Unreliable Guide To
Hacking The Linux Kernel

Rusty Russell <rust y@ ust cor p. com au>

Unreliable Guide To Hacking The Linux Kernel
by Rusty Russell

Thisisthefirst release of this document as part of the kernel tarball.
Copyright © 2005 Rusty Russll

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY: ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Seethe GNU General Public License for more details.

Y ou should have received a copy of the GNU Genera Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

O g 11 oo 1o (o o PP 1
2. TRE PLAYELS ..ot et 2
USEE COMEEXE .. eeetie ittt ettt et et et e ettt et et et e e et e e e e e et e et e et e enaaenns 2
Hardware Interrupts (Hard TRQS)uiiiiiieieee e 2
Software Interrupt Context: Softirgs and TaskletScoouvuieiiiiiiiei e 3
3. SOME BASIC RUIES ...ttt et e e e et e et e e et e e e e eees 4
4. ioctls: Not writing anew SyStem Calli oo e e 5
5. RECIPES TOF DEAAIOCK ...ttt ettt e e e 6
6. COMMON ROULINES ...ttt ettt e e e ettt e et e et e et e e e e e e et e e et e e ean e eean e eeneeeens 7
printk() include/linux/kernel .h e 7
copy_[to/fron] _user() /get_user() /put _user() i nclude/ asnf
UBC LSS, N e 7
kmal [oc() /kfree() include/linux/slab.h ... 8
current include/asm CUrrent . N .. 8
ndel ay() /udel ay() i ncl ude/ asm del ay. hi ncl ude/ I i nux/del ay. h.............. 8
cpu_to_be32()/be32_to_cpu()/cpu_to | e32()/l e32_to_cpu() in-
clude/ asnm byt @0rder . N .o 9
local _irg_save()/local _irq_restore() include/linux/irgflags.h....... 9
| ocal _bh_di sabl e()/l ocal _bh_enabl e() i ncl ude/Ilinux/inter-
(U1 o] S o RSP TP PP TP PPPPPTPPPPIN 9
snp_processor _id()include/ asm snp. h . 9
_init/_exit/__initdatai ncl ude/Tinux/init.h e, 9
_initcall ()/module_init() include/linux/init.h. ... 10
nmodul e_exit () include/Tinux/init.N ... 10
try_nodul e_get () /modul e_put () i nclude/linux/nodule.h......cccc.ooeeennnnnen. 10
7. Wait Queuesi ncl ude/ i nux/ Wai t. N o 11
DECIAITNG ..ttt et e e e e e eee 11
QUEUING ..ttt ettt ettt ettt ettt e ettt e et e et e e e e e e s 11
WaKing UpP QUEUEH TASKSuuiieiiitieetiit ettt e ettt e et e et e et e et e e et eeeeaa s 11
8. ALOMIC OPEIBIIONSeevtieeiiiti ettt ettt ettt ettt ettt et et et et et e eae e e e et e e e e naa e e ennes 12
0. SYMDIOIS .. ettt e e eee 13
EXPORT_SYMBOL() include/linux/ export.h ... 13
EXPORT_SYMBOL_GPL() include/linux/export.h ... 13
10. ROULINES AN CONVENTIONScevtueieiii ettt ettt ettt e et e et e e e eaa s 14
Double-linked listsi ncl ude/ 1i nux/ Ti St h .o, 14
RELUIN CONVENTIONS ...ttt e et e e e et e e e e e e e e et e e eaneeeens 14
Breaking ComPIlaionuuiiiiiii e 14
INitializing SIrUCIUrE MEMDENS ... i 14
LN W 1 = T o] PP 14
L0 TSSO PPPPPTRPPPPIN 15
<) TSP P TTRRTS 15
11. Putting Your SEUf in the KEIMEl ... e 16
12, KEIMNEL CAIMIIPS ... eeeeetie ettt ettt ettt e e et e et et e et et e e e ee e e e eai e e eenans 17
G I 0 S 19

Chapter 1. Introduction

Welcome, gentlereader, to Rusty's Remarkably Unreliable Guideto Linux Kernel Hacking. Thisdocument
describes the common routines and general requirements for kernel code: its goal is to serve as a primer
for Linux kernel development for experienced C programmers. | avoid implementation details: that's what
the codeisfor, and | ignore whole tracts of useful routines.

Before you read this, please understand that | never wanted to write this document, being grossly un-
der-qualified, but | always wanted to read it, and this was the only way. | hope it will grow into a com-
pendium of best practice, common starting points and random information.

Chapter 2. The Players

At any time each of the CPUs in a system can be:

* not associated with any process, serving a hardware interrupt;

* not associated with any process, serving a softirq or tasklet;

 running in kernel space, associated with a process (user context);

* running aprocessin user space.

There is an ordering between these. The bottom two can preempt each other, but above that is a strict
hierarchy: each can only be preempted by the ones above it. For example, while a softirq is running on
a CPU, no other softirg will preempt it, but a hardware interrupt can. However, any other CPUs in the

system execute independently.

WEe'll see anumber of ways that the user context can block interrupts, to become truly non-preemptable.

User Context

User context is when you are coming in from a system call or other trap: like userspace, you can be
preempted by more important tasks and by interrupts. Y ou can sleep, by calling schedul e() .

Note

Y ou are alwaysin user context on moduleload and unload, and on operations on the block device
layer.

Inuser context, thecur r ent pointer (indicating thetask we are currently executing) isvalid, andi n_i n-
terrupt () (include/linux/interrupt.h)isfase.

Caution

Beware that if you have preemption or softirgs disabled (see below), i n_i nt er rupt () will
return afalse positive.

Hardware Interrupts (Hard IRQs)

Timer ticks, network cards and keyboard are examples of real hardware which produce interrupts at any
time. The kernel runs interrupt handlers, which services the hardware. The kernel guarantees that this
handler is never re-entered: if the same interrupt arrives, it is queued (or dropped). Because it disables
interrupts, this handler has to be fast: frequently it simply acknowledges the interrupt, marks a 'software
interrupt’ for execution and exits.

You can tell you arein ahardware interrupt, becausei n_i r q() returnstrue.

Caution

Beware that thiswill return afalse positive if interrupts are disabled (see below).

The Players

Software Interrupt Context: Softirgs and
Tasklets

Whenever asystem call isabout to return to userspace, or ahardware interrupt handler exits, any 'software
interrupts’ which are marked pending (usually by hardware interrupts) are run (ker nel / sof ti rq. c).

Much of the real interrupt handling work is done here. Early in the transition to SMP, there were only
'bottom halves (BHs), which didn't take advantage of multiple CPUs. Shortly after we switched from
wind-up computers made of match-sticks and snot, we abandoned thislimitation and switched to 'softirgs.

i ncl ude/ i nux/interrupt. h lists the different softirgs. A very important softirq is the timer
softirg (i ncl ude/ | i nux/ ti mer. h):youcanregister to haveit call functionsfor you inagiven length
of time.

Softirgsare often apain to deal with, since the same softirq will run simultaneously on more than one CPU.
For thisreason, tasklets (i ncl ude/ | i nux/ i nt err upt . h) are more often used: they are dynamical-
ly-registrable (meaning you can have as many as you want), and they also guarantee that any tasklet will
only run on one CPU at any time, although different tasklets can run simultaneously.

Caution

The name 'tasklet' is misleading: they have nothing to do with 'tasks, and probably more to do
with some bad vodka Alexey Kuznetsov had at the time.

You cantell you arein asoftirg (or tasklet) usingthei n_sof tirq() macro (i ncl ude/ | i nux/i n-
terrupt.h).

Caution

Beware that thiswill return afalse positive if abh lock (see below) is held.

Chapter 3. Some Basic Rules

No memory protection

No floating point or MM X

A rigid stack limit

The Linux kernel is portable

If you corrupt memory, whether in user context or interrupt context,
the whole machine will crash. Are you sure you can't do what you
want in userspace?

The FPU context is not saved; even in user context the FPU state
probably won't correspond with the current process: you would
mess with some user process FPU state. If you really want to do
this, you would have to explicitly save/restore the full FPU state
(and avoid context switches). It is generally a bad idea; use fixed
point arithmetic first.

Depending on configuration options the kernel stack is about 3K
to 6K for most 32-bit architectures: it's about 14K on most 64-bit
archs, and often shared with interrupts so you can't useit al. Avoid
deep recursion and huge local arrays on the stack (allocate them
dynamically instead).

Let's keep it that way. Y our code should be 64-bit clean, and endi-
an-independent. Y ou should also minimize CPU specific stuff, e.g.
inline assembly should be cleanly encapsulated and minimized to
easeporting. Generally it should berestricted to the architecture-de-
pendent part of the kernel tree.

Chapter 4. ioctls: Not writing a new
system call

A system call generally looks like this

asnl i nkage | ong sys_nycall (int arg)
{

}

return O;

First, in most casesyou don't want to create anew system call. Y ou create acharacter deviceand implement
an appropriateioctl for it. Thisis much moreflexible than system calls, doesn't have to be entered in every
architecture'si ncl ude/ asntf uni std. handar ch/ ker nel / ent ry. Sfile, andismuch morelikely
to be accepted by Linus.

If al your routine doesisread or write some parameter, consider implementing asysf s interfaceinstead.

Inside the ioctl you're in user context to a process. When a error occurs you return a negated errno (see
i ncl ude/ Ii nux/ errno. h), otherwise you return O.

After you dept you should check if asignal occurred: the Unix/Linux way of handling signalsisto tem-
porarily exit the system call with the - ERESTARTSYS error. The system call entry code will switch back
to user context, process the signal handler and then your system call will be restarted (unless the user
disabled that). So you should be prepared to processtherestart, e.g. if you'rein the middle of manipulating
some data structure.

if (signal_pending(current))
return - ERESTARTSYS;

If you're doing longer computations: first think userspace. If you really want to do it in kernel you should
regularly check if you need to give up the CPU (remember there is cooperative multitasking per CPU).
Idiom:

cond_resched(); /* WIIl sleep */

A short note on interface design: the UNIX system call motto is "Provide mechanism not policy".

Chapter 5. Recipes for Deadlock

Y ou cannot call any routines which may sleep, unless:
* You arein user context.
* You do not own any spinlocks.

* You have interrupts enabled (actually, Andi Kleen says that the scheduling code will enable them for
you, but that's probably not what you wanted).

Note that some functions may sleep implicitly: common ones are the user space access functions (*_user)
and memory allocation functions without GFP_ATOMIC.

Y ou should always compile your kernel CONFIG_DEBUG_ATOMIC_SLEEP on, and it will warn you
if you break these rules. If you do break the rules, you will eventually lock up your box.

Really.

Chapter 6. Common Routines

printk() i nclude/linux/kernel.h

print k() feedskernel messagesto the console, dmesg, and the syslog daemon. It isuseful for debugging
and reporting errors, and can be used inside interrupt context, but use with caution: a machine which has
its console flooded with printk messagesis unusable. It uses aformat string mostly compatible with ANSI
C printf, and C string concatenation to give it afirst "priority" argument:

printk(KERN_INFO "i = %\n", i);

Seei ncl ude/ | i nux/ ker nel . h; for other KERN _ values; these areinterpreted by syslog asthelevel.
Special case: for printing an | P address use

__be32 i paddress;
printk(KERN_INFO "ny ip: 9%l 4\n", & paddress);

print k() internally usesa 1K buffer and does not catch overruns. Make sure that will be enough.

Note

Y ou will know when you are areal kernel hacker when you start typoing printf as printk in your
user programs:)

Note

Another sidenote: the original Unix Version 6 sources had acomment on top of its printf function:
"Printf should not be used for chit-chat". Y ou should follow that advice.

copy [to/from _user() /get _user() /
put _user () 1 ncl ude/ asm uaccess. h

[SLEEPS

put user () andget _user () areusedtoget and put singlevalues (such asanint, char, or long) from
and to userspace. A pointer into userspace should never be ssimply dereferenced: data should be copied
using these routines. Both return - EFAULT or O.

copy_to_user() andcopy_from user () aremoregenera: they copy an arbitrary amount of data
to and from userspace.

Caution

Unlike put _user () and get _user (), they return the amount of uncopied data (ie. O till
means SUCCESS).

Common Routines

k mal

[Yes, this moronic interface makes me cringe. The flamewar comes up every year or s0. --RR.]

The functions may sleep implicitly. This should never be called outside user context (it makes no sense),
with interrupts disabled, or a spinlock held.

| oc()/kfree() i nclude/linux/slab.h

[MAY SLEEP: SEE BELOW]

These routines are used to dynamically request pointer-aligned chunks of memory, like malloc and free
doin userspace, but kmal | oc() takesan extraflag word. Important values:

GFP_KERNEL May sleep and swap to free memory. Only allowed in user context,
but is the most reliable way to alocate memory.

GFP_ATOM C Don't deep. Less reiable than G-P_KERNEL, but may be called
frominterrupt context. Y ou should really have agood out-of -mem-
ory error-handling strategy.

GFP_DNA Allocate ISA DMA lower than 16MB. If you don't know what that
isyou don't need it. Very unreliable.

If you see a sleeping function called from invalid context warning message, then maybe you called a
sleeping allocation function from interrupt context without GFP_ATOM C. You should really fix that.
Run, don't walk.

If you are allocating at least PAGE_SI ZE (i ncl ude/ asnif page. h) bytes, consider using
__get _free_pages() (i ncl ude/li nux/ nm h). It takes an order argument (O for page sized, 1
for double page, 2 for four pages etc.) and the same memory priority flag word as above.

If you areallocating more than apageworth of bytesyoucanusevnal | oc() . It'll allocatevirtual memory
in the kernel map. This block is not contiguous in physical memory, but the MMU makes it look like it
is for you (so it'll only look contiguous to the CPUs, not to external device drivers). If you really need
large physically contiguous memory for some weird device, you have a problem: it is poorly supported in
Linux because after some time memory fragmentation in arunning kernel makesit hard. The best way is
to alocate the block early in the boot processviatheal | oc_boot nen{) routine.

Before inventing your own cache of often-used objects consider using aslab cacheini ncl ude/ | i n-
ux/ sl ab. h

current I ncl ude/ asni current. h

ndel
| ncl

This global variable (really a macro) contains a pointer to the current task structure, so is only valid in
user context. For example, when a process makes a system call, thiswill point to the task structure of the
calling process. It isnot NULL in interrupt context.

ay()/udel ay() i ncl ude/ asm del ay. h
ude/ | i nux/ del ay. h

The udel ay() and ndel ay() functions can be used for small pauses. Do not use large values with
them as you risk overflow - the helper function ndel ay() isuseful here, or consider nsl eep() .

Common Routines

cpu to be32()/be32 to cpu()/
cpu to | e32()/ e32_to_cpu() in-
cl ude/ asni byt eorder. h

Thecpu_t o_be32() family (wherethe"32" can be replaced by 64 or 16, and the "be" can be replaced
by "le") are the general way to do endian conversions in the kernel: they return the converted value. All
variations supply thereverseaswell: be32 to_cpu(), etc.

There are two major variations of these functions: the pointer variation, such ascpu_t o_be32p(),

which take a pointer to the given type, and return the converted value. The other variation is the "in-situ”
family, suichascpu_t o_be32s(), which convert value referred to by the pointer, and return void.

| ocal _irq save()/local _irqg restore()
| ncl ude/ i nux/irqflags.h

These routines disable hard interrupts on the local CPU, and restore them. They are reentrant; saving the
previous state in their oneunsi gned | ong f 1 ags argument. If you know that interrupts are enabled,
you cansimply usel ocal _i rqg_di sabl e() andl ocal _irqg_enabl e().

| ocal bh _di sabl e()/l ocal bh _enabl e()
| ncl ude/ i nux/interrupt.h

These routines disable soft interrupts on the local CPU, and restore them. They are reentrant; if soft inter-
rupts were disabled before, they will still be disabled after this pair of functions has been called. They
prevent softirgs and tasklets from running on the current CPU.

snp_processor _id()include/asni snp. h

get _cpu() disables preemption (so you won't suddenly get moved to another CPU) and returns the
current processor number, between 0 and NR_CPUS. Note that the CPU numbers are not necessarily
continuous. Y ou return it again with put _cpu() when you are done.

If you know you cannot be preempted by another task (ie. you arein interrupt context, or have preemption
disabled) you can use smp_processor_id().

__Init/_exit/__initdatai ncl ude/ | i n-
ux/init.h

After boot, the kernel frees up a special section; functions marked with __init and data structures marked
with __initdata are dropped after boot is complete: similarly modules discard this memory after initializa-
tion. __ exit is used to declare a function which is only required on exit: the function will be dropped if
thisfileis not compiled asamodule. See the header file for use. Note that it makes no sense for afunction
marked with __init to be exported to modules with EXPORT_SYMBOL() - thiswill break.

Common Routines

_initcall ()/module_init() in-
clude/linux/init.h

Many parts of the kernel are well served as a module (dynamically-loadable parts of the kernel). Using
thenmodul e_i ni t () andnodul e_exi t () macrosit iseasy to write code without #ifdefs which can
operate both as amodule or built into the kernel.

Thenodul e_i ni t () macro defines which function is to be called at module insertion time (if the file
is compiled as amodule), or at boot time: if the file is not compiled as a module the nodul e_i nit ()
macro becomes equivalentto __i ni t cal | (), which through linker magic ensures that the function is
called on boot.

The function can return a negative error number to cause module loading to fail (unfortunately, this has
no effect if the module is compiled into the kernel). Thisfunction is called in user context with interrupts
enabled, so it can sleep.

nodul e_exit() include/linux/init.h

This macro defines the function to be called at module removal time (or never, in the case of the file
compiled into the kernel). It will only be called if the module usage count has reached zero. Thisfunction
can also sleep, but cannot fail: everything must be cleaned up by the time it returns.

Note that this macro isoptional: if it isnot present, your module will not be removable (except for ‘rmmod
-f.

try nodul e _get () /modul e _put () I n-
cl ude/ |1 nux/ nodul e. h

These manipulate the module usage count, to protect against removal (a module also can't be removed
if another module uses one of its exported symbols: see below). Before calling into module code, you
should call t ry_nodul e_get () onthat module: if it fails, then the module is being removed and you
should act as if it wasn't there. Otherwise, you can safely enter the module, and call nodul e_put ()
when you're finished.

Most registerable structures have an owner field, such asin the file_operations structure. Set this field
to the macro THIS MODULE.

10

Chapter 7. Wait Queues | ncl ude/
| 1 nux/wait.h

[SLEEPS

A wait queue is used to wait for someone to wake you up when a certain condition is true. They must be
used carefully to ensure there is no race condition. Y ou declare await_queue_head t, and then processes
which want to wait for that condition declare a wait_queue_t referring to themselves, and place that in
the queue.

Declaring

You declare a wait_queue_head_t using the DECLARE_WAI T_QUEUE_HEAD() macro, or using the
i nit_waitqueue_head() routinein your initialization code.

Queuing

Placing yourself in the waitqueue is fairly complex, because you must put yourself in the queue be-
fore checking the condition. There is a macro to do this: wait _event _interruptible() in-
cl ude/ l'i nux/wait. h The first argument is the wait queue head, and the second is an expression
which is evaluated; the macro returns O when this expression is true, or -ERESTARTSY S if asignal is
received. Thewai t _event () versionignoressignals.

Waking Up Queued Tasks

Call wake_up() i nclude/linux/wait. h;, whichwill wake up every process in the queue. The
exception is if one has TASK_EXCLUSI VE set, in which case the remainder of the queue will not be
woken. There are other variants of this basic function available in the same header.

11

Chapter 8. Atomic Operations

Certain operations are guaranteed atomic on all platforms. The first class of operations work on atomic_t
i ncl ude/ asm at oni c. h; thiscontainsasigned integer (at least 32 bitslong), and you must use these
functions to manipulate or read atomic_t variables. at om ¢_r ead() and at om c_set () get and
set the counter, at om ¢_add(),atom ¢c_sub(),atom c_inc(),atom c_dec(),andat om
i c_dec_and_test () (returnstrueif it was decremented to zero).

Yes. It returnstrue (i.e. '=0) if the atomic variable is zero.
Note that these functions are slower than normal arithmetic, and so should not be used unnecessarily.

The second class of atomic operations is atomic bit operations on an unsigned long, defined in
i ncl ude/1i nux/ bi tops. h. These operations generaly take a pointer to the bit pattern, and
a bit number: 0 is the least significant bit. set _bit (), cl ear_bit() and change_bit ()
set, clear, and flip the given bit. test _and_set bit(), test_and clear_bit() and
test _and_change_bi t () do the same thing, except return true if the bit was previously set; these
are particularly useful for atomically setting flags.

It is possible to call these operations with bit indices greater than BITS PER_LONG. The resulting be-
havior is strange on hig-endian platforms though so it is agood idea not to do this.

12

Chapter 9. Symbols

Within the kernel proper, the normal linking rules apply (ie. unless a symbol is declared to be file scope
with the static keyword, it can be used anywhere in the kernel). However, for modules, a special exported
symbol table is kept which limits the entry points to the kernel proper. Modules can also export symbols.

EXPORT_SYMBOL() 1 ncl ude/ |l i nux/ export.h

This is the classic method of exporting a symbol: dynamically loaded modules will be able to use the
symbol as normal.

EXPORT_SYMBOL_GPL() i1 ncl ude/li nux/ex-
port.h

Similar to EXPORT_SYMBOL() except that the symbols exported by EXPORT_SYMBOL_GPL() can
only be seen by moduleswithaMODULE_LI1 CENSE() that specifiesaGPL compatiblelicense. Itimplies
that the function is considered an internal implementation issue, and not really an interface. Some main-
tainers and devel opers may however require EXPORT_SYMBOL _GPL () when adding any new APIs or
functionality.

13

Chapter 10. Routines and Conventions

Double-linked lists i ncl ude/l 1 nux/ 11 st. h

There used to be three sets of linked-list routines in the kernel headers, but this one is the winner. If you
don't have some particular pressing need for asingle list, it's a good choice.

Inparticular, 1 i st _f or_each_entry isuseful.

Return Conventions

For code called in user context, it's very common to defy C convention, and return O for success, and a
negative error number (eg. -EFAULT) for failure. This can be unintuitive at first, but it'sfairly widespread
in the kernel.

Using ERR_PTR() i ncl ude/ | i nux/ err. h; to encode a negative error number into a pointer, and

I'S ERR() and PTR_ERR() to get it back out again: avoids a separate pointer parameter for the error
number. Icky, but in a good way.

Breaking Compilation

Linus and the other developers sometimes change function or structure names in development kernels;
thisis not done just to keep everyone on their toes: it reflects a fundamental change (eg. can no longer be
called with interrupts on, or does extra checks, or doesn't do checks which were caught before). Usually
this is accompanied by afairly complete note to the linux-kernel mailing list; search the archive. Simply
doing a global replace on the file usually makes things worse.

Initializing structure members

The preferred method of initializing structuresisto use designated initialisers, as defined by 1SO C99, eg:

static struct bl ock_device_operations opt_fops = {

. open = opt _open,
.rel ease = opt _rel ease,
.ioctl = opt _ioctl,

. check_medi a_change opt _nedi a_change,

Thismakesit easy to grep for, and makesit clear which structure fields are set. Y ou should do this because
it looks cool.

GNU Extensions

GNU Extensions are explicitly allowed in the Linux kernel. Note that some of the more complex ones
are not very well supported, due to lack of general use, but the following are considered standard (see the
GCC info page section "C Extensions' for more details - Yes, really the info page, the man page is only
ashort summary of the stuff in info).

14

Routines and Conventions

C++

#if

* Inlinefunctions

 Statement expressions (ie. the ({ and }) constructs).
 Declaring attributes of afunction / variable / type (__attribute)
* typeof

» Zerolength arrays

* Macro varargs

 Arithmetic on void pointers

* Non-Constant initializers

» Assembler Instructions (not outside arch/ and include/asm/)
e Function names as strings (__func_).

e _ builtin_constant_p()

Be wary when using long long in the kernel, the code gcc generates for it is horrible and worse: division
and multiplication does not work on i386 because the GCC runtime functions for it are missing from the
kernel environment.

Using C++ in the kernel is usually a bad idea, because the kernel does not provide the necessary runtime
environment and the include files are not tested for it. It is still possible, but not recommended. If you
really want to do this, forget about exceptions at least.

It is generally considered cleaner to use macros in header files (or at the top of .c files) to abstract away
functions rather than using "#if' pre-processor statements throughout the source code.

15

Chapter 11. Putting Your Stuff in the
Kernel

In order to get your stuff into shape for official inclusion, or even to make a neat patch, there's adminis-
trative work to be done:

Figure out whose pond you've been pissing in. Look at the top of the source files, inside the MAI N-
TAI NERS file, and last of al in the CREDI TS file. Y ou should coordinate with this person to make
sure you're not duplicating effort, or trying something that's already been rejected.

Make sureyou put your nameand EMail addressat thetop of any filesyou create or manglesignificantly.
Thisisthefirst place people will look when they find a bug, or when they want to make a change.

Usually you want a configuration option for your kernel hack. Edit Kconf i g in the appropriate direc-
tory. The Config language is simple to use by cut and paste, and there's complete documentation in
Docunent at i on/ kbui | d/ kconfi g-1 anguage. t xt .

In your description of the option, make sure you address both the expert user and the user who knows
nothing about your feature. Mention incompatibilities and issues here. Definitely end your description
with “ if in doubt, say N ” (or, occasionaly, “Y"); thisis for people who have no idea what you are
talking about.

Edit the Makefi | e: the CONFIG variables are exported here so you can usually just add a "obj-
$(CONFIG_xxx) += xxx.0" line. The syntax is documented in Document at i on/ kbui | d/ make-
files.txt.

Put yourself in CREDI TSif you've done something noteworthy, usually beyond asinglefile (your name
should be at the top of the source files anyway). MAI NTAI NERS means you want to be consulted when
changes are made to a subsystem, and hear about bugs; it implies a more-than-passing commitment to
some part of the code.

Finally, don't forget to read Docurnent at i on/ Submi t t i ngPat ches and possibly Docunent a-
tion/ Subm ttingDrivers.

16

Chapter 12. Kernel Cantrips

Some favorites from browsing the source. Feel free to add to thislist.
arch/ x86/i ncl ude/ asm del ay. h:
#define ndelay(n) (__builtin_constant_p(n) ?\

((n) > 20000 ? _ bad _ndelay() : _ _const_udelay((n) * 5ul)) : \
__ndel ay(n))

i ncl ude/linux/fs.h:

Kernel pointers have redundant information, so we can use a
schene where we can return either an error code or a dentry
pointer with the same return val ue

E o S I

This should be a per-architecture thing, to allow different

* error and pointer decisions.

*/

#defi ne ERR_PTR(err) ((void *)((long)(err)))

#defi ne PTR_ERR(ptr) ((long)(ptr))

#define IS ERR(ptr) ((unsigned long)(ptr) > (unsigned |ong)(-1000))

arch/ x86/i ncl ude/ asm uaccess_32. h:

#defi ne copy_to_user(to,fromn) \
(__builtin_constant _p(n) ? \
__constant _copy_to_user((to),(from,(n)) : \

__generic_copy_to user((to),(from,(n)))

ar ch/ spar c/ ker nel / head. S:

/*
* Sun people can't spell worth damm. "conpatability" indeed.
* At least we *know we can't spell, and use a spell-checker
*/

/* Unh, actually Linus it is | who cannot spell. Too much murky
* Sparc assenbly will do this to ya.
*/

C LABEL(cputypvar):
.asciz "conpatibility"”

/* Tested on SS-5, SS-10. Probably soneone at Sun applied a spell-checker

.align 4
C LABEL(cput ypvar_sun4dm
.asciz "conpati bl e"

17

*/

Kernel Cantrips

arch/sparc/lib/checksum S:

/* Sun, you just can't beat me, you just can't. Stop trying,

* give up. |I'mserious, | amgoing to kick the living shit
* out of you, gane over, lights out.
*/

18

Chapter 13. Thanks

Thanksto Andi Kleenfor theidea, answering my questions, fixing my mistakes, filling content, etc. Philipp
Rumpf for more spelling and clarity fixes, and some excellent non-obvious points. Werner Almesberger
for giving me a great summary of di sabl e_irq(), and Jes Sorensen and Andrea Arcangeli added
caveats. Michael Elizabeth Chastain for checking and adding to the Configure section. Telsa Gwynne for
teaching me DocBook.

19

	Unreliable Guide To Hacking The Linux Kernel
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The Players
	User Context
	Hardware Interrupts (Hard IRQs)
	Software Interrupt Context: Softirqs and Tasklets

	Chapter 3. Some Basic Rules
	Chapter 4. ioctls: Not writing a new system call
	Chapter 5. Recipes for Deadlock
	Chapter 6. Common Routines
	printk() include/linux/kernel.h
	copy_[to/from]_user() / get_user() / put_user() include/asm/uaccess.h
	kmalloc()/kfree() include/linux/slab.h
	current include/asm/current.h
	mdelay()/udelay() include/asm/delay.h include/linux/delay.h
	cpu_to_be32()/be32_to_cpu()/cpu_to_le32()/le32_to_cpu() include/asm/byteorder.h
	local_irq_save()/local_irq_restore() include/linux/irqflags.h
	local_bh_disable()/local_bh_enable() include/linux/interrupt.h
	smp_processor_id() include/asm/smp.h
	__init/__exit/__initdata include/linux/init.h
	__initcall()/module_init() include/linux/init.h
	module_exit() include/linux/init.h
	try_module_get()/module_put() include/linux/module.h

	Chapter 7. Wait Queues include/linux/wait.h
	Declaring
	Queuing
	Waking Up Queued Tasks

	Chapter 8. Atomic Operations
	Chapter 9. Symbols
	EXPORT_SYMBOL() include/linux/export.h
	EXPORT_SYMBOL_GPL() include/linux/export.h

	Chapter 10. Routines and Conventions
	Double-linked lists include/linux/list.h
	Return Conventions
	Breaking Compilation
	Initializing structure members
	GNU Extensions
	C++
	#if

	Chapter 11. Putting Your Stuff in the Kernel
	Chapter 12. Kernel Cantrips
	Chapter 13. Thanks

