support it but, in caseof SATA, thismay re-
quire controller-specific support as the second Register FISto clear
SRST should be transmitted while BSY bit is still set. Note that on
PATA, this resets both master and slave devices on a channel.

EXECUTE DEVICE DIAG- Although ATA/ATAPI standard doesn't describe exactly, EDD im-

NOSTIC command plies some level of resetting, possibly similar level with software
reset. Host-side EDD protocol can be handled with normal com-
mand processing and most SATA controllers should be able to han-
dle EDD'sjust like other commands. Asin software reset, EDD af -
fects both devices on a PATA bus.

Although EDD does reset devices, this doesn't suit error handling
as EDD cannot be issued while BSY is set and it's unclear how it
will act when deviceisin unknown/weird state.

ATAPI DEVICE RESET command This is very similar to software reset except that reset can be re-
stricted to the selected device without affecting the other device
sharing the cable.

SATA phy reset Thisisthe preferred way of resetting a SATA device. In effect, it's
identical to PATA hardware reset. Note that this can be done with
the standard SCR Control register. As such, it's usually easier to
implement than software reset.

One more thing to consider when resetting devicesisthat resetting clears certain configuration parameters
and they need to be set to their previous or newly adjusted values after reset.

192

ATA errors and exceptions

Parameters affected are.

* CHSset upwith INITIALIZE DEVICE PARAMETERS (seldom used)
» Parameters set with SET FEATURES including transfer mode setting
 Block count set with SET MULTIPLE MODE

» Other parameters (SET MAX, MEDIA LOCK...)

ATA/ATAPI standard specifies that some parameters must be maintained across hardware or software
reset, but doesn't strictly specify all of them. Alwaysreconfiguring needed parametersafter reset isrequired
for robustness. Note that this also applies when resuming from deep sleep (power-off).

Also, ATA/ATAPI standard requiresthat IDENTIFY DEVICE/ IDENTIFY PACKET DEVICE isissued
after any configuration parameter is updated or a hardware reset and the result used for further operation.
OS driver is required to implement revalidation mechanism to support this.

Reconfigure transport

For both PATA and SATA, alot of cornersare cut for cheap connectors, cables or controllersand it's quite
common to see high transmission error rate. This can be mitigated by lowering transmission speed.

The following is a possible scheme Jeff Garzik suggested.
If more than $N (3?) transmission errors happen in 15 minutes,
 if SATA, decrease SATA PHY speed. if speed cannot be decreased,
* decrease UDMA xfer speed. if at UDMADO, switch to PIO4,

 decrease PIO xfer speed. if at PIO3, complain, but continue

193

Chapter 8. ata_piix Internals

194

ata piix Internals

Name

ich_pata cable detect — Probe host controller cable detect info
Synopsis

int ich_pata_cable_detect (struct ata_port * ap);
Arguments

ap Port for which cable detect info is desired

Description

Read 80c cable indicator from ATA PCI device's PCI config register. This register is normally set by
firmware (B1OS).

LOCKING

None (inherited from caller).

195

ata piix Internals

Name

piix_pata prereset — prereset for PATA host controller
Synopsis

int piix_pata prereset (struct ata_link * I'ink, unsigned | ong deadline);
Arguments

[ink Target link

deadl i ne deadlinejiffiesfor the operation

LOCKING

None (inherited from caller).

196

ata piix Internals

Name
piix_set_piomode — Initialize host controller PATA PIO timings

Synopsis
void piix_set_pionode (struct ata_port * ap, struct ata_device * adev);

Arguments

ap Port whose timings we are configuring

adev Driveinquestion

Description

Set PIO mode for device, in host controller PCI config space.

LOCKING

None (inherited from caller).

197

ata piix Internals

Name
do_pata set dmamode — Initialize host controller PATA PIO timings

Synopsis

void do_pata_set_dmanpde (struct ata_port * ap,
adev, int isich);

Arguments

ap Port whose timings we are configuring
adev Drivein question

i sich setifthechipisanICH device

Description

Set UDMA mode for device, in host controller PCI config space.

LOCKING

None (inherited from caller).

struct

at a_devi ce

*

198

ata piix Internals

Name
piix_set_ dmamode — Initialize host controller PATA DMA timings
Synopsis
void piix_set_dnmanode (struct ata _port * ap, struct ata_device * adev);
Arguments
ap Port whose timings we are configuring
adev um
Description

Set MW/UDMA maode for device, in host controller PCI config space.

LOCKING

None (inherited from caller).

199

ata piix Internals

Name
ich_set dmamode — Initialize host controller PATA DMA timings

Synopsis
void ich_set _dmanpde (struct ata_port * ap, struct ata_device * adev);

Arguments

ap Port whose timings we are configuring

adev um

Description

Set MW/UDMA maode for device, in host controller PCI config space.

LOCKING

None (inherited from caller).

200

ata piix Internals

Name
piix_check 450nx_errata— Check for problem 450N X setup

Synopsis
int piix_check 450nx_errata (struct pci_dev * ata_dev);

Arguments

ata_dev thePCl deviceto check

Description

Check for the present of 450NX errata #19 and errata #25. If they are found return an error code so we
can turn off DMA

201

ata piix Internals

Name
piix_init_one — Register PIIX ATA PCI device with kernel services

Synopsis
int piix_init_one (struct pci_dev * pdev, const struct pci_device_ id
* ent);

Arguments

pdev PCI deviceto register
ent Entry in piix_pci_tbl matching with pdev
Description

Called from kernel PCI layer. We probe for combined mode (sigh), and then hand over control to libata,
for it to do therest.

LOCKING

Inherited from PCI layer (may sleep).

RETURNS

Zero on success, or -ERRNO vaue.

202

Chapter 9. sata_sil Internals

203

sata sil Internals

Name

sil_set_mode — wrap set_ mode functions

Synopsis

int sil_set_node (struct ata_link * Iink, struct ata_device ** r_fail ed);

Arguments

[ink link to set up

r_failed returned device when wefail

Description

Wrap the libata method for device setup as after the setup we need to inspect the results and do some
configuration work

204

sata sil Internals

Name
sil_dev_config— Apply device/host-specific errata fixups
Synopsis

void sil_dev_config (struct ata_device * dev);

Arguments

dev Deviceto be examined

Description

After the IDENTIFY [PACKET] DEVICE step is complete, and a device is known to be present, this
function is called. We apply two errata fixups which are specific to Silicon Image, a Seagate and a Maxtor
fixup.

For certain Seagate devices, we must limit the maximum sectors to under 8K.
For certain Maxtor devices, we must not program the drive beyond udmab.

Both fixups are unfairly pessimistic. Assoon as| get moreinformation on these errata, | will create amore
exhaustive list, and apply the fixupsto only the specific devices/hosts/firmwares that need it.

20040111 - Seagate drives affected by the Mod15Write bug are blacklisted The Maxtor quirk is in the
blacklist, but I'm keeping the original pessimistic fix for the following reasons... - There seemsto be less
info on it, only one device gleaned off the Windows driver, maybe only one is affected. More info would
be greatly appreciated. - But then again UDMAS is hardly anything to complain about

205

Chapter 10. Thanks

The bulk of the ATA knowledge comes thanks to long conversations with Andre Hedrick (www.lin-
ux-ide.org), and long hours pondering the ATA and SCSI specifications.

Thanks to Alan Cox for pointing out similarities between SATA and SCSI, and in general for motivation
to hack on libata

libata's device detection method, ata_pio_devchk, and in general all the early probing was based on exten-
sive study of Hale Landis's probe/reset codein his ATADRVR driver (www.ata-atapi.com).

206

	libATA Developer's Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. libata Driver API
	struct ata_port_operations
	Disable ATA port
	Post-IDENTIFY device configuration
	Set PIO/DMA mode
	Taskfile read/write
	PIO data read/write
	ATA command execute
	Per-cmd ATAPI DMA capabilities filter
	Read specific ATA shadow registers
	Write specific ATA shadow register
	Select ATA device on bus
	Private tuning method
	Control PCI IDE BMDMA engine
	High-level taskfile hooks
	Exception and probe handling (EH)
	Hardware interrupt handling
	SATA phy read/write
	Init and shutdown

	Chapter 3. Error handling
	Origins of commands
	How commands are issued
	How commands are processed
	How commands are completed
	ata_scsi_error()
	Problems with the current EH

	Chapter 4. libata Library
	ata_link_next
	ata_dev_next
	atapi_cmd_type
	ata_tf_to_fis
	ata_tf_from_fis
	ata_pack_xfermask
	ata_unpack_xfermask
	ata_xfer_mask2mode
	ata_xfer_mode2mask
	ata_xfer_mode2shift
	ata_mode_string
	ata_dev_classify
	ata_id_string
	ata_id_c_string
	ata_id_xfermask
	ata_pio_need_iordy
	ata_do_dev_read_id
	ata_cable_40wire
	ata_cable_80wire
	ata_cable_unknown
	ata_cable_ignore
	ata_cable_sata
	ata_dev_pair
	sata_set_spd
	ata_timing_cycle2mode
	ata_do_set_mode
	ata_wait_after_reset
	sata_link_debounce
	sata_link_resume
	sata_link_scr_lpm
	ata_std_prereset
	sata_link_hardreset
	sata_std_hardreset
	ata_std_postreset
	ata_dev_set_feature
	ata_std_qc_defer
	ata_sg_init
	ata_qc_complete
	ata_qc_complete_multiple
	sata_scr_valid
	sata_scr_read
	sata_scr_write
	sata_scr_write_flush
	ata_link_online
	ata_link_offline
	ata_host_suspend
	ata_host_resume
	ata_host_alloc
	ata_host_alloc_pinfo
	ata_slave_link_init
	ata_host_start
	ata_host_init
	ata_host_register
	ata_host_activate
	ata_host_detach
	ata_pci_remove_one
	ata_platform_remove_one
	ata_msleep
	ata_wait_register
	sata_lpm_ignore_phy_events

	Chapter 5. libata Core Internals
	ata_dev_phys_link
	ata_force_cbl
	ata_force_link_limits
	ata_force_xfermask
	ata_force_horkage
	ata_rwcmd_protocol
	ata_tf_read_block
	ata_build_rw_tf
	ata_read_native_max_address
	ata_set_max_sectors
	ata_hpa_resize
	ata_dump_id
	ata_exec_internal_sg
	ata_exec_internal
	ata_pio_mask_no_iordy
	ata_dev_read_id
	ata_dev_configure
	ata_bus_probe
	sata_print_link_status
	sata_down_spd_limit
	sata_set_spd_needed
	ata_down_xfermask_limit
	ata_wait_ready
	ata_dev_same_device
	ata_dev_reread_id
	ata_dev_revalidate
	ata_is_40wire
	cable_is_40wire
	ata_dev_xfermask
	ata_dev_set_xfermode
	ata_dev_init_params
	ata_sg_clean
	atapi_check_dma
	ata_sg_setup
	swap_buf_le16
	ata_qc_new_init
	ata_qc_free
	ata_qc_issue
	ata_phys_link_online
	ata_phys_link_offline
	ata_dev_init
	ata_link_init
	sata_link_init_spd
	ata_port_alloc
	ata_finalize_port_ops
	ata_port_detach

	Chapter 6. libata SCSI translation/emulation
	ata_std_bios_param
	ata_scsi_unlock_native_capacity
	ata_scsi_slave_config
	ata_scsi_slave_destroy
	__ata_change_queue_depth
	ata_scsi_change_queue_depth
	ata_scsi_queuecmd
	ata_scsi_simulate
	ata_sas_port_alloc
	ata_sas_port_start
	ata_sas_port_stop
	ata_sas_async_probe
	ata_sas_port_init
	ata_sas_port_destroy
	ata_sas_slave_configure
	ata_sas_queuecmd
	ata_get_identity
	ata_cmd_ioctl
	ata_task_ioctl
	ata_scsi_qc_new
	ata_dump_status
	ata_to_sense_error
	ata_gen_ata_sense
	atapi_drain_needed
	ata_scsi_start_stop_xlat
	ata_scsi_flush_xlat
	scsi_6_lba_len
	scsi_10_lba_len
	scsi_16_lba_len
	ata_scsi_verify_xlat
	ata_scsi_rw_xlat
	ata_scsi_translate
	ata_scsi_rbuf_get
	ata_scsi_rbuf_put
	ata_scsi_rbuf_fill
	ata_scsiop_inq_std
	ata_scsiop_inq_00
	ata_scsiop_inq_80
	ata_scsiop_inq_83
	ata_scsiop_inq_89
	ata_scsiop_noop
	modecpy
	ata_msense_caching
	ata_msense_control
	ata_msense_rw_recovery
	ata_scsiop_mode_sense
	ata_scsiop_read_cap
	ata_scsiop_report_luns
	atapi_xlat
	ata_scsi_find_dev
	ata_scsi_pass_thru
	ata_format_dsm_trim_descr
	ata_format_sct_write_same
	ata_scsi_write_same_xlat
	ata_scsiop_maint_in
	ata_scsi_report_zones_complete
	ata_mselect_caching
	ata_mselect_control
	ata_scsi_mode_select_xlat
	ata_get_xlat_func
	ata_scsi_dump_cdb
	ata_scsi_offline_dev
	ata_scsi_remove_dev
	ata_scsi_media_change_notify
	ata_scsi_hotplug
	ata_scsi_user_scan
	ata_scsi_dev_rescan

	Chapter 7. ATA errors and exceptions
	Exception categories
	HSM violation
	ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION)
	ATAPI device CHECK CONDITION
	ATA device error (NCQ)
	ATA bus error
	PCI bus error
	Late completion
	Unknown error (timeout)
	Hotplug and power management exceptions

	EH recovery actions
	Clearing error condition
	Reset
	Reconfigure transport

	Chapter 8. ata_piix Internals
	ich_pata_cable_detect
	piix_pata_prereset
	piix_set_piomode
	do_pata_set_dmamode
	piix_set_dmamode
	ich_set_dmamode
	piix_check_450nx_errata
	piix_init_one

	Chapter 9. sata_sil Internals
	sil_set_mode
	sil_dev_config

	Chapter 10. Thanks

