Writing an ALSA Driver

Takashi Ilwali

Writing an ALSA Driver
Takashi Iwai

Abstract

This document describes how to write an ALSA (Advanced Linux Sound Architecture) driver.
Copyright (c) 2002-2005 Takashi Iwai <t i wai @use. de>

Thisdocument isfree; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Table of Contents

PrE AR ..ot vii
L FlE TrEE SITUCIUIE ...ttt ettt et e et e e e et e e eenan s 1
(€1 1 1c - TP PP PP PP PUTOPPPTTRPPIN 1

(ol =N [(= ol (oY AU UP PP PPPPTTRPPPPIN 2
COTE/OSS ..ttt ettt ettt ettt ettt ettt s e e ettt e ettt e et e e a e et e b e e e e na e e eenaaeeee 2
COTEMIOCEIB2 ...ttt 2

(ool = = o PP PTTR 2
COTEISEO/OSS ...ttt ettt ettt ettt e et e e ettt e e et et e e et et e e e et et e et e nb e e e enbn e aeee 2

(ol = = o T o | TP UPPPTTRPPPPN 2

INCIUAE TITECLOMY ... ettt e et e e et e e e e rt e e enaa e eees 2
ArIVENS QIFECIONY ..ottt ettt e e et e e b 2
AriverS/MPUAOL ... 2
drivers/opl3 and OPI4eeee e 2

T2C TITECLOMY ...ttt et e et e ettt ettt e e e e e e e ab s 3
Dot 1 ST P PTUTPPTTTPPPPTRR 3

SYNEN QIFECLOTY ..ttt e e e e e 3

oo e 1 £ i 0] VO PSPPSR 3

[o 1= ol (o] TP SPPPTTR 3

arm, PPC, and SPAIC GIFECTOMESeiirti i eeeeet ettt e e et e e ettt e e ettt e e e et e e eenan e eeens 3

05 oo (1= ol (o] o A TSP SPPPTT 3
PCMCIA QIFECEONY ..ttt ettt e e et e et et e e e ena e e e enaans 3

(0SSN0 (1= ol (0] OO PP SPPPTTR 3

2. BaSIC FIOW TOF PCI DIIVEIS ...euiieiii ettt et e e e e e e e 4
(O 1111 TP PP TPPPPTI 4

FUIT €O EXAIMPIE ...ttt ettt e e et eeeeaes 4
L0700 1 (1 (o PP 7

1) Check and increment the device INAEX.ovviiiiiiiiiii e 7

2) Create @ Card iNSLANCEccuviieiiii et 7

3) Create @ mMain COMPONENTeveeeeieeeeii et e et e et e e e e e rb e e e 7

4) Set the driver ID and NAME SEHNGS. ...oevveniieiiieeeii e 8

5) Create other components, such as mixer, MIDI, €tC.cooveiiiiiiiiiiiiii e 8

6) Register the Card INSEANCE.uuiiiiiiiei e 8

7) Set the PCI driver data and return ZEro.ovveieviiieeeiineeee e 8

(D=1 (0ot (o TP TPT 9
HEAOE FIIES ...ttt 9

3. Management of Cards and COMPONENESciieruneiiiii et e et e et e e et e e eebe e e eeniaeeees 10
Card INSEANCE ...t ettt 10
10001001070 01 0| £ J PP PPTPP 10
ChiP-SPECITIC DBIA ...eevv ettt 11

1. Allocating Via SNA_Car d_NEW() . ..ooeeiuniiiiiiiiei e 11

2. Allocating @an EXIra dEVICE.ccuuuiiiiiii et 11
Registration and REIGESEoiiiiiiiiiii e 12

4. PCl ReSOUICE MaNAGEMENTeuuiiiiieitieeei ettt ettt e e e e e e e e e e e eaa s 14
FUIL COUE EXAMPIE ...ttt ettt e e e e e e e enan s 14
SOME HAFA'S ...t e ettt ettt ettt ettt e e e e e e e eene 16
RESOUICE ATTOCEIION ...ttt e e e e e ne s 17

PC I ENLIES <.ttt ettt ettt et enaas 20

5. PCM INEEITECE ..ot e e ettt ettt e e e e e eane 22
GNEIAl ..t 22

FUIL COUE EXAMPIE ...ttt ettt e e e e e e e enan s 22
L0700 1 11 (o PP PPTI 26

Writing an ALSA Driver

B AN oo I 1 1T 1= 1 U Tox (o) P 28
Runtime Pointer - The Chest of PCM Informationcccocoiiiiiiiiiii e, 28
Hardware DESCIIPLIONiiiii e e e e e e e e e e e e e e s e e e e eaneees 30

[@4\ B @01 To V1= 4 0] <P 32
DMA BUFfer INfOrMationcooouiieiiieiii e e e e e e e aes 32
RUNNING SEBEUS ...vuiiiieiiee e e e e e e e e e e e e e e e e et e e st e e et e e st e e et e eaneees 33

L AV (=l DT - 33

L0 07 1= 0= P 33
OPEN CAlIDACK . .eveiii e 34
CloSE CAllDACK ... 34

TOCHL CAITDBEK ...t 35
hw_params CallDackooiiiiiii 35

hw _free Callbackoiiii 35
prepare Callbackoi i 36
trigger CallDacK ..o 36
POINtEr CAllDACKcoveii 37

copy and silence Callbacksooiiii i 37

ACK CaAllDACK ...vviie 37

PagE CAllDACK ... 38

T 1= 0o o =TT (= P 38
Interrupts at the period (fragment) boundaryccoooviiiiiiiiii e 38

High frequency timer iINEITUPLScoouniiii e e 39
Oncalling snd_pcm peri od_el apsed() ..coooeiiiiiiiiiiiei e 40

N o 411) 40
(©0]015 1 = 1| £= 40
(SR 000 g 11 (0 I 01 =1 - o 43
LT 07 - P 43
DefiNition Of CONEIOIScie i e e e e e e e e e eeaas 43
(000110 I V- 01 44
Global capture and playbackcc.ieiiiiiii 44

I 1 w0 1 (] 44

11D I w511 o) = 44

o oo o = PPN 44
ool Y o = o 44
L0] o= 45
INFO CAlIDACKuiiee 45

GEL CAIDACK .vniii i e 46

o100 | oo 47
Callbacks are NOL @OMICivee i e e e e e e eaaas 48
(O] 115 1 {1 (o (o PP 48
Change NOLITICALONuuiiii e e e e e e e e aaaas 48
L = o= | - PSP 48
A R e Y O A e o (= o PR 50
LT 07 - P 50
FUIl €O EXAMPIE ...ttt e e e e e e et e e e e e ean s 50
(O] 15 1 1[0 (o PP PR 51
CallDBCKS ...oe e 51
Updating RegISLErS iN THE DIIVEriiviiiiii e e e e e e aa e 52
L0t oo QAN | 111 41| P 53
PrOC IS L.t 53
MUIIPIE COUECS ... it et e e e e e e e et e et e e aa e eeas 53
8. MIDI (MPUA4O1-UART) INEITECE .. .uieiiiiiiieeieie ettt eeaees 54
LT 07 - P 54
(O] 15 1 {1 (o PP PR 54

Writing an ALSA Driver

T 1= 0o o =TT (= P 55

9. RAWMIDI INEITaCE .ou it e e e e e e e e e e eans 56
(@< VT P 56
(O] 115 1 11T (o PP PRPTPN 56
CallDACKS ...oei i 57
OPEN CAllDACK .. cevei 57

Cl 0SE CAllDACK ... 57

trigger callback for output SUDSIIEAMSeviiiiiii e, 58

trigger callback for input SUDSLIEAMSuoeiiiiiiiiii e 59

drai N CallbaCK ... 59

10. MISCEIlANEOUS DEVICESuuciiiieiiii ettt e e e e e e et e e e eaa s 60
Y I PSP 60
Hardware-Dependent DEVICESccuuiiiiiieii e e e e e e e eeens 61
TECO58 (SIPDIF) euiiiiitiiee ettt e e e e e e e et e e e et e e a s 62

11. Buffer and Memory ManaQemENtoeeuuiiiinieiiiieeie e e e e e e e e e e e e e e e e e et e e e eeanaeenes 63
T 1N - PP 63
External Hardware BUFFEISiiiiiii e e e e e e e e e e 63
NON-CoNtigUOUS BUFFEIS ... iiiiiiii e e e e e e e e e e 65

A 01T oot =o B ST 1= PP 66

R 0ol 1 1 == 67
13, POWEr MENAGEMENT ...t e e e e e e et e e e e e e e e e 70
Voo (U E= N o= = 0= (= £ 74
15. How To Put Your Driver INt0 ALSA TreE ..uuiiii it e e e e e e e 75
LT 07 - P 75
Driver with A SINGIE SOUrCE FIlE .. ccvniii e 75
Drivers with Several SOUICE FIlESoiiiiiiii e 76

16. USEfUL FUNCLIONS .. .ceviiii et e e e e e e e e et e et e e et e e et e e et eeaneeaen 77
sNA_Printk() and friendscooouiiiii 77

£SY Lo =16, P 77

LY Lo =16 T | P 77

17, ACKNOWIEAGMENES ...t e e e e e e e e et e e et e e et e e e e eanaas 78

List of Examples

1.1, ALSA FIl@ Tre SITUCIUIE .. ittt ettt e et e e et eeeaa s 1
2.1. Basic Flow for PCI Drivers - EXaMPIEccooiiiiiiiii et 4
4.1. PCl Resource Management EXamMPIeooouuiiiiiiiieii et 14
5.1. PCM EXGMPIE COUEevnieiiii ettt ettt ettt e e e e e e 22
5.2. PCM Instance With @ DESITUCTONccoouuiiiiiiiiie e 28
5.3, INterrupt HanaIer Case #1uuiiiiiiieeii ettt e 38
5.4. INterrupt HanAIer CaSe #2ovuiiiiii et 39
5.5. Example of Hardware CONSIIAINTScceuuuiiiiiiee et 40
5.6. Example of Hardware Constraints for Channelsoooiiiiiiiiiiiici e 41
5.7. Example of Hardware Constraints for FOMMELScouuuiiiiiiiiiiiiiieeeei e 42
6.1. DEfiNition Of @ CONLIOI ... ccoietiieiiie et e e 43
6.2. Example of infO CallDACKiiiii i 45
6.3. Example of get CallDaCKuiiiiii e 46
6.4. Example of put CallDackuiiiiii 47
7.1. Example of ACO7 INEITACE ...coeueiieii e 50
15.1. Sample MaKefile fOr @ driVEr XYZiiieeiie e 76

Vi

Preface

This document describes how to write an ALSA (Advanced Linux Sound Architecture) [http://www.al-
sa-project.org/] driver. The document focuses mainly on PCI soundcards. In the case of other devicetypes,
the APl might be different, too. However, at least the ALSA kernel API is consistent, and therefore it
would be still abit help for writing them.

This document targets people who aready have enough C language skills and have basic linux kernel
programming knowledge. This document doesn't explain the genera topic of linux kernel coding and
doesn't cover low-level driver implementation details. It only describes the standard way to write a PCI
sound driver on ALSA.

If you are already familiar with the older ALSA ver.0.5.x API, you can check the drivers such assound/
pci/ es1938. ¢ or sound/ pci / maest r 03. ¢ which have aso aimost the same code-base in the
ALSA 0.5.x tree, so you can compare the differences.

This document is still adraft version. Any feedback and corrections, please!!

Vii

http://www.alsa-project.org/
http://www.alsa-project.org/
http://www.alsa-project.org/

Chapter 1. File Tree Structure

General

The ALSA drivers are provided in two ways.

Oneisthe trees provided as atarball or via cvs from the ALSA's ftp site, and another is the 2.6 (or later)
Linux kernel tree. To synchronize both, the ALSA driver treeis split into two different trees: alsa-kernel
and alsa-driver. The former contains purely the source code for the Linux 2.6 (or later) tree. Thistreeis
designed only for compilation on 2.6 or later environment. The latter, alsa-driver, contains many subtle
filesfor compiling ALSA drivers outside of the Linux kernel tree, wrapper functionsfor older 2.2 and 2.4
kernels, to adapt the latest kernel API, and additional drivers which are still in development or in tests.
The drivers in asa-driver tree will be moved to alsa-kernel (and eventually to the 2.6 kernel tree) when
they are finished and confirmed to work fine.

Thefile tree structure of ALSA driver is depicted below. Both alsa-kernel and alsa-driver have almost the
same file structure, except for “core” directory. It's named as “acore’ in asa-driver tree.

Example 1.1. ALSA File Tree Structure

sound

/core

/oss

/seq

/oss
finstr

fioctl32
/include
[drivers

/mpu401

/opl3
li2c

N3
/synth

/emux
/pci

/(cards)
lisa

/(cards)
Jarm
Ippc
[sparc
/usb
/pcmcia/(cards)
/oss

File Tree Structure

core directory

This directory contains the middle layer which is the heart of ALSA drivers. In this directory, the native
ALSA modules are stored. The sub-directories contain different modules and are dependent upon the
kernel config.

core/oss
The codes for PCM and mixer OSS emulation modules are stored in this directory. The rawmidi OSS

emulation is included in the ALSA rawmidi code since it's quite small. The sequencer code is stored in
cor e/ seq/ oss directory (see below).

corel/ioctl32

This directory contains the 32bit-ioctl wrappers for 64bit architectures such like x86-64, ppc64 and
sparc64. For 32bit and a pha architectures, these are not compiled.

core/seq
This directory and its sub-directories are for the ALSA sequencer. This directory contains the sequencer

core and primary sequencer modul es such like snd-seg-midi, snd-seg-virmidi, etc. They are compiled only
when CONFI G_SND_SEQUENCERis set in the kernel config.

core/seqg/oss

This contains the OSS sequencer emulation codes.

core/seq/instr

This directory contains the modules for the sequencer instrument layer.

Include directory

This is the place for the public header files of ALSA drivers, which are to be exported to user-space, or
included by several filesat different directories. Basically, the private header files should not be placed in
this directory, but you may still find files there, due to historical reasons:)

drivers directory

This directory contains code shared among different drivers on different architectures. They are hence
supposed not to be architecture-specific. For example, the dummy pcm driver and the serial MIDI driver
are found in this directory. In the sub-directories, there is code for components which are independent
from bus and cpu architectures.

drivers/mpu401

The MPU401 and MPU401-UART modules are stored here.

drivers/opl3 and opl4

The OPL 3 and OPL4 FM-synth stuff isfound here.

File Tree Structure

12c directory

This contains the ALSA i2c components.

Although there is a standard i2c layer on Linux, ALSA hasits own i2c code for some cards, because the
soundcard needs only a simple operation and the standard i2c API istoo complicated for such a purpose.

12¢c/13

Thisisasub-directory for ARM L3i2c.

synth directory

This contains the synth middle-level modules.

So far, there is only Emu8000/Emul0k1 synth driver under the synt h/ enrux sub-directory.

pci directory

This directory and its sub-directories hold the top-level card modules for PCI soundcards and the code
specific to the PCl BUS.

The drivers compiled from a single file are stored directly in the pci directory, while the drivers with
several source files are stored on their own sub-directory (e.g. emul0k1, icel712).

Isa directory

This directory and its sub-directories hold the top-level card modules for ISA soundcards.

arm, ppc, and sparc directories

They are used for top-level card modules which are specific to one of these architectures.

usb directory

This directory contains the USB-audio driver. In the latest version, the USB MIDI driver isintegrated in
the usb-audio driver.

pcmcia directory

The PCMCIA, especialy PCCard driverswill go here. CardBusdriverswill beinthepci directory, because
their APl isidentical to that of standard PCI cards.

oss directory

The OSS/Lite source files are stored here in Linux 2.6 (or later) tree. In the ALSA driver tarbal, this
directory is empty, of course :)

Chapter 2. Basic Flow for PCI Drivers

Outline

The minimum flow for PCI soundcardsis as follows:

define the PCI 1D table (see the section PCI Entries).

create pr obe() callback.

creater emove() calback.

create apci_driver structure containing the three pointers above.

create ani ni t () function just calling the pci _regi ster_driver () to register the pci_driver
table defined above.

createanexi t () functiontocal thepci _unregi ster_driver () function.

Full Code Example

The code example is shown below. Some parts are kept unimplemented at this moment but will be filled
in the next sections. The numbers in the comment lines of the snd_mychi p_pr obe() function refer
to details explained in the following section.

Example 2.1. Basic Flow for PCI Drivers- Example

#include <linux/init.h>
#i ncl ude <l i nux/pci.h>
#i ncl ude <l i nux/slab. h>
#i ncl ude <sound/ core. h>
#i ncl ude <sound/initval.h>

/* nodul e parameters (see "Mdul e Paraneters”) */

/* SNDRV_CARDS: maxi mum nunber of cards supported by this nodule */
static int index][SNDRV_CARDS] = SNDRV_DEFAULT_I DX;

static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR

static bool enabl e[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;

/* definition of the chip-specific record */
struct mychip {
struct snd_card *card;

/* the rest of the inplenentation will be in section
* "PCl Resource Managenent"
*/

b

/* chip-specific destructor
* (see "PCl Resource Managenent")
*/

Basic Flow for PCI Drivers

static int snd_mychip_free(struct nmychip *chip)
{

}

/* conponent - dest ruct or
* (see "Managenent of Cards and Conponents")
*/
static int snd_mychi p_dev_free(struct snd_device *device)

{
}

/* chip-specific constructor
* (see "Managenent of Cards and Conponents")
*/
static int snd_mychip_create(struct snd_card *card,
struct pci_dev *pci
struct mychip **rchip)

/* will be inplenented later... */

return snd_nychi p_free(devi ce->devi ce_data);

{
struct mychip *chip;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_nychi p_dev_free,
b
*rchip = NULL;
/* check PCl availability here
* (see "PCl Resource Managenent")
*/
/* allocate a chip-specific data with zero filled */
chip = kzal l oc(sizeof (*chip), G-P_KERNEL);
if (chip == NULL)
return - ENOVEM
chi p->card = card
/* rest of initialization here; will be inplenented
* |later, see "PCl Resource Managemnent”
*/
err = snd_devi ce_new(card, SNDRV_DEV_LOANLEVEL, chip, &ops);
if (err <0) {
snd_mychi p_free(chip);
return err;
}
*rchip = chip;
return O;
}

Basic Flow for PCI Drivers

/* constructor -- see "Constructor" sub-section */

static int snd_mychi p_probe(struct
const struct

{

}

static int dev;

struct snd_card *card
struct mychip *chip;
int err;

[* (1) */

if (dev >= SNDRV_CARDS)
return - ENODEV

if ('enable[dev]) {
dev++;
return - ENOCENT;

}

[* (2) */
err = snd_card_new(&pci - >dev,
0, &card);
if (err <0)
return err;

[* (3) */

err = snd_mychi p_create(card

if (err <0) {
snd_card_free(card);
return err;

}

1% (4) *I

pci _dev *pci,
pci _device_id *pci_id)

i ndex[dev], id[dev],

pci, &chip);

strcpy(card->driver, "My Chip");

strcpy(card->shortname, "My Owmn Chip 123");

sprintf(card->longname, "% at Ox%x irq %",
card- >short nane, chip->ioport, chip->irq);

[* (5) */
/* inmplenented |later */

I* (6) *I

err = snd_card_register(card);

if (err <0) {
snd_card_free(card);
return err;

}

[* (7) */

pci _set_drvdata(pci, card);
dev++,

return O;

/* destructor -- see the "Destructor"”

sub-section */

TH S_MODULE

Basic Flow for PCI Drivers

static void snd_nychi p_renmpve(struct pci_dev *pci)

{
snd_card_free(pci _get_drvdata(pci));
pci _set_drvdata(pci, NULL);
}
Constructor

Thereal constructor of PCI driversisthepr obe calback. Thepr obe callback and other component-con-

structors which are called from the pr obe callback cannot be used withthe i ni t prefix because any
PCI device could be a hotplug device.

Inthe pr obe callback, the following scheme is often used.

1) Check and increment the device index.

static int dev;

if (dev >= SNDRV_CARDS)
return - ENCDEV;

if (!enabl e[dev]) {

dev++;
return - ENCENT;

where enable[dev] is the module option.

Each time the pr obe callback is called, check the availability of the device. If not available, simply
increment the device index and returns. dev will be incremented also later (step 7).

2) Create a card instance

struct snd _card *card;
int err;

err = snd_card_new(&pci - >dev, index[dev], id[dev], TH S MODULE,
0, &card);

The details will be explained in the section Management of Cards and Components.

3) Create a main component

In this part, the PCI resources are allocated.

Basic Flow for PCI Drivers

struct mychip *chip;

err = snd_mychi p_create(card, pci, &chip);
if (err <0) {

snd_card_free(card);

return err;

The details will be explained in the section PCI Resource Management.

4) Set the driver ID and name strings.

strcpy(card->driver, "My Chip");

strcpy(card->shortname, "My Owmn Chip 123");

sprintf(card->longname, "% at Ox%x irq %",
card- >short name, chip->ioport, chip->irq);

The driver field holds the minimal ID string of the chip. Thisis used by alsa-lib's configurator, so keep
it smple but unique. Even the same driver can have different driver IDs to distinguish the functionality
of each chip type.

The shortname field is a string shown as more verbose name. The longname field contains the information
shownin/ proc/ asound/ car ds.

5) Create other components, such as mixer, MIDI, etc.

Here you define the basic components such as PCM, mixer (e.g. AC97), MIDI (e.g. MPU-401), and other
interfaces. Also, if you want a proc file, define it here, too.

6) Register the card instance.

err = snd_card_register(card);

if (err <0) {
snd_card_free(card);
return err;

Will be explained in the section Management of Cards and Components, too.

7) Set the PCl driver data and return zero.

Basic Flow for PCI Drivers

pci _set_drvdata(pci, card);
dev++;
return O;

In the above, the card record is stored. This pointer is used in the remove callback and power-management
callbacks, too.

Destructor

The destructor, remove callback, simply releases the card instance. Then the ALSA middie layer will
release al the attached components automatically.

It would be typically like the following:

static void snd_nychi p_renmpve(struct pci_dev *pci)
{

snd_card_free(pci _get_drvdata(pci));

pci _set_drvdata(pci, NULL);

The above code assumes that the card pointer is set to the PCI driver data.

Header Files

For the above example, at least the following include files are necessary.

#include <linux/init.h>
#i ncl ude <l inux/pci.h>
#i ncl ude <l i nux/sl ab. h>
#i ncl ude <sound/ core. h>
#i ncl ude <sound/initval.h>

where thelast one is necessary only when module options are defined in the sourcefile. If the code is split
into several files, the files without module options don't need them.

In addition to these headers, you'll need <l i nux/ i nt er r upt . h> for interrupt handling, and <asni
i 0. h>for 1/O access. If you usethe ndel ay() orudel ay() functions, you'll need to include<I i n-
ux/ del ay. h> too.

The ALSA interfaces likethe PCM and control APIsare defined in other <sound/ xxx. h> header files.
They have to be included after <sound/ cor e. h>.

Chapter 3. Management of Cards and
Components

Card Instance

For each soundcard, a“card” record must be allocated.

A card record is the headquarters of the soundcard. It manages the whole list of devices (components) on
the soundcard, such as PCM, mixers, MIDI, synthesizer, and so on. Also, the card record holds the ID and
the name strings of the card, manages the root of proc files, and controls the power-management states
and hotplug disconnections. The component list on the card record is used to manage the correct release
of resources at destruction.

As mentioned above, to create a card instance, call snd_card_new() .

struct snd_card *card;
int err;
err = snd_card_new &pci->dev, index, id, nodule, extra_size, &card);

The function takes six arguments: the parent device pointer, the card-index number, the id string, the
module pointer (usually THI S_MODULE), the size of extra-data space, and the pointer to return the card
instance. The extra_size argument is used to allocate card->private_data for the chip-specific data. Note
that these data are allocated by snd_card_new() .

The first argument, the pointer of struct device, specifies the parent device. For PCI devices, typically
&pci-> is passed there.

Components

After the card is created, you can attach the components (devices) to the card instance. Inan ALSA driver,
acomponent is represented as a struct snd_device object. A component can be a PCM instance, a control
interface, araw MIDI interface, etc. Each such instance has one component entry.

A component can be created viasnd_devi ce_new() function.
snd_devi ce_new(card, SNDRV_DEV_XXX, chip, &ops);

Thistakesthe card pointer, the device-level (SNDRV_DEV_XXX), the data pointer, and the callback point-
ers (&ops). The device-level defines the type of components and the order of registration and de-regis-
tration. For most components, the device-level is already defined. For a user-defined component, you can
use SNDRV_DEV_LOWEVEL.

This function itself doesn't allocate the data space. The data must be allocated manually beforehand, and
its pointer is passed as the argument. This pointer (chi p in the above example) is used as the identifier
for the instance.

10

Management of Cards
and Components

Each pre-defined ALSA component such as ac97 and pcm calls snd_devi ce_new() inside its con-
structor. The destructor for each component is defined in the callback pointers. Hence, you don't need to
take care of calling a destructor for such a component.

If you wish to create your own component, you heed to set the destructor function to the dev_free callback
intheops, sothat it can bereleased automaticaly viasnd_car d_fr ee() . Thenext examplewill show
an implementation of chip-specific data.

Chip-Specific Data
Chip-specific information, e.g. the 1/0O port address, its resource pointer, or the irqg number, is stored in
the chip-specific record.
struct mychip {

b

In general, there are two ways of allocating the chip record.

1. Allocating viasnd _card_new().

As mentioned above, you can pass the extra-data-length to the 5th argument of snd_card_new() , i.e.

err = snd_card_new(&pci - >dev, index[dev], id[dev], TH S MODULE,
si zeof (struct mychip), &card);

struct mychip is the type of the chip record.

In return, the allocated record can be accessed as
struct mychip *chip = card->private_data;

With this method, you don't have to all ocate twice. The record is rel eased together with the card instance.

2. Allocating an extra device.

After allocating a card instance viasnd_car d_new() (with 0 onthe4th arg), call kzal | oc() .

struct snd_card *card;
struct mychip *chip;

11

Management of Cards
and Components

err = snd_card_new(&pci - >dev, index[dev], id[dev], TH S _MODULE,
0, &card);

chip = kzal l oc(sizeof (*chip), G-P_KERNEL);

The chip record should have the field to hold the card pointer at least,

struct mychip {
struct snd_card *card;

Then, set the card pointer in the returned chip instance.

chi p->card = card;

Next, initialize the fields, and register this chip record as alow-level device with a specified ops,

static struct snd_device_ops ops = {
.dev_free = snd_nychi p_dev_free,

b

snd_devi ce_new(card, SNDRV_DEV_LOANEVEL, chip, &ops);

snd_nychi p_dev_free() isthedevice-destructor function, which will call the real destructor.

static int snd_mychip_dev_free(struct snd _device *device)

{
}

return snd_mychi p_free(devi ce->devi ce_data);

wheresnd_nychi p_free() isthereal destructor.

Registration and Release

After all components are assigned, register the card instance by callingsnd_card_regi ster().Ac-
cess to the device files is enabled at this point. That is, beforesnd_car d_r egi st er () iscaled, the

12

Management of Cards
and Components

components are safely inaccessible from external side. If this call fails, exit the probe function after re-
leasing the cardviasnd_card _free().

For releasing the card instance, you can call simply snd_car d_free() . Asmentioned earlier, all com-
ponents are released automatically by this call.

For a device which alows hotplugging, you can usesnd_car d_fr ee_when_cl osed. Thisone will
postpone the destruction until al devices are closed.

13

Chapter 4. PCl Resource Management
Full Code Example

In this section,

we'll complete the chip-specific constructor, destructor and PCI entries. Example code is

shown first, below.

Example 4.1. PCI Resour ce M anagement Example

struct mychip {

}s

static i

{

}

[* chi p-
static i

struct snd_card *card;
struct pci_dev *pci;

unsi gned | ong port;
int irq;

nt snd_nychi p_free(struct nychip *chip)

/* disable hardware here if any */
/[* (not inplenented in this docunent) */

/* release the irq */

if (chip->irg >= 0)
free_irg(chip->irq, chip);

/* release the /O ports & menory */

pci _rel ease_regi ons(chi p->pci);

/* disable the PCl entry */

pci _di sabl e_devi ce(chi p->pci);

/* release the data */

kfree(chip);

return O;

speci fic constructor */

nt snd_nychi p_create(struct snd_card *card,
struct pci_dev *pci,
struct mychip **rchip)

struct mychip *chip;

int err;

static struct snd_device_ops ops = {
.dev_free = snd_nychi p_dev_free,

b
*rchip = NULL;
/[* initialize the PCl entry */

err = pci _enabl e_devi ce(pci);
if (err <0)

14

PCI Resource Management

return err;
/* check PCl availability (28bit DVA) */
if (pci_set_dma_mask(pci, DVA BI T _MASK(28)) < 0 ||
pci _set_consi stent _dma_nmask(pci, DVA BI T_MASK(28)) < 0) {
printk(KERN_ERR "error to set 28bit nask DMA\n");
pci _di sabl e_devi ce(pci);
return - ENX G
}

chip = kzal l oc(sizeof (*chip), G-P_KERNEL);
if (chip == NULL) {

pci _di sabl e_devi ce(pci);

return - ENOVEM
}

/* initialize the stuff */
chi p->card = card;
chi p->pci = pci;
chip->irq = -1;
/* (1) PCl resource allocation */
err = pci_request_regions(pci, "My Chip");
if (err <0) {
kfree(chip);
pci _di sabl e_devi ce(pci);
return err;
}
chi p->port = pci_resource_start(pci, 0);
if (request_irq(pci->irq, snd_nychip_interrupt,
| RQF_SHARED, KBUI LD _MODNAME, chip)) {
print k(KERN_ERR "cannot grab irq %\n", pci->irq);
snd_mychi p_free(chip);
return -EBUSY;

}
chip->irq = pci->irq;

/* (2) initialization of the chip hardware */
/* (not inplenented in this document) */

err = snd_devi ce_new(card, SNDRV_DEV_LOANEVEL, chip, &ops);
if (err <0) {

snd_mychi p_free(chip);

return err;

}

*rchip = chip;
return O;

}

/[* PCl IDs */
static struct pci_device_id snd_nychip_ids[] = {
{ PCI _VENDCOR_ | D FOO, PCl _DEVICE_| D_BAR
PCl _ANY_ID, PCI_ANY_ID, 0, 0, O, },

15

PCI Resource Management

{0}
i
MODULE_DEVI CE_TABLE(pci, snd_mychi p_ids);

[* pci_driver definition */

static struct pci_driver driver = {
. hame = KBU LD MODNAME,
.id_table = snd_nychip_ids,
. probe = snd_nychi p_probe,
.renove = snd_nychi p_renove,

b

/* module initialization */

static int __init alsa_card_mychip_init(void)
{

return pci_register_driver(&driver);

}

/* nodul e clean up */
static void __exit alsa_card_mychip_exit(void)

{
}

pci _unregi ster_driver(&driver);

nmodul e_init(al sa_card_mychip_init)
nodul e_exit (al sa_card_mychi p_exit)

EXPORT_NO SYMBCOLS; /* for old kernels only */

Some Hafta's

The alocation of PCI resourcesisdonein thepr obe() function, and usually an extraxxx_cr eat e()
function is written for this purpose.

Inthe case of PCI devices, youfirst havetocall thepci _enabl e_devi ce() functionbeforealocating
resources. Also, you need to set the proper PCI DMA mask to limit the accessed I/O range. In some cases,
you might needto call pci _set mast er () function, too.

Suppose the 28hit mask, and the code to be added would be like:

err = pci_enabl e_devi ce(pci);

if (err <0)
return err;

if (pci_set_dma_mask(pci, DVA BI T _MASK(28)) < 0 ||

pci _set _consi stent _dma_mask(pci, DVA BI T_MASK(28)) < 0) {

printk(KERN ERR "error to set 28bit nask DMA\n");
pci _di sabl e_devi ce(pci);
return - ENX G

16

PCI Resource Management

Resource Allocation

The alocation of /O ports and irgs is done via standard kernel functions. Unlike ALSA ver.0.5.x., there
are no helpersfor that. And these resources must be released in the destructor function (see below). Also,
on ALSA 0.9.x, you don't need to allocate (pseudo-)DMA for PCI likein ALSA 0.5.x.

Now assume that the PCI device has an /O port with 8 bytes and an interrupt. Then struct mychip will
have the following fields:

struct mychip {
struct snd_card *card;

unsi gned | ong port;
int irq;

For an 1/0 port (and also amemory region), you need to have the resource pointer for the standard resource
management. For an irg, you have to keep only the irq number (integer). But you need to initialize this
number as -1 before actual allocation, sinceirg 0 isvalid. The port address and its resource pointer can be
initialized asnull by kzal | oc() automatically, so you don't have to take care of resetting them.

The alocation of an I/O port is done like this:

err = pci_request_regions(pci, "My Chip");
if (err <0) {

kfree(chip);

pci _di sabl e_devi ce(pci);

return err;

}

chi p->port = pci_resource_start(pci, 0);

It will reserve the I/O port region of 8 bytes of the given PCI device. The returned value, chip->res port,
isallocatedviakmal | oc() byrequest regi on() . Thepointer must bereleased viakf r ee() , but
there is a problem with this. Thisissue will be explained later.

The alocation of an interrupt source is done like this:

if (request_irq(pci->irq, snd_mychip_interrupt,
| RQF_SHARED, KBUI LD_MODNAME, chip)) {
print k(KERN_ERR "cannot grab irq %\n", pci->irq);
snd_mychi p_free(chip);
return - EBUSY,

17

PCI Resource Management

}
chip->irq = pci->irq;

wheresnd_nychi p_i nt errupt () istheinterrupt handler defined later. Note that chip->irq should
be defined only whenr equest _i r q() succeeded.

On the PCI bus, interrupts can be shared. Thus, | RQF_SHARED is used as the interrupt flag of r e-
quest _irq().

The last argument of r equest _i rq() isthe data pointer passed to the interrupt handler. Usually, the
chip-specific record is used for that, but you can use what you like, too.

| won't give details about the interrupt handler at this point, but at least its appearance can be explained
now. The interrupt handler looks usually like the following:

static irqgreturn_t snd _mychip_interrupt(int irg, void *dev_id)

{
struct mychip *chip = dev_id;

return | RQ HANDLED,

Now let's write the corresponding destructor for the resources above. The role of destructor is simple:
disable the hardware (if already activated) and release the resources. So far, we have no hardware part,
so the disabling code is not written here.

To release the resources, the “ check-and-release” method is a safer way. For the interrupt, do like this:

if (chip->irg >= 0)
free_irg(chip->irq, chip);

Since the irq number can start from 0, you should initialize chip->irq with a negative value (e.g. -1), so
that you can check the validity of theirg number as above.

When you requested 1/O ports or memory regions via pci _request _region() or pci_re-
guest _regi ons() like in this example, release the resource(s) using the corresponding function,
pci _rel ease_region() orpci _rel ease_regions().

pci _rel ease_regi ons(chi p->pci);

When you requested manually viar equest _regi on() or request _nmem regi on, you can re-
lease it viar el ease_resour ce() . Suppose that you keep the resource pointer returned from r e-
guest _regi on() inchip->res port, the release procedure looks like:

18

PCI Resource Management

rel ease_and_free_resource(chi p->res_port);

Don't forget to call pci _di sabl e_devi ce() beforethe end.

And finaly, release the chip-specific record.

kfree(chip);

We didn't implement the hardware disabling part in the above. If you need to do this, please note that the
destructor may be called even before the initialization of the chip is completed. It would be better to have
aflag to skip hardware disabling if the hardware was not initialized yet.

When the chip-dataisassignedtothecardusingsnd_devi ce_new() with SNDRV_DEV_LOWN_ELVEL
, itsdestructor iscalled at the last. That is, it is assured that all other components like PCMs and controls
have already been released. Y ou don't have to stop PCMs, etc. explicitly, but just call low-level hardware

stopping.

The management of amemory-mapped region is amost as same as the management of an 1/O port. You'll
need three fields like the following:

struct mychip {

unsi gned | ong i obase_phys;
void __ionem *i obase_virt;

and the allocation would be like below:

if ((err = pci_request_regions(pci, "My Chip")) < 0) {
kfree(chip);
return err;
}
chi p- >i obase_phys
chi p- >i obase_virt

pci _resource_start(pci, 0);
i or emap_nocache(chi p->i obase_phys,
pci _resource_l en(pci, 0));

and the corresponding destructor would be:

19

PCI Resource Management

static int snd_mychip_free(struct nmychip *chip)

{
i. f .(chi p- >i obase_virt)
i ounmap(chi p->i obase_virt);
pCI ._rel ease_regi ons(chi p->pci);
}

PCIl Entries

So far, so good. Let's finish the missing PCI stuff. At first, we need apci_device_id table for this chipset.
It's atable of PCI vendor/device ID number, and some masks.

For example,

static struct pci_device_id snd_nychip_ids[] = {
{ PCl _VENDOR | D FOO, PClI _DEVICE | D BAR,
PCl _ANY_ID, PCI_ANY_ID, 0, O, O, 1},

{0}
b

MODULE_DEVI CE_TABLE(pci, snd_mychi p_ids);

The first and second fields of the pci_device id structure are the vendor and device IDs. If you have no
reason to filter the matching devices, you can leave the remaining fields as above. The last field of the
pci_device id struct contains private data for this entry. You can specify any value here, for example, to
define specific operations for supported device IDs. Such an example is found in the intel8x0 driver.

The last entry of thislist is the terminator. Y ou must specify this all-zero entry.

Then, prepare the pci_driver record:

static struct pci _driver driver = {
. nane = KBUI LD_MODNAME,
.id_table = snd_nychip_ids,
. probe = snd_nychi p_probe,
.renove = snd_nychi p_renove,

The pr obe and r enove functions have already been defined in the previous sections. The nane field
is the name string of this device. Note that you must not use aslash “/” in this string.

And at last, the modul e entries:

20

PCI Resource Management

static int __init alsa_card_mychip_init(void)
{ return pci_register_driver(&driver);

}

static void __exit alsa_card_mychip_exit(void)
{ pci _unregister_driver(&driver);

}

nmodul e_init(al sa_card_mychip_init)
nodul e_exit (al sa_card_mychi p_exit)

Note that these module entries aretagged with __i nit and __exi t prefixes.

Oh, one thing was forgotten. If you have no exported symbols, you need to declareit in 2.2 or 2.4 kernels
(it's not necessary in 2.6 kernels).

EXPORT_NO_SYMBOLS;

That'sal!

21

Chapter 5. PCM Interface

General

The PCM middle layer of ALSA is quite powerful and it is only necessary for each driver to implement
the low-level functions to access its hardware.

For accessing to the PCM layer, you need to include <sound/ pcm h> first. In addition, <sound/
pcm par ans. h> might be needed if you access to some functions related with hw_param.

Each card device can have up to four pcm instances. A pcm instance correspondsto apem devicefile. The
limitation of number of instances comes only from the available bit size of the Linux's device numbers.
Once when 64bit device number is used, we'll have more pcm instances available.

A pcminstance consists of pcm playback and capture streams, and each pcm stream consists of oneor more
pcm substreams. Some soundcards support multiple playback functions. For example, emul0k1 hasaPCM
playback of 32 stereo substreams. In this case, at each open, a free substream is (usually) automatically
chosen and opened. Meanwhile, when only one substream exists and it was already opened, the successful
open will either block or error with EAGAI N according to the file open mode. But you don't have to care
about such detailsin your driver. The PCM middle layer will take care of such work.

Full Code Example

The example code bel ow does not include any hardware access routines but shows only the skeleton, how
to build up the PCM interfaces.

Example5.1. PCM Example Code

#i ncl ude <sound/ pcm h>

/* hardware definition */
static struct snd_pcm hardware snd_nychi p_pl ayback_hw = {
.info = (SNDRV_PCM | NFO_MVAP |
SNDRV_PCM _| NFO_| NTERLEAVED |
SNDRV_PCM _| NFO_BLOCK_TRANSFER |
SNDRV_PCM_| NFO_MVAP_VALI D),

.formats = SNDRV_PCM FMIBI T_S16_LE
.rates = SNDRV_PCM RATE_8000_48000,
.rate_mn = 8000,

.rate_max = 48000,

.channels mn = 2,

. channel s_nmax = 2,

. buffer_bytes_max = 32768,

. period_bytes_mn = 4096,

. peri od_bytes_max = 32768,

.periods_mn = 1,

. periods_max = 1024,

22

PCM Interface

/* hardware definition */
static struct snd_pcm hardware snd_nychi p_capture_hw = {
.info = (SNDRV_PCM | NFO_MVAP
SNDRV_PCM _| NFO_| NTERLEAVED
SNDRV_PCM _| NFO_BLOCK_TRANSFER
SNDRV_PCM_| NFO_MVAP_VALI D),

.formats = SNDRV_PCM FMIBI T_S16_LE
.rates = SNDRV_PCM RATE_8000_48000,
.rate_mn = 8000,

.rate_max = 48000,

.channels mn = 2,

. channel s_nmax = 2,

. buffer_bytes_max = 32768,

. period_bytes_mn = 4096,

. peri od_bytes_max = 32768,

.periods_mn = 1,

. periods_max = 1024,

b

/* open cal |l back */
static int snd_mychi p_pl ayback_open(struct snd_pcm substream *substream

{

struct mychip *chip = snd_pcm substream chi p(substrean);
struct snd_pcmruntime *runtime = substream >runti ne;

runti me->hw = snd_nychi p_pl ayback_hw;,
/* more hardware-initialization will be done here */

return O;
}

/* cl ose cal | back */
static int snd_mychi p_playback_cl ose(struct snd_pcm substream *substrean)

{

struct mychip *chip = snd_pcm substream chi p(substrean);
/* the hardware-specific codes will be here */
return O;

}

/* open cal |l back */
static int snd_mychi p_capture_open(struct snd_pcm substream *substrean)

{

struct mychip *chip = snd_pcm substream chi p(substrean);
struct snd_pcmruntime *runtime = substream >runtine;

runti me->hw = snd_nychi p_capture_hw,
/* more hardware-initialization will be done here */

return O;

23

PCM Interface

/* cl ose cal | back */
static int snd_mychi p_capture_cl ose(struct snd_pcm substream *substream

{
struct mychip *chip = snd_pcm substream chi p(substrean);
/* the hardware-specific codes will be here */

return O;
}

/* hw_parans call back */

static int snd_mychi p_pcm hw parans(struct snd_pcm substream *substream
struct snd_pcm hw_parans *hw_par ans)

{

return snd_pcmlib_mall oc_pages(substream
par ams_buf f er _byt es(hw_parans));

}

/* hw free call back */
static int snd_mychi p_pcm hw free(struct snd_pcm substream *substream

{
}

return snd_pcmlib_free_pages(substream

/* prepare callback */
static int snd_mychi p_pcm prepare(struct snd_pcm substream *substream
{
struct mychip *chip = snd_pcm substream chi p(substrean);
struct snd_pcmruntime *runtime = substream >runti ne;

/* set up the hardware with the current configuration
* for exanple..
*/
nmychi p_set _sanple_format (chip, runtine->formt);
nychi p_set _sanple_rate(chip, runtine->rate);
nychi p_set _channel s(chi p, runti nme->channel s);
nychi p_set _dma_setup(chi p, runtime->dma_addr
chi p->buf fer_si ze,
chi p- >peri od_si ze);
return O;

}

/* trigger callback */

static int snd_mychip_pcmtrigger(struct snd_pcm substream *substream
int cnd)

{

switch (cnd) {

case SNDRV_PCM TRI GGER_START:
/* do sonething to start the PCM engi ne */
br eak;

case SNDRV_PCM TRl GGER_STOP
/* do sonething to stop the PCM engi ne */

24

PCM Interface

br eak;
defaul t:
return -ElI NVAL;

}
}

/* pointer callback */

static snd_pcm ufranes_t

snd_nychi p_pcm poi nter(struct snd_pcm substream *substream

{
struct mychip *chip = snd_pcm substream chi p(substrean);
unsigned int current_ptr;

/* get the current hardware pointer */
current _ptr = nychi p_get_hw pointer(chip);
return current_ptr;

}

/* operators */
static struct snd_pcm.ops snd_nychi p_pl ayback_ops = {

.open = snd_nychi p_pl ayback_open,
.close = snd_nychi p_pl ayback_cl ose,
.ioctl = snd_pcmlib_ioctl,

. hw_parans = snd_nychi p_pcm _hw_par ans,
.hw free = snd_mychi p_pcm hw free,

. prepare = snd_mychi p_pcm prepare,
.trigger = snd_mychi p_pcm tri gger,

. pointer = snd_mychi p_pcm poi nter,

b

/* operators */
static struct snd_pcmops snd_nychi p_capture_ops = {

.open = snd_nychi p_capt ur e_open,
.close = snd_nychi p_capture_cl ose,
.ioctl = snd_pcmlib_ioctl,
. hw_parans = snd_nychi p_pcm _hw_par ans,
.hw free = snd_mychi p_pcm hw free,
. prepare = snd_mychi p_pcm prepare,
.trigger = snd_mychi p_pcm tri gger,
. pointer = snd_mychi p_pcm poi nter,
b
/*
* definitions of capture are omtted here...
*/

/* create a pcm device */
static int snd_mychi p_new pcm(struct nychip *chip)
{

struct snd_pcm *pcm

int err;

err = snd_pcm new chi p->card, "My Chip", 0, 1, 1, &pcm;
if (err <0)

25

PCM Interface

return err;
pcm >private_data = chip;
strcpy(pcm >nane, "My Chip");
chi p->pcm = pcm
/* set operators */

snd_pcm set _ops(pcm SNDRV_PCM STREAM PLAYBACK,

snd_pcm set _ops(pcm SNDRV_PCM STREAM CAPTURE,

&snd_nmnychi p_pl ayback_ops) ;

&snd_mychi p_capture_ops);

/* pre-allocation of buffers */

/* NOTE: this may fail */

snd_pcmlib_preall ocate_pages_for_all (pcm SNDRV_DVA TYPE DEV,

return O;

Constructor

snd_dma_pci _dat a(chi p->pci),
64*1024, 64*1024);

A pcminstanceis allocated by thesnd_pcm new() function. It would be better to create a constructor
for pcm, namely,

static int snd_mychi p_new pcn(struct

struct snd_pcm *pcm

err = snd_pcm new chi p->card,

return err;
pcm >private _data = chip;
strcpy(pcm >nane, "My Chip");

{
int err;
if (err <0)
chi p->pcm = pcm
return O,
}

nychi p *chi p)

"My Chip", 0, 1, 1, &pcn;

Thesnd_pcm new() function takesfour arguments. Thefirst argument isthe card pointer to which this
pcm is assigned, and the second isthe ID string.

Thethird argument (i ndex, 0inthe above) istheindex of thisnew pcm. It beginsfrom zero. If you create
more than one pcm instances, specify the different numbers in this argument. For example, i ndex =1
for the second PCM device.

The fourth and fifth arguments are the number of substreams for playback and capture, respectively. Here
1isused for both arguments. When no playback or capture substreams are available, pass 0 to the corre-
sponding argument.

26

PCM Interface

If achip supports multiple playbacks or captures, you can specify more numbers, but they must be handled
properly in open/close, etc. callbacks. When you need to know which substream you are referring to, then
it can be obtained from struct snd_pcm_substream data passed to each callback as follows:

struct snd_pcm substream *substream
i nt index = substream >nunber;

After the pcm is created, you need to set operators for each pcm stream.

snd_pcm set _ops(pcm SNDRV_PCM STREAM PLAYBACK,
&snd_nmychi p_pl ayback_ops) ;

snd_pcm set _ops(pcm SNDRV_PCM STREAM CAPTURE,
&snd_mychi p_capture_ops);

The operators are defined typically like this:

static struct snd_pcm.ops snd_nychi p_pl ayback_ops = {
.open = snd_nychi p_pcm open,
. cl ose snd_nychi p_pcm cl ose,
.ioctl snd_pcmlib_ioctl,
. hw_parans = snd_nychi p_pcm _hw_par ans,

.hw free = snd_mychi p_pcm hw free,
. prepare = snd_mychi p_pcm prepare,
.trigger = snd_mychi p_pcm tri gger,
. pointer = snd_mychi p_pcm poi nter,

All the callbacks are described in the Operators subsection.

After setting the operators, you probably will want to pre-all ocate the buffer. For the pre-all ocation, simply
call the following:

snd_pcmlib_preall ocate_pages_for_all (pcm SNDRV_DVA TYPE DEV,
snd_dma_pci _dat a(chi p->pci),
64* 1024, 64*1024);

It will allocate a buffer up to 64kB as default. Buffer management details will be described in the later
section Buffer and Memory Management.

27

PCM Interface

Additionally, you can set some extra information for this pcm in pcm->info_flags. The available values
are defined as SNDRV_PCM | NFO_XXX in <sound/ asound. h>, which is used for the hardware de-
finition (described later). When your soundchip supports only half-duplex, specify like this:

pcm >i nfo_flags = SNDRV_PCM | NFO_HALF_DUPLEX;

... And the Destructor?

The destructor for a pcm instance is not always necessary. Since the pcm device will be released by the
middle layer code automatically, you don't have to call the destructor explicitly.

The destructor would be necessary if you created special recordsinternally and needed to release them. In
such acase, set the destructor function to pcm->private free:

Example 5.2. PCM Instance with a Destructor

static void mychip_pcmfree(struct snd_pcm *pcm

{
struct mychip *chip = snd_pcm chi p(pcm;
/* free your own data */
kfree(chi p->ny_private _pcm data);
/* do what you like else */
}
static int snd_mychi p_new pcn(struct mychip *chip)
{
struct snd_pcm *pcm
/* allocate your own data */
chi p->ny_private_pcmdata = kmalloc(...);
/* set the destructor */
pcm >private _data = chip;
pcm >private_free = nychi p_pcmfree;
}

Runtime Pointer - The Chest of PCM Informa-

tion

When the PCM substream is opened, a PCM runtime instance is allocated and assigned to the substream.
This pointer is accessible via subst r eam >r unt i me. This runtime pointer holds most information
you need to control the PCM:; the copy of hw_params and sw_params configurations, the buffer pointers,
mmap records, spinlocks, etc.

28

PCM Interface

The definition of runtime instanceisfound in <sound/ pcm h>. Here are the contents of thisfile:

struct _snd_pcmruntinme {
[* -- Status -- */
struct snd_pcm substream *tri gger_master
snd_tinestanp_t trigger_tstanp; /* trigger tinestanp */
i nt overrange;
snd_pcmuframes_t avail _nax;
snd_pcmuframes_t hw ptr_base; /* Position at buffer restart */
snd_pcmuframes_t hw ptr_interrupt; /* Position at interrupt tine*/

/[* -- HWparans -- */

snd_pcm access_t access; /* access node */
snd_pcmformat _t format; /* SNDRV_PCM FORMAT_* */
snd_pcm subformat _t subformat; /* subformat */
unsigned int rate; /* rate in Hz */

unsi gned int channels; /* channels */
snd_pcmuframes_t period_size; /* period size */
unsi gned int periods; /* periods */
snd_pcmuframes_t buffer_size; /* buffer size */
unsigned int tick tinme; /* tick time */
snd_pcmuframes_t mn_align; /* Mn alignment for the format */
size_t byte_align;

unsigned int frame_bits;

unsi gned int sanple_bits;

unsi gned int info;

unsi gned int rate_num

unsi gned int rate_den;

/[* -- SWparans -- */

struct tinmespec tstanp_node; /* nmap tinmestanp is updated */
unsi gned int period_step

unsigned int sleep_mn; /* mnticks to sleep */

snd_pcmuframes_t start_threshol d;

snd_pcmuframes_t stop_threshol d;

snd_pcmuframes_t silence_threshold; /* Silence filling happens when
noi se i s nearest than this */
snd_pcmuframes_t silence_size; /* Silence filling size */

snd_pcmuframes_t boundary; /* pointers wap point */

snd_pcmuframes_t silenced_start;
snd_pcmuframes_t sil enced_si ze;

snd_pcmsync_id_t sync; [/* hardware synchronization ID */

/[* -- mmap -- */

vol atile struct snd_pcm nmap_stat us *st at us;
vol atile struct snd_pcm nmap_control *control
atom c_t mmap_count;

/* -- locking / scheduling -- */
spi nl ock_t | ock;

29

PCM Interface

wai t _queue_head_t sl eep;
struct timer_list tick_ tiner;
struct fasync_struct *fasync;

[* -- private section -- */
void *private_data;
void (*private_free)(struct snd_pcmruntinme *runtine);

/* -- hardware description -- */
struct snd_pcm hardware hw;
struct snd_pcm hw constraints hw _constraints;

[* -- timer -- */
unsigned int tiner_resolution; /* tiner resolution */

[* -- DMA -- */

unsi gned char *dma_area; /* DVA area */

dma_addr _t dna_addr; /* physical bus address (not accessible frommin CPU) */
size_t dma_bytes; [/* size of DVA area */

struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */

#i f defined(CONFI G_ SND PCM CSS) || defined(CONFI G_SND _PCM OSS_MODULE)
/[* -- OSS things -- */
struct snd_pcm oss_runtine o0sSs;

#endi f

b

For the operators (callbacks) of each sound driver, most of these records are supposed to be read-only.
Only the PCM middle-layer changes / updates them. The exceptions are the hardware description (hw)
DMA buffer information and the private data. Besides, if you use the standard buffer alocation method
viasnd_pcm|ib_mall oc_pages(),youdon'tneedto set the DMA buffer information by yourself.

In the sections below, important records are explained.

Hardware Description

The hardware descriptor (struct snd_pcm_hardware) contains the definitions of the fundamental hardware
configuration. Above all, you'll need to define thisin the open callback. Note that the runtime instance
holds the copy of the descriptor, not the pointer to the existing descriptor. That is, in the open callback, you
can modify the copied descriptor (r unt i ne- >hw) as you need. For example, if the maximum number
of channelsis 1 only on some chip models, you can still use the same hardware descriptor and change
the channels_max later:

struct snd_pcmruntime *runtime = substream >runti ne;

runti me->hw = snd_nychi p_pl ayback_hw;, /* comon definition */
if (chip->npdel == VERY_OLD ONE)
runti me- >hw. channel s_nmax = 1;

30

PCM Interface

Typically, you'll have a hardware descriptor as below:

static struct snd_pcm hardware snd_nychi p_pl ayback_hw = {
.info = (SNDRV_PCM | NFO_MVAP |
SNDRV_PCM _| NFO_| NTERLEAVED |
SNDRV_PCM _| NFO_BLOCK_TRANSFER |
SNDRV_PCM_| NFO_MVAP_VALI D),

.formats = SNDRV_PCM FMIBI T_S16_LE
.rates = SNDRV_PCM RATE_8000_48000,
.rate_mn = 8000,

.rate_max = 48000,

.channels mn = 2,

. channel s_nmax = 2,

. buffer_bytes_max = 32768,

. period_bytes_mn = 4096,

. peri od_bytes_max = 32768,

.periods_mn = 1,

. periods_max = 1024,

» Thei nf o field contains the type and capabilities of this pcm. The bit flags are defined in <sound/
asound. h> as SNDRV_PCM | NFO_XXX. Here, at least, you have to specify whether the mmap is
supported and which interleaved format is supported. When the hardware supports mmap, add the
SNDRV_PCM | NFO_MVAP flag here. When the hardware supports the interleaved or the non-inter-
leaved formats, SNDRV_PCM | NFO_| NTERLEAVED or SNDRV_PCM | NFO_NONI NTERLEAVED
flag must be set, respectively. If both are supported, you can set both, too.

In the above example, MMAP_VALI D and BLOCK TRANSFER are specified for the OSS mmap mode.
Usually both are set. Of course, MVAP_VALI Dis set only if the mmap isreally supported.

The other possible flags are SNDRV_PCM | NFO_PAUSE and SNDRV_PCM | NFO_RESUME. The
PAUSE bit meansthat the pcm supportsthe“ pause’ operation, whilethe RESUME bit meansthat the pcm
supports the full “suspend/resume” operation. If the PAUSE flag is set, thet ri gger callback below
must handl e the corresponding (pause push/release) commands. The suspend/resume trigger commands
can be defined even without the RESUME flag. See Power Management section for details.

When the PCM substreams can be synchronized (typically, synchronized start/stop of a playback and
a capture streams), you can give SNDRV_PCM | NFO_SYNC START, too. In this case, you'll need
to check the linked-list of PCM substreams in the trigger callback. This will be described in the later
section.

« f or mat s field containsthe bit-flags of supported formats (SNDRV_PCM FMIBI T_XXX). If the hard-
ware supports more than one format, give all or'ed bits. In the example above, the signed 16hit little-en-
dian format is specified.

« rat es field contains the bit-flags of supported rates (SNDRV_PCM _RATE_XXX). When the chip sup-
ports continuous rates, pass CONTI NUQOUS hit additionally. The pre-defined rate bits are provided only
for typical rates. If your chip supports unconventional rates, you need to add the KNOT bit and set up
the hardware constraint manually (explained later).

31

PCM Interface

e rate_m nandrat e_nmax define the minimum and maximum sample rate. This should correspond
somehow tor at es hits.

» channel _mi n and channel _max define, as you might already expected, the minimum and maxi-
mum number of channels.

» buf f er byt es_nax definesthe maximum buffer sizein bytes. Thereisnobuf f er _bytes_ni n
field, since it can be calculated from the minimum period size and the minimum number of periods.
Meanwhile, per i od_byt es_m n and define the minimum and maximum size of the period in bytes.
peri ods_max and peri ods_m n define the maximum and minimum number of periods in the
buffer.

The “period” isaterm that corresponds to afragment in the OSS world. The period defines the size at
which aPCM interrupt is generated. This size strongly depends on the hardware. Generally, the smaller
period size will give you more interrupts, that is, more controls. In the case of capture, this size defines
the input latency. On the other hand, the whole buffer size defines the output latency for the playback
direction.

» Thereisasoafieldfi f o_si ze. Thisspecifiesthe size of the hardware FIFO, but currently it isneither
used in the driver nor in the asa-lib. So, you can ignore thisfield.

PCM Configurations

Ok, let's go back again to the PCM runtime records. The most frequently referred records in the runtime
instance are the PCM configurations. The PCM configurations are stored in the runtime instance after
the application sends hw_params data via alsa-lib. There are many fields copied from hw_params and
sw_params structs. For example, f or mat holds the format type chosen by the application. This field
contains the enum value SNDRV_PCM_FORMAT _ XXX.

One thing to be noted is that the configured buffer and period sizes are stored in “frames” in the runtime.
In the ALSA world, 1 frame = channels * samples-size. For conversion between frames and bytes, you
canusethefranmes_to_bytes() andbytes _to frames() helper functions.

peri od_bytes = franes_to_bytes(runtine, runtime->period_size);

Also, many software parameters (sw_params) are stored in frames, too. Please check the type of thefield.
snd_pcm_uframes t is for the frames as unsigned integer while snd_pcm_sframes t is for the frames as
signed integer.

DMA Buffer Information

The DMA buffer is defined by the following four fields, dma_ar ea, dma_addr, dma_byt es and
dma_pri vat e. The dna_ar ea holds the buffer pointer (the logical address). You can call nencpy
from/tothispointer. Meanwhile, dma_addr holdsthephysical addressof thebuffer. Thisfieldisspecified
only when the buffer is alinear buffer. dma_byt es holds the size of buffer in bytes. dma_pri vat e
isused for the ALSA DMA dllocator.

If you use a standard ALSA function, snd_pcm | i b_mal | oc_pages(), for alocating the buffer,
these fields are set by the ALSA middle layer, and you should not change them by yourself. Y ou can read
them but not write them. On the other hand, if you want to allocate the buffer by yourself, you'll need to
manageit inhw_paramscallback. At least, dnma_byt es ismandatory. dnma_ar ea isnecessary when the

32

PCM Interface

buffer is mmapped. If your driver doesn't support mmap, this field is not necessary. dma_addr isalso
optional. You canusedma_pr i vat e asyou like, too.

Running Status

The running status can be referred via runti me- >st at us. This is the pointer to the struct
snd_pcm_mmap_status record. For example, you can get the current DMA hardware pointer viar un-
ti me->status->hw ptr.

The DMA application pointer can be referred via r unt i me- >cont r ol , which points to the struct
snd_pcm_mmap_control record. However, accessing directly to this value is not recommended.

Private Data

Y ou can allocate arecord for the substream and storeitinr unt i me- >pri vat e_dat a. Usualy, thisis
donein the open callback. Don't mix thiswith pcm >pri vat e_dat a. Thepcm >pri vat e_dat a
usually pointsto the chip instance assigned stetically at the creation of PCM, whilether unt i me- >pri -
vat e_dat a pointsto adynamic data structure created at the PCM open callback.

static int snd_xxx_open(struct snd_pcm substream *substrean)

{
struct my_pcm data *data;
data = kmal | oc(si zeof (*data), GFP_KERNEL);
substream >runti me->private_data = data;

}

The allocated object must be released in the close callback.

Operators

OK, now let me give details about each pcm callback (ops). In general, every callback must return O if
successful, or a negative error number such as - EI NVAL. To choose an appropriate error number, it is
advised to check what value other parts of the kernel return when the same kind of request fails.

The callback function takes at least the argument with snd_pcm_substream pointer. To retrieve the chip
record from the given substream instance, you can use the following macro.

int xxx() {
struct mychip *chip = snd_pcm substream chi p(substrean);

The macro reads subst r eam >pri vat e_dat a, which is acopy of pcm >pri vate_data. You
can override the former if you need to assign different data records per PCM substream. For example,

33

PCM Interface

the cmi8330 driver assigns different private_datafor playback and capture directions, because it uses two
different codecs (SB- and AD-compatible) for different directions.

open callback

static int snd_xxx_open(struct snd_pcm substream *substream;

Thisis called when a pcm substream is opened.

At least, here you have to initialize the runtime->hw record. Typically, thisis done by like this:

static int snd_xxx_open(struct snd_pcm substream *substrean)

{
struct mychip *chip = snd_pcm substream chi p(substrean);
struct snd_pcmruntinme *runtime = substream >runti ne;
runti me->hw = snd_mnychi p_pl ayback_hw;
return O;

}

wheresnd_nychi p_pl ayback_hwisthe pre-defined hardware description.
Y ou can alocate a private datain this callback, as described in Private Data section.

If the hardware configuration needs more constraints, set the hardware constraints here, too. See Con-
straints for more details.

close callback

static int snd_xxx_cl ose(struct snd_pcm substream *substrean;

Obvioudly, thisis called when a pcm substream is closed.

Any private instance for a pcm substream allocated in the open callback will be released here.

static int snd_xxx_cl ose(struct snd_pcm substream *substream

{

kfree(substream >runti me->private_data);

PCM Interface

loctl callback

This is used for any special call to pcm ioctls. But usualy you can pass a generic ioctl callback,
snd_pcmlib_ioctl.

hw_params callback

static int snd_xxx_hw paranms(struct snd_pcm substream *substream
struct snd_pcm hw _parans *hw_parans);

Thisis called when the hardware parameter (hw_par ans) isset up by the application, that is, once when
the buffer size, the period size, the format, etc. are defined for the pcm substream.

Many hardware setups should be done in this callback, including the allocation of buffers.

Parameters to be initialized are retrieved by par ans_xxx() macros. To allocate buffer, you can call
a helper function,

snd_pcmlib_mall oc_pages(substream parans_buffer bytes(hw parans));

snd_pcm i b_mal | oc_pages() isavailable only when the DMA buffers have been pre-allocated.
See the section Buffer Types for more details.

Note that this and pr epar e callbacks may be called multiple times per initiaization. For example, the
OSS emulation may call these callbacks at each change viaitsioctl.

Thus, you need to be careful not to allocate the same buffers many times, which will lead to memory leaks!
Calling the hel per function above many timesis OK. It will rel ease the previous buffer automatically when
it was already allocated.

Another note is that this callback is non-atomic (schedulable) as default, i.e. when no nonat oni ¢ flag
set. Thisisimportant, becausethet r i gger callback isatomic (non-schedulable). That is, mutexes or any

schedule-related functions are not availableint ri gger callback. Please see the subsection Atomicity
for details.

hw_free callback

static int snd_xxx_hw free(struct snd_pcm substream *substrean);

35

PCM Interface

Thisis caled to release the resources alocated via hw_par ans. For example, releasing the buffer via
snd_pcmlib_mall oc_pages() isdone by calling the following:

snd_pcmlib _free pages(substream;

Thisfunctionisaways called before the close callback is called. Also, the callback may be called multiple
times, too. Keep track whether the resource was already rel eased.

prepare callback

static int snd_xxx_prepare(struct snd_pcm substream *substrean);

Thiscallback iscalled when the pcmis*® prepared”. Y ou can set the format type, samplerate, etc. here. The
difference from hw_par ans isthat the pr epar e calback will be called each time snd_pcm pr e-
par e() iscalled, i.e. when recovering after underruns, etc.

Note that this callback is now non-atomic. Y ou can use schedule-related functions safely in this callback.

In thisand the following callbacks, you can refer to the values viathe runtime record, substream->runtime.
For example, to get the current rate, format or channels, access to runtime->rate, runtime->format or run-
time->channels, respectively. The physical address of the allocated buffer is set to runtime->dma_area.
The buffer and period sizes are in runtime->buffer_size and runtime->period_size, respectively.

Be careful that this callback will be called many times at each setup, too.

trigger callback

static int snd_xxx_trigger(struct snd_pcm substream *substream int cnd);

Thisis called when the pcm is started, stopped or paused.

Which action is specified in the second argument, SNDRV_PCM _TRI GGER_XXXin <sound/ pcm h>.
At least, the START and STOP commands must be defined in this call back.

switch (cnd) {

case SNDRV_PCM TRI GGER_START:
/* do sonething to start the PCM engi ne */
br eak;

case SNDRV_PCM TRI GGER_STOP:
/* do sonething to stop the PCM engi ne */

36

PCM Interface

br eak;
defaul t:
return -ElI NVAL;

}

When the pcm supports the pause operation (given in the info field of the hardware table), the
PAUSE_PUSH and PAUSE_ REL EASE commands must be handled here, too. The former isthe command
to pause the pcm, and the latter to restart the pcm again.

When the pcm supports the suspend/resume operation, regardless of full or partial suspend/resume support,
the SUSPEND and RESUME commands must be handled, too. These commands are issued when the pow-
er-management statusis changed. Obviously, the SUSPEND and RESUME commands suspend and resume
the pcm substream, and usually, they are identical to the STOP and START commands, respectively. See
the Power Management section for details.

Asmentioned, this callback isatomic asdefault unlessnonat omi ¢ flag set, and you cannot call functions
which may sleep. The trigger callback should be as minimal as possible, just really triggering the DMA.
The other stuff should be initialized hw_params and prepare callbacks properly beforehand.

pointer callback

static snd_pcmufranes_t snd_xxx_pointer(struct snd_pcm substream *substream

This callback is called when the PCM middle layer inquires the current hardware position on the buffer.
The position must be returned in frames, ranging from 0 to buffer_size- 1.

This is called usually from the buffer-update routine in the pcm middle layer, which is invoked when
snd_pcm peri od_el apsed() iscdledintheinterrupt routine. Then the pcm middle layer updates
the position and cal cul ates the available space, and wakes up the sleeping poll threads, etc.

This callback is also atomic as default.

copy and silence callbacks

These callbacks are not mandatory, and can be omitted in most cases. These callbacks are used when the
hardware buffer cannot bein the normal memory space. Some chips havetheir own buffer on the hardware
which is not mappable. In such a case, you have to transfer the data manually from the memory buffer
to the hardware buffer. Or, if the buffer is non-contiguous on both physical and virtual memory spaces,
these callbacks must be defined, too.

If these two callbacks are defined, copy and set-silence operations are done by them. The detailed will be
described in the later section Buffer and Memory Management.

ack callback

This callback is also not mandatory. This callback is called when the appl_ptr is updated in read or write
operations. Some drivers like emulOk1-fx and cs46xx need to track the current appl_ptr for the internal
buffer, and this callback is useful only for such a purpose.

37

PCM Interface

This callback is atomic as default.

page callback

This callback is optional too. This callback is used mainly for non-contiguous buffers. The mmap calls
this callback to get the page address. Some examples will be explained in the later section Buffer and
Memory Management, too.

Interrupt Handler

Therest of pcm stuff isthe PCM interrupt handler. The role of PCM interrupt handler in the sound driver
isto update the buffer position and to tell the PCM middle layer when the buffer position goes across the
prescribed period size. To inform this, call thesnd_pcm peri od_el apsed() function.

There are several types of sound chips to generate the interrupts.

Interrupts at the period (fragment) boundary

This is the most frequently found type: the hardware generates an interrupt at each period boundary. In
this case, you can call snd_pcm peri od_el apsed() at eachinterrupt.

snd_pcm peri od_el apsed() takesthe substream pointer as its argument. Thus, you need to keep
the substream pointer accessible from the chip instance. For example, define substream field in the chip
record to hold the current running substream pointer, and set the pointer value at open callback (and reset
at close callback).

If you acquire a spinlock in the interrupt handler, and the lock is used in other pcm callbacks, too, then
you haveto release the lock before callingsnd_pcm peri od_el apsed() , becausesnd_pcm pe-
ri od_el apsed() calsother pcm callbacksinside.

Typical code would be like:

Example5.3. Interrupt Handler Case #1

static irgreturn_t snd_mychip_interrupt(int irg, void *dev_id)

{
struct mychip *chip = dev_id;
spi n_| ock(&chi p- >l ock) ;
if (pcm.irqg_i nvoked(chip)) {
[* call updater, unlock before it */
spi n_unl ock(&hi p- >l ock) ;
snd_pcm peri od_el apsed(chi p- >subst ream ;
spi n_| ock(&chi p- >l ock) ;
/* acknowl edge the interrupt if necessary */
}
spi n_unl ock(&hi p- >l ock) ;
return | RQ HANDLED,
}

38

PCM Interface

High frequency timer interrupts

This happens when the hardware doesn't generate interrupts at the period boundary but issues timer in-
terrupts at a fixed timer rate (e.g. es1968 or ymfpci drivers). In this case, you need to check the current
hardware position and accumulate the processed sample length at each interrupt. When the accumulated
size exceeds the period size, call snd_pcm peri od_el apsed() and reset the accumulator.

Typical code would be like the following.

Example5.4. Interrupt Handler Case #2

static irgreturn_t snd_mychip_interrupt(int irg, void *dev_id)

{
struct mychip *chip = dev_id;
spi n_| ock(&chi p- >l ock) ;

|f .(pcm_i rg_i nvoked(chip)) {

unsigned int last_ptr, size;

/* get the current hardwar

e pointer (in franmes) */

| ast_ptr = get_hw ptr(chip);
/* cal cul ate the processed frames since the

* | ast update
*/

if (last_ptr < chip->last_
runtinme->buffer_size + last_ptr

si ze
- chip->l
el se
size = last_ptr -
/* renmenber the |ast updat
chip->last_ptr = last_ptr;
/* accunul ate the size */
chi p->si ze += si ze;

ptr)
ast_ptr;

chi p->last_ptr;
ed point */

/* over the period boundary? */

if (chip->size >= runtine-

>period_size) {

/* reset the accunul ator */

chi p->si ze % runt
/* call updater */

spi n_unl ock(&chi p-

i me->period_size;

>| ock) ;

snd_pcm peri od_el apsed(substream;

spi n_Il ock(&chi p- >l
}

ock) ;

/* acknowl edge the interrupt if necessary */

}

spi n_unl ock(&chi p->| ock);
return | RQ HANDLED,;

39

PCM Interface

On calling snd_pcm peri od _el apsed()

In both cases, even if more than one period are elapsed, you don't have to call snd_pcm peri od_e-
| apsed() many times. Call only once. And the pcm layer will check the current hardware pointer and
update to the latest status.

Atomicity

One of the most important (and thus difficult to debug) problems in kernel programming are race condi-
tions. In the Linux kernel, they are usually avoided via spin-locks, mutexes or semaphores. In generdl, if
arace condition can happen in an interrupt handler, it has to be managed atomically, and you have to use
aspinlock to protect the critical session. If the critical section is not in interrupt handler code and if taking
arelatively long time to execute is acceptable, you should use mutexes or semaphores instead.

Asalready seen, some pcm callbacks are atomic and some are not. For example, thehw_par ans callback
is non-atomic, whilet r i gger callback is atomic. This means, the latter is called already in a spinlock
held by the PCM middle layer. Please take this atomicity into account when you choose alocking scheme
in the callbacks.

Inthe atomic callbacks, you cannot use functionswhichmay call schedul e orgotosl eep. Semaphores
and mutexes can sleep, and hence they cannot be used inside the atomic callbacks (e.g. t ri gger call-
back). To implement some delay in such a callback, please useudel ay() or ndel ay() .

All three atomic callbacks (trigger, pointer, and ack) are called with local interrupts disabled.

Therecent changesin PCM core code, however, allow all PCM operationsto be non-atomic. Thisassumes
that the all caller sides are in non-atomic contexts. For example, the function snd_pcm peri od_e-

| apsed() iscaled typically from the interrupt handler. But, if you set up the driver to use a threaded
interrupt handler, this call can be in non-atomic context, too. In such acase, you can set nonat oni c filed
of snd_pcm object after creating it. When thisflag is set, mutex and rwsem are used internally in the PCM
coreinstead of spin and rwlocks, so that you can call all PCM functions safely in a non-atomic context.

Constraints

If your chip supports unconventional samplerates, or only thelimited samples, you need to set aconstraint
for the condition.

For example, in order to restrict the sample ratesin the some supported values, usesnd_pcm _hw_con-
straint _list().Youneedtocdl thisfunctioninthe open callback.

Example 5.5. Example of Hardwar e Constraints

static unsigned int rates[] =
{4000, 10000, 22050, 44100};
static struct snd_pcm hw constraint_|ist constraints_rates = {
.count = ARRAY_SI ZE(r at es),
st rates,
. mask 0,

40

PCM Interface

static int snd_mychi p_pcm open(struct snd_pcm substream *substream

{

int err;

err = snd_pcm hw constraint_I|ist(substream >runtine, O,
SNDRV_PCM_HW PARAM RATE,
&constraints_rates);
if (err <0)
return err;

There are many different constraints. Look at sound/ pcm h for a complete list. You can even define
your own constraint rules. For example, let's suppose my_chip can manage a substream of 1 channel if
and only if the format is S16_LE, otherwise it supports any format specified in the snd_pcm_hardware
structure (or in any other constraint_list). You can build arule like this:

Example 5.6. Example of Hardwar e Constraintsfor Channels

static int hw rule _channels by format(struct snd_pcm hw parans *parans,
struct snd _pcmhw rule *rule)
{
struct snd_interval *c = hw_param. nterval (parans,
SNDRV_PCM_HW PARAM CHANNELS) ;
struct snd _mask *f = hw_param mask(paranms, SNDRV_PCM HW PARAM FORVAT) ;
struct snd_interval ch;

snd_i nterval _any(&ch);

if (f->bits[0] == SNDRV_PCM FMIBI T_S16_LE) {
ch.mn = ch.max = 1;
ch.integer = 1;
return snd_interval refine(c, &ch);

}

return O;

Then you need to call this function to add your rule:

snd_pcm hw rul e_add(substream >runtinme, 0, SNDRV_PCM HW PARAM CHANNELS,
hw _rul e_channel s_by format, NULL,
SNDRV_PCM HW PARAM FORMAT, -1);

Therulefunction is called when an application setsthe PCM format, and it refines the number of channels
accordingly. But an application may set the number of channels before setting the format. Thus you also
need to define the inverse rule:

41

PCM Interface

Example 5.7. Example of Hardwar e Constraintsfor Formats

static int hwrule fornmat_ by channel s(struct snd_pcm hw paranms *parans,
struct snd_pcm hw rule *rule)
{
struct snd_interval *c = hw_param. nterval (parans,
SNDRV_PCM_HW PARAM CHANNELS) ;
struct snd_nmask *f = hw_param nmask(paranms, SNDRV_PCM HW PARAM FORVAT) ;
struct snd_mask fnt;

snd_mask_any(&f nt); /* Init the struct */

if (c->min < 2) {
frmt.bits[0] & SNDRV_PCM FMIBI T_S16_LE;
return snd_nmask_refine(f, &nt);

}

return O;

...and in the open callback:

snd_pcm hw_rul e_add(substream >runtinme, 0, SNDRV_PCM HW PARAM FORNAT,
hw rul e_format by channel s, NULL,
SNDRV_PCM_HW PARAM CHANNELS, -1);

| won't give more details here, rather | would like to say, “Luke, use the source.”

42

Chapter 6. Control Interface

General

The control interface is used widely for many switches, dliders, etc. which are accessed from user-space.
Its most important use is the mixer interface. In other words, since ALSA 0.9.x, al the mixer stuff is
implemented on the control kernel API.

ALSA has a well-defined AC97 control module. If your chip supports only the AC97 and nothing else,
you can skip this section.

The control API is defined in <sound/ cont r ol . h>. Include this file if you want to add your own
controls.

Definition of Controls

To create a new control, you need to define the following three callbacks: i nf o, get and put . Then,
define astruct snd_kcontrol_new record, such as:

Example 6.1. Definition of a Control

static struct snd_kcontrol _new ny_control = {
.iface = SNDRV_CTL_ELEM | FACE_M XER,
. name = "PCM Pl ayback Switch",
.index = 0,
.access = SNDRV_CTL_ELEM ACCESS READWRI TE,
.private _value = Oxffff,
.info = ny_control _info,
. get my_control _get,
. put my_control _put

Thei f ace field specifiesthe control type, SNDRV_CTL_ELEM | FACE_XXX, whichisusualy M XER.
Use CARD for global controls that are not logically part of the mixer. If the control is closely associated
with some specific device on the sound card, use HADEP, PCM RAVM DI , TI MER, or SEQUENCER, and
specify the device number with thedevi ce and subdevi ce fields.

The name isthe nameidentifier string. Since ALSA 0.9.x, the control name isvery important, because its
roleis classified from its name. There are pre-defined standard control names. The details are described
inthe Control Names subsection.

The i ndex field holds the index number of this contral. If there are several different controls with the
same name, they can be distinguished by the index number. Thisis the case when several codecs exist on
the card. If theindex is zero, you can omit the definition above.

The access field contains the access type of this control. Give the combination of bit masks, SN-
DRV_CTL_ELEM ACCESS XXX, there. The details will be explained in the Access Flags subsection.

43

Control Interface

The pri vat e_val ue field contains an arbitrary long integer value for this record. When using the
generici nf 0, get and put callbacks, you can pass avalue through this field. If several small numbers
are necessary, you can combine them in bitwise. Or, it's possible to give a pointer (casted to unsigned
long) of some record to thisfield, too.

Thet | v field can be used to provide metadata about the control; see the Metadata subsection.

The other three are callback functions.

Control Names

There are some standards to define the control names. A control is usually defined from the three parts
as“SOURCE DIRECTION FUNCTION”.

Thefirst, SOURCE, specifiesthe source of the control, and isastring such as“Master”, “PCM”, “CD” and
“Ling”. There are many pre-defined sources.

The second, DI RECTI QN, is one of the following strings according to the direction of the control: “Play-
back”, “ Capture”, “ Bypass Playback” and “ Bypass Capture”. Or, it can be omitted, meaning both playback
and capture directions.

Thethird, FUNCTI ON, is one of the following strings according to the function of the control: “ Switch”,
“Volume” and “Route”.

The example of control names are, thus, “Master Capture Switch” or “PCM Playback Volume'.

There are some exceptions:

Global capture and playback
“Capture Source”, “ Capture Switch” and “ Capture Volume” are used for the global capture (input) source,

switch and volume. Similarly, “Playback Switch” and “Playback Volume” are used for the global output
gain switch and volume.

Tone-controls

tone-control switch and volumes are specified like “ Tone Control - XXX, e.g. “Tone Control - Switch”,
“Tone Control - Bass’, “Tone Control - Center”.

3D controls

3D-control switches and volumes are specified like “ 3D Control - XXX”, e.g. “3D Control - Switch”, “3D
Control - Center”, “3D Control - Space”.

Mic boost

Mic-boost switch is set as“Mic Boost” or “Mic Boost (6dB)”.

More precise information can be found in Docunent at i on/ sound/ al sa/ Cont r ol Nares. t xt .

Access Flags

The access flag is the hitmask which specifies the access type of the given control. The default access
type is SNDRV_CTL_ELEM ACCESS READWRI TE, which means both read and write are allowed to
this control. When the access flag is omitted (i.e. = 0), it is considered as READWRI TE access as default.

44

Control Interface

When the control isread-only, pass SNDRV_CTL_ELEM ACCESS READ instead. Inthis case, you don't
have to define the put callback. Similarly, when the control is write-only (although it's arare case), you
can use the WRI TE flag instead, and you don't need the get callback.

If the control value changes frequently (e.g. the VU meter), VOLATI LE flag should be given. This means
that the control may be changed without notification. Applications should poll such a control constantly.

When the control is inactive, set the | NACTI VE flag, too. There are LOCK and OANER flags to change
the write permissions.

Callbacks

info callback

Thei nf o callback is used to get detailed information on this control. This must store the values of the
given struct snd_ctl_elem_info object. For example, for a boolean control with a single element:

Example 6.2. Example of info callback

static int snd_myctl _rmono_info(struct snd_kcontrol *kcontrol,
struct snd _ctl_elem.info *uinfo)

{
ui nfo->type = SNDRV_CTL_ELEM TYPE_ BOOLEAN;
ui nf o- >count = 1,
ui nfo->val ue.integer.mn = 0;
ui nf o->val ue. i nteger.max = 1;
return O;
}

Thet ype field specifiesthetype of the control. Thereare BOOLEAN, | NTEGER, ENUMERATED, BYTES,
| ECO958 and | NTEGER64. Thecount field specifies the number of elementsin this control. For exam-
ple, astereo volumewould havecount = 2. Theval ue fieldisaunion, and the values stored are depending
on the type. The boolean and integer types are identical.

The enumerated type is a bit different from others. You'll need to set the string for the currently given
item index.

static int snd_myctl _enum.info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem.info *uinfo)
{

static char *texts[4] = {

"First", "Second", "Third", "Fourth"
b
ui nfo->type = SNDRV_CTL_ELEM TYPE_ENUMERATED,;
ui nfo->count = 1;
ui nf o->val ue. enunerated.itens = 4;
i f (uinfo->val ue.enunerated.item > 3)

45

Control Interface

ui nf o- >val ue. enunerated.item = 3;
st rcpy(ui nf o- >val ue. enuner at ed. nane,
t ext s[ui nf o- >val ue. enunerated.iten);
return O;

The above callback can be simplified with a helper function, snd_ct| _enum i nf 0. The fina code
looks like below. (You can pass ARRAY _SIZE(texts) instead of 4 in the third argument; it's a matter of
taste.)

static int snd_myctl _enum.info(struct snd_kcontrol *kcontrol,
struct snd_ctl _elem.info *uinfo)

{
static char *texts[4] = {
"First", "Second", "Third", "Fourth"
b
return snd_ctl_enum.info(uinfo, 1, 4, texts);
}

Some common info callbacksareavailablefor your convenience: snd_ct | _bool ean_nono_i nf o()
and snd_ct| _bool ean_stereo_i nfo(). Obviously, the former is an info callback for a mono
channel boolean item, just like snd_mnyct | _nono_i nf o above, and the latter is for a stereo channel
boolean item.

get callback

This callback is used to read the current value of the control and to return to user-space.

For example,

Example 6.3. Example of get callback

static int snd_myctl _get(struct snd_kcontrol *kcontrol,
struct snd _ctl _el emval ue *ucontrol)

{
struct mychip *chip = snd_kcontrol chip(kcontrol);
ucontrol - >val ue. i nteger.val ue[0] = get_sone_val ue(chip);
return O;

}

Theval ue field depends on the type of control aswell as on theinfo callback. For example, the sb driver
uses this field to store the register offset, the bit-shift and the bit-mask. The pri vat e_val ue field is
set asfollows:

46

Control Interface

.private_value = reg | (shift << 16) | (mask << 24)

and isretrieved in callbacks like

static int snd_sbm xer_get_single(struct snd_kcontrol *kcontrol,
struct snd_ctl _el em val ue *ucontrol)

{
int reg = kcontrol ->private_val ue & Oxff;
int shift = (kcontrol ->private_value >> 16) & Oxff;
int mask = (kcontrol ->private_val ue >> 24) & Oxff;
}

Intheget callback, you havetofill all the elementsif the control has more than one elements, i.e. count
> 1. Intheexample above, wefilled only oneelement (val ue. i nt eger . val ue[0]) sinceit'sassumed
ascount =1.

put callback

This callback is used to write a value from user-space.

For example,

Example 6.4. Example of put callback

static int snd_myctl put(struct snd_kcontrol *kcontrol,
struct snd _ctl _el emval ue *ucontrol)

{
struct mychip *chip = snd_kcontrol chip(kcontrol);
i nt changed = 0;
if (chip->current_value !=
ucontrol - >val ue. i nteger.val ue[0]) {
change_current _val ue(chi p,
ucontrol - >val ue. i nteger.val ue[0]);
changed = 1;
}
return changed;
}

As seen above, you have to return 1 if the value is changed. If the value is not changed, return O instead.
If any fatal error happens, return a negative error code as usual.

Asintheget callback, when the control has more than one elements, all elements must be evaluated in
this callback, too.

47

Control Interface

Callbacks are not atomic

All these three callbacks are basically not atomic.

Constructor

When everything isready, finally we can create anew control. To create a control, there are two functions
tobecaled,snd_ctl _newl() andsnd_ct| _add().

In the simplest way, you can do like this:

err = snd_ctl _add(card, snd_ctl_newl(&y_control, chip));
if (err <0)
return err;

wheremy_cont r ol isthe struct snd_kcontrol_new object defined above, and chip is the object pointer
to be passed to kcontrol->private_data which can be referred to in callbacks.

snd_ct!| _newl() alocatesanew snd_kcontrol instance, andsnd_ct | _add assignsthe given control
component to the card.

Change Notification

If you need to change and update a contral in the interrupt routine, you can call snd_ct| _notify().
For example,

snd_ct!l _notify(card, SNDRV_CTL_EVENT MASK VALUE, id_pointer);

This function takes the card pointer, the event-mask, and the control id pointer for the notification. The
event-mask specifies the types of notification, for example, in the above example, the change of control
valuesisnatified. Theid pointer isthe pointer of struct snd_ctl_elem_id to be notified. Y ou can find some
examplesines1938. c or es1968. c for hardware volume interrupts.

Metadata

To provideinformation about the dB values of amixer control, use on of the DECLARE_TLV_XXX macros
from <sound/ t | v. h> to define a variable containing this information, set thet | v. p field to point
to this variable, and include the SNDRV_CTL_ELEM ACCESS TLV_READflag inthe access field;
like this:

stati c DECLARE_TLV_DB SCALE(db_scal e_ny_control, -4050, 150, 0);

48

Control Interface

static struct snd_kcontrol _new nmy_control = {

.access = SNDRV_CTL_ELEM ACCESS_READVWRI TE |
SNDRV_CTL_ELEM ACCESS_TLV_READ,

.tlv.p = db_scale_ny_control,

The DECLARE_TLV_DB_SCALE macro defines information about a mixer control where each step in
the control's value changes the dB value by a constant dB amount. The first parameter is the name of
the variable to be defined. The second parameter is the minimum value, in units of 0.01 dB. The third
parameter isthe step size, in units of 0.01 dB. Set the fourth parameter to 1 if the minimum value actually
mutes the control.

The DECLARE_TLV_DB_LI NEAR macro defines information about a mixer control where the control's
value affects the output linearly. The first parameter is the name of the variable to be defined. The second
parameter is the minimum value, in units of 0.01 dB. The third parameter is the maximum value, in units
of 0.01 dB. If the minimum value mutes the control, set the second parameter to TLV_DB_GAI N_MJTE.

49

Chapter 7. APl for AC97 Codec

General

The ALSA AC97 codec layer is a well-defined one, and you don't have to write much code to con-
trol it. Only low-level control routines are necessary. The AC97 codec API is defined in <sound/
ac97_codec. h>.

Full Code Example

Example 7.1. Example of AC97 Interface

struct mychip {

struct snd_ac97 *ac97;

static unsigned short snd_mnychi p_ac97_read(struct snd_ac97 *ac97,
unsi gned short reg)

{
struct mychip *chip = ac97->private_dat a;
/* read a register value here fromthe codec */
return the_register_val ue;

}

static void snd_nychip_ac97_wite(struct snd_ac97 *ac97,
unsi gned short reg, unsigned short val)

struct mychip *chip = ac97->private_dat a;

/* wite the given register value to the codec */

}

static int snd_mychi p_ac97(struct nmychip *chip)
{
struct snd_ac97_bus *bus;
struct snd_ac97_tenpl ate ac97;
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_nychip_ac97_wite,
.read = snd_mychi p_ac97_read
b

err = snd_ac97_bus(chi p->card, 0, &ops, NULL, &bus);
if (err <0)

return err;
nmenset (&ac97, 0, sizeof(ac97));

50

API for AC97 Codec

ac97.private_data = chip;
return snd_ac97_m xer (bus, &ac97, &chip->ac97);

Constructor

To create an ac97 instance, first call snd_ac97_bus withan ac97_bus ops t record with callback func-
tions.

struct snd_ac97_bus *bus;

static struct snd_ac97_bus_ops ops = {
.write = snd_nychip_ac97_wite,
.read = snd_mychi p_ac97_read,

1

snd_ac97 bus(card, 0, &ops, NULL, &pbus);

The bus record is shared among al belonging ac97 instances.

Andthencal snd_ac97_m xer () withanstructsnd_ac97 templaterecord together with the buspoint-
er created above.

struct snd_ac97_tenpl ate ac97;
int err;

nmenset (&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
snd_ac97_ni xer (bus, &ac97, &chi p->ac97);

where chip->ac97 isapointer to anewly created ac97_t instance. In this case, the chip pointer is set asthe
private data, so that the read/write callback functions can refer to this chip instance. This instance is not
necessarily stored in the chip record. If you need to change the register values from the driver, or need the
suspend/resume of ac97 codecs, keep this pointer to pass to the corresponding functions.

Callbacks

The standard callbacks are r ead and wr i t e. Obviously they correspond to the functions for read and
write accesses to the hardware low-level codes.

Ther ead callback returns the register value specified in the argument.

51

API for AC97 Codec

static unsigned short snd_mychi p_ac97_read(struct snd_ac97 *ac97,
unsi gned short reg)

{

struct mychip *chip = ac97->private_dat a;

return the_register_val ue;

Here, the chip can be cast from ac97->private data.

Meanwhile, thewr i t e callback isused to set the register value.

static void snd _nychip_ac97 wite(struct snd_ac97 *ac97,
unsi gned short reg, unsigned short val)

These callbacks are non-atomic like the control APl callbacks.
There are dso other callbacks: r eset ,wait andinit.

Ther eset callback isused to reset the codec. If the chip requires a special kind of reset, you can define
this callback.

Thewai t callback isused to add some waiting time in the standard initialization of the codec. If the chip
requires the extra waiting time, define this callback.

Thei ni t callback isused for additional initialization of the codec.

Updating Registers in The Driver

If you need to access to the codec from the driver, you can cal the following func-
tions: snd_ac97 wite(),snd_ac97 read(), snd_ac97_updat e() and snd_ac97_up-
date bits().

Bothsnd_ac97_write() andsnd_ac97_updat e() functions are used to set avalue to the given
register (AC97_XXX). The difference between themisthat snd_ac97_updat e() doesn't writeavalue
if the given value has been already set, whilesnd_ac97_writ e() awaysrewritesthe value.

snd_ac97 write(ac97, AC97_NMASTER, 0x8080);
snd_ac97 update(ac97, AC97_MASTER, 0x8080);

snd_ac97_r ead() isused to read the value of the given register. For example,

val ue = snd_ac97_read(ac97, AC97_MASTER);

52

API for AC97 Codec

snd_ac97 update_bits() isusedto update some bitsin the given register.
snd_ac97_update_bits(ac97, reg, nmask, value);

Also, there is a function to change the sample rate (of a given register such as AC97_PCM FRON-
T_DAC_RATE) when VRA or DRA is supported by the codec: snd_ac97_set _rate().

snd_ac97_set _rate(ac97, AC97_PCM FRONT_DAC RATE, 44100);

Thefollowing registers are available to set therate: ACO7_PCM M C_ADC RATE, AC97_PCM_FRON-
T_DAC_RATE,AC97_PCM LR _ADC_RATE, AC97_SPDI F. When AC97_SPDI F isspecified, thereg-
ister is not really changed but the corresponding |EC958 status bits will be updated.

Clock Adjustment

In some chips, the clock of the codec isn't 48000 but using a PCI clock (to save a quartz!). In this case,
change the field bus->clock to the corresponding value. For example, intel8x0 and es1968 drivers have
their own function to read from the clock.

Proc Files

The ALSA AC97 interface will create a proc file such as/ proc/ asound/ car dO/ codec97#0/
ac97#0- 0 and ac97#0- 0+r egs. You can refer to these files to see the current status and registers
of the codec.

Multiple Codecs

When there are several codecs on the same card, you need to call snd_ac97_mi xer () multiple times
with ac97.num=1 or greater. The numfield specifies the codec number.

If you set up multiple codecs, you either need to write different callbacks for each codec or check ac97-
>num in the callback routines.

53

Chapter 8. MIDI (MPU401-UART)
Interface

General

Many soundcards have built-in MIDI (MPU401-UART) interfaces. When the soundcard supportsthe stan-
dard MPU401-UART interface, most likely you can use the ALSA MPU401-UART API. The MPU401-
UART API isdefined in <sound/ mpu401. h>.

Some soundchips have a similar but slightly different implementation of mpu401 stuff. For example,
emul0k1 has its own mpu401 routines.

Constructor

To create arawmidi object, call snd_nmpu401_uart _new() .

struct snd rawmidi *rmdi;
snd_npu40l1 uart _new(card, 0, MPW01 HW MPU401, port, info flags,
irq, &mdi);

The first argument is the card pointer, and the second is the index of this component. Y ou can create up
to 8 rawmidi devices.

The third argument is the type of the hardware, MPU401_HW XXX. If it's not a special one, you can use
MPU401_ HW MPU401.

The 4th argument is the 1/O port address. Many backward-compatible MPU401 have an 1/0O port such as
0x330. Or, it might be a part of its own PCI /O region. It depends on the chip design.

The 5th argument is a bitflag for additional information. When the 1/0 port address above is part of the
PCI 1/O region, the MPU401 1/O port might have been already allocated (reserved) by the driver itself.
In such a case, pass a bit flag MPU401_| NFO_| NTEGRATED, and the mpu401-uart layer will alocate
the 1/0 ports by itself.

When the controller supports only the input or output MIDI stream, pass the MPU401 | NFO_| NPUT or
MPU401 | NFO_QUTPUT hitflag, respectively. Then the rawmidi instance is created as asingle stream.

MPU4A01_| NFO_IMM O bitflag is used to change the access method to MMIO (via readb and writeb)
instead of iob and outb. In this case, you have to pass the iomapped address to snd_nmpu401_uar -

t_new().

When MPU401_| NFO_TX_| RQisset, theoutput streamisn't checked inthedefault interrupt handler. The
driver needs to call snd_npu401 _uart _interrupt _tx() by itsef to start processing the output
stream in the irg handler.

If the MPU-401 interface shares itsinterrupt with the other logical deviceson the card, set MPU401 | N-
FO_| RQ_HOOK (see below).

MIDI (MPU401-UART) Interface

Usually, the port address corresponds to the command port and port + 1 corresponds to the data port. If
not, you may changethecport field of struct snd_mpu401 manually afterward. However, snd_mpu401
pointer isnot returned explicitly by snd_npu401 _uart _new() . Youneedto cast rmidi->private_data
to snd_mpu401 explicitly,

struct snd_npu40l1 *npu;
npu = rmdi->private_data;

and reset the cport asyou like:
npu- >cport = my_own_control _port;

The 6th argument specifies the ISA irg number that will be allocated. If no interrupt is to be allocated
(because your code is already alocating a shared interrupt, or because the device does not use interrupts),
pass -1 instead. For a MPU-401 device without an interrupt, a polling timer will be used instead.

Interrupt Handler

When the interrupt is alocated in snd_npu401_uart _new(), an exclusive ISA interrupt handler is
automatically used, hence you don't have anything else to do than creating the mpu401 stuff. Otherwise,
you haveto set MPU401_I NFO_| RQ_HOCK, and call snd_npu401_uart _i nterrupt () explicitly
from your own interrupt handler when it has determined that a UART interrupt has occurred.

In this case, you need to passthe private_data of the returned rawmidi object from snd_npu401_uar -
t _new() asthesecond argument of snd_npu401_uart _interrupt ().

snd_npu401_uart _interrupt(irqg, rmdi->private_data, regs);

55

Chapter 9. RawMIDI Interface

Overview

The raw MIDI interface is used for hardware MIDI ports that can be accessed as a byte stream. It is hot
used for synthesizer chipsthat do not directly understand MIDI.

AL SA handlesfile and buffer management. All you haveto doisto write some code to move data between
the buffer and the hardware.

The rawmidi APl isdefined in <sound/ r awm di . h>.

Constructor

To create arawvmidi device, call thesnd_r awmi di _newfunction:

struct snd_rawm di *rmdi;
err = snd_rawn di _new(chi p->card, "MyMDI", 0, outs, ins, &mdi);
if (err <0)
return err;
rmdi->private_data = chip;
strcpy(rmdi->nane, "My MDI");
rmdi->nfo_flags = SNDRV_RAWM DI _| NFO_QUTPUT |
SNDRV_RAVWM DI _I NFO_I NPUT |
SNDRV_RAVWM DI _I NFO_DUPLEX;

Thefirst argument is the card pointer, the second argument isthe ID string.
The third argument is the index of this component. Y ou can create up to 8 rawmidi devices.

The fourth and fifth arguments are the number of output and input substreams, respectively, of this device
(asubstream is the equivalent of aMIDI port).

Setthei nf o_f | ags fieldto specify the capabilities of the device. Set SNDRV_RAWM DI _| NFO_OUT-
PUT if there is at least one output port, SNDRV_RAWM DI _| NFO_| NPUT if there is at least one input
port, and SNDRV_RAWM DI _| NFO_DUPLEX if the device can handle output and input at the same time.

After the rawmidi device is created, you need to set the operators (callbacks) for each substream. There
are helper functions to set the operators for al the substreams of a device:

snd_rawn di _set _ops(rm di, SNDRV_RAWM DI _STREAM QUTPUT, &snd_nym di _out put _ops);
snd_rawn di _set _ops(rm di, SNDRV_RAWM DI _STREAM | NPUT, &snd_nymi di _i nput _ops);

The operators are usually defined like this:

56

RawMIDI Interface

static struct snd_rawr di _ops snd_nym di _out put_ops = {
.open = snd_nym di _out put _open,
.close = snd_nym di _out put _cl ose,
.trigger = snd_nym di _out put_trigger,

These callbacks are explained in the Callbacks section.

If there are more than one substream, you should give a unique name to each of them:

struct snd_rawnm di _substream *substream
list for_each_entry(substream
& m di - >st reans[SNDRV_RAWM DI _ STREAM QUTPUT] . substr eans,
list {
sprintf(substream >name, "My M DI Port %", substream >nunber + 1);

}
/* same for SNDRV_RAWM DI _STREAM | NPUT */

Callbacks

In al the callbacks, the private data that you've set for the rawmidi device can be accessed as sub-
stream->rmidi->private_data.

If there is more than one port, your callbacks can determine the port index from the struct snd_rawmi-
di_substream data passed to each callback:

struct snd_rawnm di _substream *substream
int index = substream >nunber;

open callback

static int snd_xxx_open(struct snd_rawnr di _substream *substrean;

This is called when a substream is opened. You can initialize the hardware here, but you shouldn't start
transmitting/receiving data yet.

cl ose callback

57

RawMIDI Interface

static int snd_xxx_cl ose(struct snd_rawr di _substream *substream;

Guess what.

Theopen and cl ose callbacks of arawmidi device are serialized with a mutex, and can sleep.

tri gger callback for output substreams

static void snd xxx_output_trigger(struct snd_rawnr di _substream *substream int

This is called with a nonzero up parameter when there is some data in the substream buffer that must
be transmitted.

Toread datafrom the buffer, call snd_rawm di _transm t_peek. It will return the number of bytes
that have been read; this will be less than the number of bytes requested when there are no more data in
the buffer. After the data have been transmitted successfully, call snd_rawm di _transmt_ack to
remove the data from the substream buffer:

unsi gned char dat a;
while (snd_rawr di _transnit_ peek(substream &data, 1) == 1) {
if (snd_mychip try to transmt(data))
snd_rawn di _transnit_ack(substream 1);
el se
break; /* hardware FIFO full */

If you know beforehand that the hardware will accept data, you can usethesnd_r awm di _transmi t
function which reads some data and removes them from the buffer at once:

while (snd_nychip transmt_possible()) {
unsi gned char dat a;
if (snd_rawmdi _transmt(substream &data, 1) != 1)
break; /* no nore data */
snd_nychi p_transmt(data);

If you know beforehand how many bytes you can accept, you can use a buffer size greater than one with
thesnd_rawm di _transm t* functions.

Thet ri gger calback must not sleep. If the hardware FIFO isfull before the substream buffer has been
emptied, you have to continue transmitting data later, either in an interrupt handler, or with atimer if the
hardware doesn't have a MIDI transmit interrupt.

58

RawMIDI Interface

Thet ri gger callbackiscalled with azeroup parameter when the transmission of datashould be aborted.

tri gger callback for input substreams

static void snd xxx_input _trigger(struct snd rawm di _substream *substream int u

Thisiscalled with anonzero up parameter to enable receiving data, or with azero up parameter do disable
receiving data.

Thetri gger calback must not sleep; the actual reading of data from the device is usualy done in an
interrupt handler.

When data reception is enabled, your interrupt handler should call snd_rawri di _recei ve for al
received data:

voi d snd_nychip_midi_interrupt(...)

{
while (mychip_mdi_available()) {
unsi gned char dat a;
data = nychip_mdi _read();
snd_rawni di _recei ve(substream &data, 1);
}
}

dr ai n callback

static void snd_xxx_drain(struct snd_rawm di _substream *substrean);

Thisis only used with output substreams. This function should wait until all dataread from the substream
buffer have been transmitted. This ensures that the device can be closed and the driver unloaded without
losing data.

This callback is optional. If you do not set dr ai n in the struct snd_rawmidi_ops structure, ALSA will
simply wait for 50 milliseconds instead.

59

Chapter 10. Miscellaneous Devices
FM OPL3

The FM OPL3 is still used in many chips (mainly for backward compatibility). ALSA has a nice OPL3
FM control layer, too. The OPL3 API isdefined in <sound/ opl 3. h>.

FM registers can be directly accessed through the direct-FM API, defined in <sound/ asound_f m h>.
In ALSA native mode, FM registers are accessed through the Hardware-Dependent Device direct-FM
extension API, whereas in OSS compatible mode, FM registers can be accessed with the OSS direct-FM
compatible APl in/ dev/ dnf nX device.

To create the OPL 3 component, you have two functionsto call. Thefirst oneisaconstructor for the opl3_t
instance.

struct snd_opl 3 *opl 3;
snd_opl 3_create(card, Iport, rport, OPL3_HW OPL3_ XXX,
i ntegrated, &opl3);

Thefirst argument is the card pointer, the second one isthe left port address, and the third is the right port
address. In most cases, the right port is placed at the left port + 2.

The fourth argument is the hardware type.

When the left and right ports have been aready allocated by the card driver, pass non-zero to the fifth
argument (i nt egr at ed). Otherwise, the opl3 module will allocate the specified ports by itself.

When the accessing the hardware requires special method instead of the standard 1/0 access, you can create
opl3 instance separately withsnd_opl 3_new() .

struct snd_opl 3 *opl 3;
snd_opl 3_new(card, OPL3_HW OPL3_ XXX, &opl 3);

Then set command, pri vat e_dat a and pri vat e_f r ee for the private access function, the private
data and the destructor. The |_port and r_port are not necessarily set. Only the command must be set
properly. Y ou can retrieve the data from the opl 3->private_datafield.

After creating the opl3 instance viasnd_opl 3_new(), call snd_opl 3_i ni t () toinitiaizethe chip
to the proper state. Note that snd_opl 3_cr eat e() awayscallsitinternaly.

If the opl3 instance is created successfully, then create a hwdep device for this opl3.

struct snd_hwdep *opl 3hwdep;
snd_opl 3_hwdep_new(opl 3, 0, 1, &opl 3hwdep);

60

Miscellaneous Devices

Thefirst argument is the opl3_t instance you created, and the second is the index number, usually 0.

The third argument is the index-offset for the sequencer client assigned to the OPL 3 port. When there is
an MPU401-UART, give 1 for here (UART aways takes 0).

Hardware-Dependent Devices

Some chips need user-space access for specia controls or for loading the micro code. In such a case, you
can create a hwdep (hardware-dependent) device. The hwdep API is defined in <sound/ hwdep. h>.
You can find examplesin opl3 driver ori sa/ sb/ sb16_csp. c.

The creation of the hwdep instance isdoneviasnd_hwdep_new() .

struct snd_hwdep *hw;
snd_hwdep_new(card, "My HWDEP', 0, &hw);

where the third argument is the index number.

You can then pass any pointer value to the pri vat e_dat a. If you assign a private data, you should
define the destructor, too. The destructor functionissetinthepri vat e_free field.

struct mydata *p
hw >private_data
hw >private free

kmal | oc(si zeof (*p), GFP_KERNEL);
p;
nydata_free;

and the implementation of the destructor would be:

static void nydata free(struct snd_hwdep *hw)
{

struct mnmydata *p = hw >private_dat a;
kfree(p);

The arbitrary file operations can be defined for this instance. The file operators are defined in the ops
table. For example, assume that this chip needs an ioctl.

hw >ops. open = nydat a_open;
hw >ops.ioctl = nydata_ioctl;

61

Miscellaneous Devices

hw >ops. rel ease = nydata_rel ease;

And implement the callback functions as you like.

IEC958 (S/PDIF)

Usually the controls for IEC958 devices are implemented via the control interface. There is a macro
to compose a name string for IEC958 controls, SNDRV_CTL_NAME_| ECO58() defined in <i n-
cl ude/ asound. h>.

There are some standard controls for IEC958 status bits. These controls use the type SNDRV_CTL_EL-
EM_TYPE_IEC958, and the size of element is fixed as 4 bytes array (value.iec958.statugx]). For the
i nf o callback, you don't specify the value field for this type (the count field must be set, though).

“1EC958 Playback Con Mask” is used to return the bit-mask for the IEC958 status bits of consumer mode.
Similarly, “IEC958 Playback Pro Mask” returns the bitmask for professional mode. They are read-only
controls, and are defined as MIXER controls (iface = SNDRV_CTL_ELEM | FACE_M XER).

Meanwhile, “IEC958 Playback Default” control is defined for getting and setting the current default
IEC958 bhits. Note that this one is usually defined as a PCM control (iface = SNDRV_CTL_ELEM | -
FACE_PCM), athough in some placesit's defined asa MIXER control.

In addition, you can define the control switches to enable/disable or to set the raw bit mode. The imple-
mentation will depend on the chip, but the control should be named as “IEC958 xxx”, preferably using
the SNDRV_CTL_NAME_| EC958() macro.

Y ou can find several cases, for example, pci / enul0k1, pci/icel712,orpci/cmpci.c.

62

Chapter 11. Buffer and Memory
Management

Buffer Types

ALSA provides severd different buffer allocation functions depending on the bus and the architecture.
All these have a consistent API. The allocation of physically-contiguous pages is done viasnd_nal -
| oc_xxx_pages() function, where xxx isthe bus type.

Theallocation of pageswith fallback issnd_mal | oc_xxx_pages_fal | back() . Thisfunctiontries
to alocate the specified pages but if the pages are not available, it tries to reduce the page sizes until
enough space is found.

Therelease the pages, cal snd_f r ee_xxx_pages() function.

Usually, ALSA driverstry to allocate and reserve alarge contiguous physical space at the time the module
isloaded for the later use. Thisis called “pre-alocation”. As already written, you can call the following
function at pcm instance construction time (in the case of PCI bus).

snd_pcmlib_preall ocate pages for_all(pcm SNDRV_DVA TYPE DEV,
snd_dma_pci _data(pci), size, max);

where si ze isthe byte size to be pre-allocated and the max is the maximum size to be changed via the
pr eal | oc procfile. The allocator will try to get an area as large as possible within the given size.

The second argument (type) and the third argument (device pointer) are dependent on the bus. Inthe case of
the ISA bus, passsnd_dna_i sa_dat a() asthethird argument with SNDRV_DVA TYPE_DEV type.
For the continuous buffer unrelated to the bus can be pre-allocated with SNDRV_DVA TYPE_CONTI NU-
QUStypeandthesnd_dna_conti nuous_dat a(G-P_KERNEL) device pointer, where G-P_KER-
NEL isthe kernel allocation flag to use. For the PCI scatter-gather buffers, use SNDRV_DIVA TYPE_DE-
V_SGwithsnd_dma_pci _dat a(pci) (seethe Non-Contiguous Buffers section).

Once the buffer is pre-allocated, you can use the alocator in the hw_par ans callback:
snd_pcmlib_mall oc_pages(substream size);

Note that you have to pre-allocate to use this function.

External Hardware Buffers

Some chips have their own hardware buffers and the DMA transfer from the host memory is not available.
In such a case, you need to either 1) copy/set the audio data directly to the external hardware buffer, or

63

Buffer and Memory Management

2) make an intermediate buffer and copy/set the data from it to the external hardware buffer in interrupts
(or in tasklets, preferably).

The first case works fine if the external hardware buffer is large enough. This method doesn't need any
extra buffers and thus is more effective. Y ou need to define the copy and si | ence callbacks for the
data transfer. However, there is a drawback: it cannot be mmapped. The examples are GUS's GF1 PCM
or emu8000's wavetable PCM.

The second case alows for mmap on the buffer, although you have to handle an interrupt or a tasklet
to transfer the data from the intermediate buffer to the hardware buffer. You can find an example in the
vxpocket driver.

Another case is when the chip uses a PClI memory-map region for the buffer instead of the host memory.
Inthis case, mmap isavailable only on certain architectureslike the Intel one. In non-mmap mode, the data
cannot be transferred as in the normal way. Thus you need to define the copy and si | ence callbacks
aswell, asin the cases above. The examplesarefound inr ne32. ¢ andr ne96. c.

The implementation of the copy and si | ence callbacks depends upon whether the hardware supports
interleaved or non-interleaved samples. The copy callback isdefined like below, abit differently depend-
ing whether the direction is playback or capture:

static int playback_copy(struct snd_pcm substream *substream int channel,
snd_pcmuframes_t pos, void *src, snd_pcmufranmes_t count);

static int capture_copy(struct snd_pcm substream *substream int channel,
snd_pcmuframes_t pos, void *dst, snd_pcmufranmes_t count);

Inthe case of interleaved samples, the second argument (channel) isnot used. Thethird argument (pos)
points the current position offset in frames.

The meaning of the fourth argument is different between playback and capture. For playback, it holds the
source data pointer, and for capture, it's the destination data pointer.

The last argument is the number of frames to be copied.

What you have to do in this callback is again different between playback and capture directions. In the
playback case, you copy the given amount of data (count) at the specified pointer (sr ¢) to the specified
offset (pos) on the hardware buffer. When coded like memcpy-like way, the copy would be like:

ny_mencpy(ny_buffer + frames_to_bytes(runtinme, pos), src,
frames_to_bytes(runtime, count));

For the capture direction, you copy the given amount of data (count) at the specified offset (pos) on the
hardware buffer to the specified pointer (dst).

ny_mencpy(dst, ny_buffer + frames_to_bytes(runtime, pos),
frames_to_bytes(runtime, count));

64

Buffer and Memory Management

Note that both the position and the amount of data are given in frames.
In the case of non-interleaved samples, the implementation will be a bit more complicated.

Y ou need to check the channel argument, and if it's -1, copy the whole channels. Otherwise, you have to
copy only the specified channel. Please check i sa/ gus/ gus_pcm ¢ asan example.

Thesi | ence calback isalso implemented in asimilar way.

static int silence(struct snd_pcm substream *substream int channel,
snd_pcmuframes_t pos, snd_pcmufranes_t count);

Themeanings of argumentsarethe sameasinthecopy callback, althoughthereisnosr ¢/ dst argument.
In the case of interleaved samples, the channel argument has no meaning, aswell ason copy callback.

Theroleof si | ence callback isto set the given amount (count) of silence data at the specified offset
(pos) on the hardware buffer. Suppose that the dataformat is signed (that is, the silent-datais 0), and the
implementation using a memset-like function would be like:

nmy_mencpy(ny_buffer + frames_to_bytes(runtime, pos), O,
frames_to_bytes(runtime, count));

In the case of non-interleaved samples, again, the implementation becomes a bit more complicated. See,
for example, i sa/ gus/ gus_pcm c.

Non-Contiguous Buffers

If your hardware supportsthe page table asin emul0k1 or the buffer descriptorsasin via82xx, you can use
the scatter-gather (SG) DMA. ALSA provides an interface for handling SG-buffers. The APl is provided
in<sound/ pcm h>.

For creating the SG-buffer handler, call snd _pcmlib_preall ocate pages() or
snd_pcmlib_preallocate pages for_all () with SNDRV_DVA TYPE DEV_SG in the
PCM constructor like other PCI pre-allocator. You need to pass snd_dma_pci _dat a(pci), where
pci is the struct pci_dev pointer of the chip as well. The struct snd_sg_buf instance is created as sub-
stream->dma_private. Y ou can cast the pointer like:

struct snd_sg_buf *sgbuf = (struct snd_sg buf *)substream >dma_private;

Thencalsnd_pcm i b_mall oc_pages() inthehw_par ans calback aswell asin the case of nor-
mal PCI buffer. The SG-buffer handler will allocate the non-contiguous kernel pages of the given size and

65

Buffer and Memory Management

map them onto the virtually contiguous memory. The virtual pointer is addressed in runtime->dma_area.
The physical address (runtime->dma_addr) is set to zero, because the buffer is physically non-contiguous.
The physical address table is set up in sgbuf->table. You can get the physical address at a certain offset
viasnd_pcm sgbuf get addr ().

When a SG-handler is used, you need to set snd_pcm sgbuf _ops_page asthe page callback. (See
page callback section.)

Toreleasethedata, call snd_pcm | i b_free_pages() inthehw_fr ee callback asusual.

Vmalloc'ed Buffers

It's possible to use a buffer allocated viavmal | oc, for example, for an intermediate buffer. Since the
allocated pages are not contiguous, you need to set the page callback to obtain the physical address at
every offset.

The implementation of page callback would be like this:

#i ncl ude <l inux/vmall oc. h>

/* get the physical page pointer on the given offset */
static struct page *mychi p_page(struct snd_pcm substream *substream
unsi gned | ong of fset)
{
voi d *pageptr = substream >runti ne->dna_area + offset;
return vmal | oc_t o_page(pageptr);

66

Chapter 12. Proc Interface

ALSA provides an easy interface for procfs. The proc files are very useful for debugging. | recommend
you set up proc filesif you write a driver and want to get a running status or register dumps. The APl is
foundin<sound/ i nf 0. h>.

Tocreateaprocfile, call snd_card_proc_new().

struct snd_info_entry *entry;
int err = snd_card_proc_newcard, "ny-file", &entry);

where the second argument specifiesthe name of the proc file to be created. The above examplewill create
afileny-fi | e under the card directory, e.g. / pr oc/ asound/ car dO/ nmy-fil e.

Like other components, the proc entry created viasnd_car d_pr oc_new() will beregistered and re-
leased automatically in the card registration and release functions.

When the creation is successful, the function stores a new instance in the pointer given in the third argu-
ment. It isinitialized as atext proc file for read only. To use this proc file as aread-only text file asit is,
set the read callback with aprivatedataviasnd_i nfo_set _text _ops().

snd_i nfo_set _text_ops(entry, chip, ny_proc_read);

where the second argument (chi p) is the private data to be used in the callbacks. The third parameter
specifies the read buffer size and the fourth (my_pr oc_r ead) isthe callback function, which is defined
like

static void nmy_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer);

Intheread callback, usesnd_i pri nt f () for output strings, which worksjust like normal pri nt f ().
For example,

static void nmy_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{

struct my_chip *chip = entry->private_data;

snd_iprintf(buffer, "This is ny chip!\n");
snd_iprintf(buffer, "Port = %d\n", chip->port);

67

Proc Interface

The file permissions can be changed afterwards. As default, it's set as read only for al users. If you want
to add write permission for the user (root as default), do as follows:

entry->node = S IFREG| S IRUGO | S | WSR

and set the write buffer size and the callback

entry->c.text.wite = ny_proc_wite;

For the write callback, you can use snd_i nfo_get |ine() to get atext ling, and snd_i n-
fo_get str() to retrieve a string from the line. Some examples are found in cor e/ oss/ m x-
er _oss. c, core/oss/and pcm oss. c.

For araw-data proc-file, set the attributes as follows:

static struct snd_info_entry ops my_file_io_ops = {
.read = ny_file_io_read,

b

entry->content = SNDRV_| NFO CONTENT_DATA,
entry->private_data = chip;

entry->c.ops = &y _file_io_ops;

entry->si ze 4096;

entry->node S IFREG | S I RUGO

For theraw data, si ze field must be set properly. This specifies the maximum size of the proc file access.

The read/write callbacks of raw mode are more direct than the text mode. Y ou need to use alow-level I/
Ofunctionssuchascopy _from to_user () totransfer the data.

static ssize_t my_file_io_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file,
char *buf,
size_t count,
[of f _t pos)

if (copy_to_user(buf, local _data + pos, count))

68

Proc Interface

return - EFAULT;
return count;

If the size of the info entry has been set up properly, count and pos are guaranteed to fit within 0 and
the given size. Y ou don't have to check the range in the callbacks unless any other condition is required.

69

Chapter 13. Power Management

If the chip is supposed to work with suspend/resume functions, you need to add power-management code
to the driver. The additional code for power-management should bei f def ‘ed with CONFI G_PM

If the driver fully supports suspend/resume that is, the device can be properly resumed to its state when
suspend was called, you can set the SNDRV_PCM | NFO_RESUNME flag in the pcm info field. Usually,
thisis possible when the registers of the chip can be safely saved and restored to RAM. If thisis set, the
trigger callback is called with SNDRV_PCM TRI GGER RESUME after the resume callback completes.

Even if the driver doesn't support PM fully but partial suspend/resume is still possible, it's still worthy
to implement suspend/resume callbacks. In such a case, applications would reset the status by calling
snd_pcm prepar e() andrestart the stream appropriately. Hence, you can define suspend/resumecall-
backs below but don't set SNDRV_PCM | NFO_RESUME info flag to the PCM.

Note that the trigger with SUSPEND can always be called when snd_pcm suspend_al | iscaled,
regardless of the SNDRV_PCM | NFO_RESUME flag. The RESUME flag affects only the behavior of
snd_pcm resune() . (Thus, in theory, SNDRV_PCM TRI GGER RESUME isn't needed to be handled
in the trigger callback when no SNDRV_PCM | NFO_RESUME flag is set. But, it's better to keep it for
compatibility reasons.)

In the earlier version of ALSA drivers, acommon power-management layer was provided, but it has been
removed. Thedriver needsto define the suspend/resume hooks according to the busthe deviceis connected
to. In the case of PCI drivers, the callbacks look like below:

#i f def CONFI G_PM
static int snd_my_suspend(struct pci_dev *pci, pmmessage_t state)

{
/* do things for suspend */
return O;
}
static int snd_my_resune(struct pci_dev *pci)
{
/* do things for suspend */
return O;
}
#endi f

The scheme of the real suspend job is as follows.
1. Retrieve the card and the chip data.

2. Call snd_power _change_st at e() withSNDRV_CTL_POWAER_D3hot to change the power sta-
tus.

3. Call snd_pcm suspend_al | () to suspend the running PCM streams.
4. If AC97 codecs are used, call snd_ac97_suspend() for each codec.

5. Savetheregister values if necessary.

70

Power Management

6. Stop the hardware if necessary.

7. Disable the PCI device by calling pci _di sabl e_devi ce(). Then, call pci _save_state()

at last.

A typical code would be like:

static int nychi p_suspend(struct pci_dev *pci, pmnmessage_t state)
{

[* (1) */

struct snd_card *card = pci_get_drvdata(pci);

struct mychip *chip = card->private_data;

[* (2) */

snd_power _change_state(card, SNDRV_CTL_POAER D3hot);
[* (3) */

snd_pcm suspend_al I (chi p->pcm ;
[* (4) */

snd_ac97_suspend(chi p->ac97);

[* (5) */

snd_mychi p_save_regi sters(chip);
[* (6) */
snd_mychi p_st op_har dwar e(chi p) ;
[* (7) */

pci _di sabl e_devi ce(pci);
pci _save_state(pci);
return O;

The scheme of the real resume job is as follows.

1
2.

6.
7.

Retrieve the card and the chip data.

Set up PCIl. Firgt, call pci _restore_state(). Then enable the pci device again by calling
pci _enabl e_devi ce().Cadlpci _set _mast er () if necessary, too.

. Re-initialize the chip.

Restore the saved registersif necessary.
Resume the mixer, e.g. callingsnd_ac97_resume() .
Restart the hardware (if any).

Call snd_power _change_st at e() with SNDRV_CTL_POAER_DO to notify the processes.

A typical code would be like:

static int nychip_resune(struct pci_dev *pci)

{

[* (1) */
struct snd_card *card = pci_get_drvdata(pci);

71

Power Management

struct mychip *chip = card->private_data;
[* (2) */

pci _restore_state(pci);

pci _enabl e_devi ce(pci);

pci _set_master(pci);

[* (3) */

snd_mychi p_reinit_chip(chip);

[* (4) */

snd_mychi p_restore_regi sters(chip);
[* (5) */

snd_ac97_resune(chi p->ac97);

[* (6) */

snd_nychi p_restart_chi p(chip);

[* (7) */

snd_power _change_st ate(card, SNDRV_CTL_POANER_DO) ;
return O;

As shown in the above, it's better to save registers after suspending the PCM operations via
snd_pcm suspend_al | () or snd_pcm suspend() . It means that the PCM streams are already
stopped when the register snapshot is taken. But, remember that you don't have to restart the PCM stream
in the resume callback. It'll be restarted via trigger call with SNDRV_PCM TRI GGER RESUME when
necessary.

OK, we have al callbacks now. Let's set them up. In the initialization of the card, make sure that you
can get the chip data from the card instance, typicaly viapr i vat e_dat a field, in case you created the
chip dataindividually.

static int snd_mychi p_probe(struct pci_dev *pci,
const struct pci_device_id *pci _id)

{

struct snd_card *card;
struct mychip *chip;
int err;

err = snd_card_new(&pci - >dev, index[dev], id[dev], TH S _MODULE,
0, &card);

chip = kzal l oc(sizeof (*chip), G-P_KERNEL);

card->private_data = chip;

When you created the chip datawith snd_card_new() , it's anyway accessibleviapri vat e_dat a
field.

72

Power Management

static int snd_mychi p_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)

{
struct snd_card *card;
struct mychip *chip;
int err;
err = snd_card_new(&pci - >dev, index[dev], id[dev], TH S _MODULE,
si zeof (struct nychip), &card);
chip = card->private_data;
}

If you need a space to save the registers, alocate the buffer for it here, too, since it would be fatal if you
cannot allocate amemory in the suspend phase. The allocated buffer should be released in the correspond-
ing destructor.

And next, set suspend/resume callbacks to the pci_driver.

static struct pci_driver driver = {
. hame = KBU LD MODNAME,
.id_table = snd_ny_ids,
. probe = snd_ny_probe,
.renove = snd_my_renove,

#i f def CONFI G_PM
. suspend = snd_ny_suspend,
.resune = snd_my_resune,

#endi f

b

73

Chapter 14. Module Parameters

There are standard module options for ALSA. At least, each module should have the i ndex, i d and
enabl e options.

If the module supports multiple cards (usually up to 8 = SNDRV_CARDS cards), they should be arrays.
The default initial values are defined already as constants for easier programming:

static int index[SNDRV_CARDS] = SNDRV_DEFAULT | DX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT STR
static int enabl e[SNDRV_CARDS] = SNDRV_DEFAULT ENABLE PNP;

If the module supports only a single card, they could be single variables, instead. enabl e option is not
aways necessary in this case, but it would be better to have a dummy option for compatibility.

The module parameters must be declared with the standard nodul e_param() (), nod-
ul e_param array() () and MODULE _PARM DESC() macros.

Thetypical coding would be like below:

#defi ne CARD_NAME "My Chi p"

nodul e_param array(i ndex, int, NULL, 0444);

MODULE_PARM DESC(i ndex, "Index value for " CARD NAME " soundcard.");
nodul e_param array(id, charp, NULL, 0444);

MODULE_PARM DESC(id, "ID string for " CARD NAME " soundcard.");
nodul e_param array(enabl e, bool, NULL, 0444);

MODULE_PARM DESC(enabl e, "Enable " CARD NAME " soundcard.");

Also, don't forget to define the module description, classes, license and devices. Especialy, the recent
modprobe requires to define the module license as GPL, etc., otherwise the system is shown as “tainted”.

MODULE_DESCRI PTI ON(" My Chi p") ;
MODULE LI CENSE(" GPL");
MODULE_SUPPORTED DEVI CE("{{Vendor, My Chip Nane}}");

74

Chapter 15. How To Put Your Driver
Into ALSA Tree

General

So far, you've learned how to write the driver codes. And you might have a question now: how to put my
own driver into the ALSA driver tree? Here (finally :) the standard procedure is described briefly.

Suppose that you create a new PCI driver for the card “xyz”. The card module name would be snd-xyz.
The new driver isusually put into the alsa-driver tree, al sa- dri ver/ pci directory in the case of PCI
cards. Then the driver is evaluated, audited and tested by developers and users. After a certain time, the
driver will go to the alsa-kernel tree (to the corresponding directory, such asal sa- ker nel / pci) and
eventually will be integrated into the Linux 2.6 tree (the directory would bel i nux/ sound/ pci).

In the following sections, the driver code is supposed to be put into alsa-driver tree. The two cases are
covered: adriver consisting of a single source file and one consisting of several sourcefiles.

Driver with A Single Source File

1. Modify alsa-driver/pci/Makefile

Suppose you have afile xyz.c. Add the following two lines

snd-xyz-objs := xyz.o
obj - $(CONFI G_SND_XYZ) += snd-xyz.o

2. Create the Kconfig entry

Add the new entry of Kconfig for your xyz driver.

confi g SND _XYZ
tristate "Foobar XYZ"
depends on SND
sel ect SND _PCM
hel p
Say Y here to include support for Foobar XYZ soundcard.

To conpile this driver as a nodul e, choose M here: the nodul e
will be called snd-xyz.

the line, select SND_PCM, specifies that the driver xyz supports PCM. In addition to SND_PCM,
the following components are supported for select command: SND_RAWMIDI, SND_TIMER,

75

How To Put Y our Dri-
ver Into ALSA Tree

SND_HWDEP, SND_MPU401_UART, SND_OPL3 LIB, SND _OPL4 LIB, SND_VX_LIB,
SND_AC97_CODEC. Add the select command for each supported component.

Note that some selections imply the lowlevel selections. For example, PCM includes TIMER,
MPU401 UART includes RAWMIDI, AC97_CODEC includes PCM, and OPL3 _LIB includes
HWDEP. Y ou don't need to give the lowlevel selections again.

For the details of Kconfig script, refer to the kbuild documentation.

3. Run cvscompile script to re-generate the configure script and build the whole stuff again.

Drivers with Several Source Files

Supposethat thedriver snd-xyz have several sourcefiles. They arelocated inthe new subdirectory, pci/xyz.

1. Add anew directory (xyz) inal sa-dri ver/ pci/ Makefi | e asbelow
obj - $(CONFI G_SND) += xyz/

2. Under the directory xyz, create a Makefile

Example 15.1. Sample M akefile for adriver xyz

i fndef SND TOPDI R
SND TOPDIR=. . /..
endi f

i ncl ude $(SND_TOPDI R)/t opl evel . config
i ncl ude $(SND_TOPDI R)/ Makefi | e. conf

snd- xyz-objs := xyz.o abc.o def.o
obj - $(CONFI G_SND_XYZ) += snd-xyz.o

i ncl ude $(SND_TOPDI R)/ Rul es. nake

3. Create the Kconfig entry
This procedure is as same asin the last section.

4. Run cvscompile script to re-generate the configure script and build the whole stuff again.

76

Chapter 16. Useful Functions
snd _printk() and friends

ALSA provides a verbose version of the pri nt k() function. If akernel config CONFI G_SND_VER-
BOSE_PRI NTKisset, thisfunction printsthe given message together with the file name and the line of the
caller. The KERN XXX prefix is processed as well asthe original pri nt k() does, so it's recommended
to add this prefix, e.g.

snd_printk(KERN_ERR "Ch ny, sorry, it's extrenely bad!\n");

Therearealsopr i nt k() 'sfor debugging. snd_pri nt d() canbeused for general debugging purposes.
If CONFI G_SND_DEBUG s s&t, this function is compiled, and works just like snd_pri nt k() . If the
ALSA is compiled without the debugging flag, it'signored.

snd_printdd() iscompiledin only when CONFI G_SND_DEBUG_VERBCSE is set. Please note that
CONFI G_SND _DEBUG VERBCSE is not set as default even if you configure the alsa-driver with - -
wi t h- debug=f ul | option. You need to give explicitly - - wi t h- debug=det ect option instead.

snd_BUX)

It shows the BUG? message and stack trace aswell assnd_BUG_ON at the point. It's useful to show that
afatal error happens there.

When no debug flag is set, this macro isignored.

snd_BUG ON()

snd_BUG_ON() macroissimilar with WARN_ON() macro. For example,
snd_BUG _ON(! poi nter);
or it can be used as the condition,

if (snd_BUG ON(nhon_zero_is_bug))
return - El NVAL,

The macro takes an conditional expression to evaluate. When CONFI G_SND_DEBUG is s&t, if the ex-
pression is non-zero, it shows the warning message such as BUG? (xxx) normally followed by stack
trace. In both cases it returns the evaluated value.

77

Chapter 17. Acknowledgments

I would like to thank Phil Kerr for his help for improvement and corrections of this document.
Kevin Conder reformatted the original plain-text to the DocBook format.

Giuliano Pochini corrected typos and contributed the example codes in the hardware constraints section.

78

	Writing an ALSA Driver
	Table of Contents
	Preface
	Chapter 1. File Tree Structure
	General
	core directory
	core/oss
	core/ioctl32
	core/seq
	core/seq/oss
	core/seq/instr

	include directory
	drivers directory
	drivers/mpu401
	drivers/opl3 and opl4

	i2c directory
	i2c/l3

	synth directory
	pci directory
	isa directory
	arm, ppc, and sparc directories
	usb directory
	pcmcia directory
	oss directory

	Chapter 2. Basic Flow for PCI Drivers
	Outline
	Full Code Example
	Constructor
	1) Check and increment the device index.
	2) Create a card instance
	3) Create a main component
	4) Set the driver ID and name strings.
	5) Create other components, such as mixer, MIDI, etc.
	6) Register the card instance.
	7) Set the PCI driver data and return zero.

	Destructor
	Header Files

	Chapter 3. Management of Cards and Components
	Card Instance
	Components
	Chip-Specific Data
	1. Allocating via snd_card_new().
	2. Allocating an extra device.

	Registration and Release

	Chapter 4. PCI Resource Management
	Full Code Example
	Some Hafta's
	Resource Allocation
	PCI Entries

	Chapter 5. PCM Interface
	General
	Full Code Example
	Constructor
	... And the Destructor?
	Runtime Pointer - The Chest of PCM Information
	Hardware Description
	PCM Configurations
	DMA Buffer Information
	Running Status
	Private Data

	Operators
	open callback
	close callback
	ioctl callback
	hw_params callback
	hw_free callback
	prepare callback
	trigger callback
	pointer callback
	copy and silence callbacks
	ack callback
	page callback

	Interrupt Handler
	Interrupts at the period (fragment) boundary
	High frequency timer interrupts
	On calling snd_pcm_period_elapsed()

	Atomicity
	Constraints

	Chapter 6. Control Interface
	General
	Definition of Controls
	Control Names
	Global capture and playback
	Tone-controls
	3D controls
	Mic boost

	Access Flags
	Callbacks
	info callback
	get callback
	put callback
	Callbacks are not atomic

	Constructor
	Change Notification
	Metadata

	Chapter 7. API for AC97 Codec
	General
	Full Code Example
	Constructor
	Callbacks
	Updating Registers in The Driver
	Clock Adjustment
	Proc Files
	Multiple Codecs

	Chapter 8. MIDI (MPU401-UART) Interface
	General
	Constructor
	Interrupt Handler

	Chapter 9. RawMIDI Interface
	Overview
	Constructor
	Callbacks
	open callback
	close callback
	trigger callback for output substreams
	trigger callback for input substreams
	drain callback

	Chapter 10. Miscellaneous Devices
	FM OPL3
	Hardware-Dependent Devices
	IEC958 (S/PDIF)

	Chapter 11. Buffer and Memory Management
	Buffer Types
	External Hardware Buffers
	Non-Contiguous Buffers
	Vmalloc'ed Buffers

	Chapter 12. Proc Interface
	Chapter 13. Power Management
	Chapter 14. Module Parameters
	Chapter 15. How To Put Your Driver Into ALSA Tree
	General
	Driver with A Single Source File
	Drivers with Several Source Files

	Chapter 16. Useful Functions
	snd_printk() and friends
	snd_BUG()
	snd_BUG_ON()

	Chapter 17. Acknowledgments

