Linux Networking and
Network Devices APIs

Linux Networking and Network Devices APIs

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

L. LINUX NEIWOTKING vttt ettt ettt ettt e ettt e ettt e e et et n e e e erb e e eenbnaeeees 1
NEIWOIKING BBSE TYPES .. evvueeieiti ettt ettt ettt ettt e e et et e e et e e eeaans 1
SOCKEL BUFFEI FUNCLIONSceieiie ettt e s 3
SOCKEL FITEY ..t ettt e 172
GeNeric NEWOIK SEAEISHICS ...cevvveieeiitieee et e e e e e e ees 176
SUN RPC SUDBSYSIEIM ...ttt e ettt e e et e e e ena e eeees 192
L O U PSP UPPPTTRN 267

2. NEWOrK dEVICE SUDPPOIT «..eeeeeeieii ettt ettt e e et e e et e e et e eean s 288
DIIVEN SUDPOIT ...ttt ettt ettt e et e et e e et et e e e e et e e e eena s 288
PHY SUDPDOIT .ot 447

Chapter 1. Linux Networking
Networking Base Types

Linux Networking

Name
enum sock_type — Socket types

Synopsis

enum sock_type {
SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_RDM
SOCK_SEQPACKET,
SOCK_DCCP,
SOCK_PACKET

s

Constants

SOCK_STREAM stream (connection) socket

SOCK_DGRAM datagram (conn.less) socket

SOCK_RAW raw socket
SOCK_RDM reliably-delivered message
SOCK_SEQPACK- sequential packet socket
ET
SOCK_DCCP Datagram Congestion Control Protocol socket
SOCK_PACKET linux specific way of getting packets at the dev level. For writing rarp and other
similar things on the user level.
Description

When adding some new socket type please grep ARCH_HAS SOCKET_TY PE include/asm-* /socket.h,
at least MIPS overrides this enum for binary compat reasons.

Linux Networking

Name

struct socket — general BSD socket

Synopsis

struct socket {
socket state state;
short type;
unsi gned | ong fl ags;
struct socket_wg __rcu * wg;
struct file * file;
struct sock * sk;
const struct proto_ops * ops;

}

Members
state
type
flags
wq
file
E

ops

socket state (SS_CONNECTED, etc)

socket type (SOCK _STREAM etc)

socket flags (SOCK_NOSPACE, etc)

wait queue for several uses

File back pointer for gc

internal networking protocol agnostic socket representation

protocol specific socket operations

Socket Buffer Functions

Linux Networking

Name
struct skb_shared_hwtstamps — hardware time stamps

Synopsis

struct skb_shared_hwt st anps {
ktime_t hw stanp;
s

Members

hwtstamp hardware time stamp transformed into duration since arbitrary point in time
Description

Software time stamps generated by kt i me_get _r eal are stored in skb->tstamp.

hwtstamps can only be compared against other hwtstamps from the same device.

Thisstructureisattached to packetsaspart of theskb_shared_info. Useskb_hwt st anps toget apointer.

Linux Networking

Name

struct skb_mstamp — multi resolution time stamps
Synopsis
struct skb_nstanp {
uni on {unnaned_uni on};
s
Members

{unnamed_union} anonymous

Linux Networking

Name
skb_mstamp_get — get current timestamp

Synopsis
voi d skb_nstanp_get (struct skb_nstanmp * cl);

Arguments

cl placeto store timestamps

Linux Networking

Name

skb_mstamp_us_delta— compute the difference in usec between two skb_mstamp
Synopsis

u32 skb_mstanp_us _delta (const struct skb nstanp * t1, const struct
skb_nstanmp * t0);

Arguments

t1 pointer to newest sample

t 0 pointer to oldest sample

Linux Networking

Name
struct sk_buff — socket buffer

Synopsis

struct sk_buff {
uni on {unnaned_uni on};
__ulé inner_transport_header;
__ulé inner_network header;
__ulé inner_mac_header;
__bel6 protocol;
__ulé transport_header;
__ulé network_header;
__ulé nmmc_header;
sk _buff data t tail;
sk_buff _data_t end;
unsi gned char * head;
unsi gned char * data;
unsi gned int truesize;
atom c_t users;

b
Members
{unnamed_union} anonymous
inner_transport_header Inner transport layer header (encapsulation)
inner_network _header Network layer header (encapsulation)
inner_mac_header Link layer header (encapsulation)
protocol Packet protocol from driver
transport_header Transport layer header
network _header Network layer header
mac_header Link layer header
tail Tail pointer
end End pointer
head Head of buffer
data Data head pointer
truesize Buffer size
users User count - see { datagram,tcp} .c

Linux Networking

Name
skb_dst — returns skb dst_entry
Synopsis
struct dst_entry * skb_dst (const struct sk _buff * skb);
Arguments
skb buffer
Description

Returns skb dst_entry, regardless of reference taken or not.

Linux Networking

Name
skb dst_set — sets skb dst

Synopsis

voi d skb_dst _set (struct sk _buff * skb, struct dst_entry * dst);
Arguments

skb buffer

dst dstentry

Description
Sets skb dst, assuming a reference was taken on dst and should be released by skb_dst _dr op

10

Linux Networking

Name
skb_dst_set noref — sets skb dst, hopefully, without taking reference

Synopsis
voi d skb_dst_set noref (struct sk _buff * skb, struct dst_entry * dst);
Arguments

skb buffer

dst dstentry

Description

Sets skb dst, assuming a reference was not taken on dst. If dst entry is cached, we do not take reference
and dst_release will be avoided by refdst_drop. If dst entry is not cached, we take reference, so that last

dst_release can destroy the dst immediately.

11

Linux Networking

Name

skb dst_is noref — Test if skb dst isn't refcounted
Synopsis

bool skb_dst _is_noref (const struct sk buff * skb);
Arguments

skb buffer

12

Linux Networking

Name
skb_fclone busy — check if fcloneis busy
Synopsis
bool skb fclone busy (const struct sock * sk, const struct sk _buff *
skb);
Arguments
sk --undescribed --
skb buffer
Description

Returns true is skb is a fast clone, and its clone is not freed. Some drivers call skb_or phan in their
ndo_start_xm t, sowe aso check that this didnt happen.

13

Linux Networking

Name

skb_queue_empty — check if aqueueis empty
Synopsis
i nt skb_queue_enpty (const struct sk _buff _head * list);

Arguments

list queuehead

Description

Returnstrueif the queue is empty, false otherwise.

14

Linux Networking

Name
skb_queue is last — check if skbisthelast entry in the queue

Synopsis

bool skb_queue is last (const struct sk _buff head * list, const struct
sk_buff * skb);

Arguments
list queuehead

skb buffer

Description

Returnstrueif skb isthelast buffer on thelist.

15

Linux Networking

Name
skb_queue is first — check if skbisthefirst entry in the queue

Synopsis

bool skb _queue is first (const struct sk buff _head * |ist, const struct
sk_buff * skb);

Arguments
list queuehead

skb buffer

Description

Returnstrueif skb isthefirst buffer on thelist.

16

Linux Networking

Name
skb_queue_next — return the next packet in the queue
Synopsis
struct sk _buff * skb_queue_next (const struct sk _buff head * |ist, const
struct sk_buff * skb);
Arguments
list queuehead
skb current buffer
Description
Return the next packetinl i st after skb. Itisonly vaidtocal thisif skb_queue_i s_| ast evauates
to false.

17

Linux Networking

Name
skb_queue prev — return the prev packet in the queue
Synopsis
struct sk _buff * skb_queue_prev (const struct sk _buff _head * |ist, const
struct sk_buff * skb);
Arguments
list queuehead
skb current buffer
Description
Return the prev packet in | i st before skb. It is only valid to cal thisif skb_queue_is_first
evaluates to false.

18

Linux Networking

Name
skb_get — reference buffer
Synopsis
struct sk_buff * skb _get (struct sk_buff * skb);
Arguments
skb buffer to reference
Description

Makes another reference to a socket buffer and returns a pointer to the buffer.

19

Linux Networking

Name
skb_cloned — isthe buffer aclone
Synopsis
int skb_cloned (const struct sk_buff * skb);
Arguments
skb buffer to check
Description

Returns true if the buffer was generated with skb_cl one and is one of multiple shared copies of the
buffer. Cloned buffers are shared data so must not be written to under normal circumstances.

20

Linux Networking

Name
skb_header cloned — isthe header aclone

Synopsis
i nt skb_header cl oned (const struct sk _buff * skb);

Arguments

skb buffer to check

Description
Returnstrue if modifying the header part of the buffer requires the data to be copied.

21

Linux Networking

Name
skb_header release — release reference to header

Synopsis
voi d skb_header _rel ease (struct sk_buff * skb);
Arguments

skb buffer to operate on

Description

Drop areference to the header part of the buffer. Thisis done by acquiring a payload reference. Y ou must
not read from the header part of skb->data after this.

Note

Check if youcanuse __skb_header _r el ease instead.

22

Linux Networking

Name
__Skb _header_release — release reference to header
Synopsis
void _ skb _header release (struct sk buff * skb);
Arguments
skb buffer to operate on
Description
_/ariant of skb_header _r el ease assuming skb is private to caller. We can avoid one atomic opera
tion.

23

Linux Networking

Name
skb_shared — is the buffer shared
Synopsis
i nt skb_shared (const struct sk_buff * skb);
Arguments
skb buffer to check
Description

Returns true if more than one person has a reference to this buffer.

24

Linux Networking

Name

skb_share check — check if buffer is shared and if so clone it

Synopsis
struct sk _buff * skb _share check (struct sk _buff * skb, gfp_t pri);
Arguments

skb buffer to check

pri priority for memory alocation

Description

If the buffer is shared the buffer is cloned and the old copy drops a reference. A new clone with asingle
reference is returned. If the buffer is not shared the original buffer is returned. When being called from
interrupt status or with spinlocks held pri must be GFP_ATOMIC.

NULL isreturned on amemory allocation failure.

25

Linux Networking

Name
skb_unshare — make a copy of a shared buffer

Synopsis
struct sk_buff * skb unshare (struct sk _buff * skb, gfp_t pri);
Arguments

skb buffer to check

pri priority for memory alocation

Description

If the socket buffer is aclone then this function creates a new copy of the data, drops areference count on
the old copy and returns the new copy with the reference count at 1. If the buffer isnot a clone the original
buffer is returned. When called with a spinlock held or from interrupt state pri must be GFP_ATOM C

NULL isreturned on amemory alocation failure.

26

Linux Networking

Name
skb_peek — peek at the head of an sk_buff_head

Synopsis
struct sk_buff * skb _peek (const struct sk buff _head * list);

Arguments

list_ listtopeek a

Description

Peek an sk_buff. Unlike most other operations you _MUST _ be careful with this one. A peek leaves the
buffer on the list and someone else may run off with it. You must hold the appropriate locks or have a
private queue to do this.

Returns NULL for an empty list or a pointer to the head element. The reference count is not incremented
and the reference is therefore volatile. Use with caution.

27

Linux Networking

Name
skb_peek_next — peek skb following the given one from a queue

Synopsis

struct sk _buff * skb_peek next (struct sk buff * skb, const struct
sk _buff _head * list);

Arguments
skb skb to start from
list_listtopeek at

Description

Returns NULL when the end of the list is met or a pointer to the next element. The reference count is not
incremented and the reference is therefore volatile. Use with caution.

28

Linux Networking

Name
skb_peek_tail — peek at the tail of an sk_buff _head

Synopsis

struct sk_buff * skb peek tail (const struct sk buff head * list);

Arguments

list_ listtopeek a

Description

Peek an sk_buff. Unlike most other operations you _MUST _ be careful with this one. A peek leaves the
buffer on the list and someone else may run off with it. You must hold the appropriate locks or have a
private queue to do this.

Returns NULL for an empty list or a pointer to the tail element. The reference count is not incremented
and the reference is therefore volatile. Use with caution.

29

Linux Networking

Name
skb_queue_len — get queue length

Synopsis

__u32 skb_queue_len (const struct sk _buff _head * list);

Arguments

list_ listto measure

Description

Return the length of an sk_buff queue.

30

Linux Networking

Name

__skb_queue head init — initialize non-spinlock portions of sk_buff _head
Synopsis

void _ skb _queue_head_ init (struct sk _buff _head * list);
Arguments

list queuetoinitiaize
Description

Thisinitializes only the list and queue length aspects of an sk_buff_head object. This allows to initialize
the list aspects of an sk_buff_head without reinitializing things like the spinlock. It can also be used for
on-stack sk_buff _head objects where the spinlock is known to not be used.

31

Linux Networking

Name
skb_queue_splice— join two skb lists, thisis designed for stacks

Synopsis

voi d skb_queue_splice (const struct sk _buff _head * list, struct sk_buf-
f _head * head);

Arguments
[ist thenewlisttoadd

head theplacetoadditinthefirstlist

32

Linux Networking

Name

skb_queue_splice init — join two skb lists and reinitialise the emptied list

Synopsis

voi d skb_queue_splice_init (struct sk _buff _head * list, struct sk_buf-
f _head * head);

Arguments
[ist thenewlisttoadd

head theplacetoadditinthefirstlist

Description

Thelistatl i st isreinitiaised

33

Linux Networking

Name

skb_queue_splice tail — join two skb lists, each list being a queue
Synopsis

void skb_queue splice tail (const struct sk buff head * list, struct
sk_buff _head * head);

Arguments
[ist thenewlisttoadd

head theplacetoadditinthefirstlist

Linux Networking

Name

skb_queue_splice tail_init — join two skb lists and reinitialise the emptied list

Synopsis

void skb_queue splice tail _init (struct sk buff head * list, struct
sk_buff _head * head);

Arguments
[ist thenewlisttoadd

head theplacetoadditinthefirstlist

Description

Each of thelistsisaqueue. Thelistat | i st isreinitialised

35

Linux Networking

Name
__skb_queue_after — queue abuffer at the list head
Synopsis
void __ skb _queue_ after (struct sk buff _head * list, struct sk buff *
prev, struct sk _buff * newsk);
Arguments
list list to use
prev place after this buffer
newsk buffer to queue
Description

Queue a buffer int the middle of alist. This function takes no locks and you must therefore hold required
locks before calling it.

A buffer cannot be placed on two lists at the same time.

36

Linux Networking

Name
__skb_fill_page desc — initialise a paged fragment in an skb

Synopsis

void __skb fill page_desc (struct sk buff * skb, int i, struct page *
page, int off, int size);

Arguments
skb buffer containing fragment to beinitialised
[paged fragment index to initialise
page the pageto usefor thisfragment
of f the offset to the data with page

si ze thelength of the data
Description
Initialises thei 'th fragment of skb to point to size bytes at offset of f within page.

Does not take any additional reference on the fragment.

37

Linux Networking

Name
skb_fill_page desc — initialise a paged fragment in an skb
Synopsis
void skb fill _page desc (struct sk buff * skb, int i, struct page *

page, int off, int size);

Arguments
skb buffer containing fragment to beinitialised
[paged fragment index to initialise
page the pageto usefor thisfragment
of f the offset to the data with page

si ze thelength of the data

Description

Asper __skb_fill _page_desc --initialisesthei 'thfragment of skb topointtosi ze bytesat offset
of f within page. In addition updates skb such that i isthe last fragment.

Does not take any additional reference on the fragment.

38

Linux Networking

Name
skb_headroom — bytes at buffer head
Synopsis
unsi gned int skb_headroom (const struct sk _buff * skb);
Arguments
skb buffer to check
Description

Return the number of bytes of free space at the head of an sk_buff.

39

Linux Networking

Name
skb_tailroom — bytes at buffer end
Synopsis
int skb_tailroom (const struct sk _buff * skb);
Arguments
skb buffer to check
Description

Return the number of bytes of free space at the tail of an sk_buff

40

Linux Networking

Name
skb_availroom — bytes at buffer end
Synopsis
i nt skb_availroom (const struct sk_buff * skb);
Arguments
skb buffer to check
Description

Return the number of bytes of free space at the tail of an sk_buff allocated by sk_st ream al | oc

41

Linux Networking

Name
skb_reserve — adjust headroom
Synopsis
voi d skb_reserve (struct sk _buff * skb, int len);
Arguments
skb buffer to alter
| en bytesto move
Description
Increase the headroom of an empty sk_buff by reducing the tail room. Thisis only allowed for an empty
buffer.

42

Linux Networking

Name

skb_tailroom_reserve — adjust reserved_tailroom

Synopsis

void skb tailroomreserve (struct sk buff * skb, unsigned int ntu,
unsi gned int needed tailroom;

Arguments
skb buffer to alter
nt u maximum amount of headlen permitted

needed_t ai | room minimum amount of reserved_tailroom

Description

Set reserved _tailroom so that headlen can be as large as possible but not larger than mtu and tailroom
cannot be smaller than needed_tailroom. The required headroom should already have been reserved before

using this function.

43

Linux Networking

Name

pskb_trim_unique — remove end from a paged unique (not cloned) buffer

Synopsis

void pskb_trimuni que (struct sk_buff * skb, unsigned int |en);
Arguments

skb buffer to alter

| en new length

Description

Thisisidentical to pskb_trim except that the caller knows that the skb is not cloned so we should never
get an error due to out- of-memory.

Linux Networking

Name
skb_orphan — orphan a buffer
Synopsis
voi d skb_orphan (struct sk_buff * skb);
Arguments
skb buffer to orphan
Description

If abuffer currently has an owner then we call the owner's destructor function and makethe skb unowned.
The buffer continuesto exist but is no longer charged to its former owner.

45

Linux Networking

Name
skb_orphan_frags — orphan the frags contained in a buffer
Synopsis
i nt skb_orphan_frags (struct sk _buff * skb, gfp_t gf p_nask);
Arguments
skb buffer to orphan frags from
of p_nmask alocation mask for replacement pages
Description

For each frag in the SKB which needs a destructor (i.e. has an owner) create a copy of that frag and release
the original page by calling the destructor.

46

Linux Networking

Name
netdev_alloc_skb — allocate an skbuff for rx on a specific device
Synopsis
struct sk _buff * netdev_alloc_skb (struct net_device * dev, unsigned
int length);
Arguments
dev network device to receive on

| engt h lengthto allocate

Description

Allocate anew sk_buff and assign it a usage count of one. The buffer has unspecified headroom built in.
Users should allocate the headroom they think they need without accounting for the built in space. The
built in spaceis used for optimisations.

NULL is returned if there is no free memory. Although this function allocates memory it can be called
from an interrupt.

47

Linux Networking

Name
__dev_alloc_pages — dlocate page for network Rx
Synopsis
struct page * _ dev_alloc_pages (gfp_t gfp_mask, unsigned int order);
Arguments
of p_mask alocation priority. Set _ GFP_NOMEMALLOC if not for network Rx
or der size of the allocation
Description

Allocate a new page.

NULL isreturned if there is no free memory.

48

Linux Networking

Name
__dev_alloc_page — dlocate a page for network Rx

Synopsis
struct page * _ dev_alloc_page (gfp_t gof p_mask);
Arguments

of p_mask alocation priority. Set _ GFP_NOMEMALLOC if not for network Rx

Description
Allocate a new page.

NULL isreturned if there is no free memory.

49

Linux Networking

Name
skb_propagate _pfmemalloc — Propagate pfmemalloc if skb is alocated after RX page

Synopsis
void skb_propagate pfnenall oc (struct page * page, struct sk buff *
skb);

Arguments

page The pagethat was alocated from skb_alloc_page
skb Theskb that may need pfmemalloc set

50

Linux Networking

Name

skb_frag_page — retrieve the page referred to by a paged fragment
Synopsis

struct page * skb_frag page (const skb frag t * frag);
Arguments

frag thepaged fragment
Description

Returns the struct page associated with f r ag.

51

Linux Networking

Name

__skb frag_ref — take an addition reference on a paged fragment.
Synopsis

void _skb frag ref (skb frag t * frag);
Arguments

frag thepaged fragment
Description

Takes an additional reference on the paged fragment f r ag.

52

Linux Networking

Name

skb_frag_ref — take an addition reference on a paged fragment of an skb.
Synopsis

void skb _frag_ref (struct sk buff * skb, int f);
Arguments

skb thebuffer

f the fragment offset.
Description

Takes an additional reference on the f 'th paged fragment of skb.

53

Linux Networking

Name
__skb frag_unref — release areference on a paged fragment.

Synopsis
void _ skb frag unref (skb frag t * frag);
Arguments

frag thepaged fragment

Description

Releases a reference on the paged fragment f r ag.

Linux Networking

Name
skb_frag_unref — release areference on a paged fragment of an skb.

Synopsis

void skb_frag_unref (struct sk buff * skb, int f);
Arguments

skb thebuffer

f the fragment offset

Description

Releases areference on the f 'th paged fragment of skb.

55

Linux Networking

Name

skb_frag_address — gets the address of the data contained in a paged fragment
Synopsis

void * skb _frag address (const skb frag t * frag);
Arguments

frag thepaged fragment buffer
Description

Returns the address of the datawithin f r ag. The page must already be mapped.

56

Linux Networking

Name

skb_frag_address safe — gets the address of the data contained in a paged fragment
Synopsis

void * skb frag address_safe (const skb frag t * frag);
Arguments

frag thepaged fragment buffer
Description

Returnsthe address of the datawithin f r ag. Checksthat the pageis mapped and returns NULL otherwise.

57

Linux Networking

Name
__skb frag_set page — setsthe page contained in a paged fragment

Synopsis
void _ skb frag set page (skb frag_ t * frag, struct page * page);
Arguments

frag thepaged fragment

page thepageto set

Description

Sets the fragment f r ag to contain page.

58

Linux Networking

Name
skb_frag_set_page — sets the page contained in a paged fragment of an skb

Synopsis

voi d skb_frag set page (struct sk _buff * skb, int f, struct page * page);
Arguments

skb thebuffer

f the fragment offset

page thepageto set

Description

Setsthef 'th fragment of skb to contain page.

59

Linux Networking

Name
skb_frag_dma_map — maps a paged fragment viathe DMA AP

Synopsis

dma_addr t skb frag dna_map (struct device * dev, const skb frag t *
frag, size t offset, size t size, enumdna_data direction dir);

Arguments
dev the device to map the fragment to

frag the paged fragment to map

of f set the offset within the fragment (starting at the fragment's own offset)

si ze the number of bytesto map
dir the direction of the mapping (PCl _DVA_*)
Description

Maps the page associated with f r ag to devi ce.

60

Linux Networking

Name

skb_clone writable — isthe header of a clone writable

Synopsis
int skb _clone witable (const struct sk _buff * skb, unsigned int |en);
Arguments

skb buffer to check

| en length up to which to write

Description

Returns true if modifying the header part of the cloned buffer does not requires the data to be copied.

61

Linux Networking

Name
skb_cow — copy header of skb when it isrequired
Synopsis
int skb_cow (struct sk _buff * skb, unsigned int headroonj;
Arguments
skb buffer to cow
headr oom needed headroom
Description

If the skb passed lacks sufficient headroom or its data part is shared, data is reallocated. If reallocation
fails, an error is returned and original skb is not changed.

Theresult is skb with writable area skb->head...skb->tail and at least headr oomof space at head.

62

Linux Networking

Name

skb_cow_head — skb_cow but only making the head writable
Synopsis

int skb_cow head (struct sk _buff * skb, unsigned int headroonj;
Arguments

skb buffer to cow

headr oom needed headroom

Description

Thisfunction isidentical to skb_cow except that we replace the skb_cloned check by skb_header cloned.
It should be used when you only need to push on some header and do not need to modify the data.

63

Linux Networking

Name
skb_padto — pad an skbuff up to aminimal size

Synopsis

int skb_padto (struct sk buff * skb, unsigned int |en);
Arguments

skb buffer to pad

I en minimal length

Description

Pads up a buffer to ensure the trailing bytes exist and are blanked. If the buffer already contains sufficient
datait is untouched. Otherwise it is extended. Returns zero on success. The skb isfreed on error.

Linux Networking

Name

skb_put_padto — increase size and pad an skbuff up to aminimal size
Synopsis

int skb_put padto (struct sk _buff * skb, unsigned int |en);
Arguments

skb buffer to pad

I en minimal length

Description

Pads up a buffer to ensure the trailing bytes exist and are blanked. If the buffer already contains sufficient
datait is untouched. Otherwise it is extended. Returns zero on success. The skb isfreed on error.

65

Linux Networking

Name

skb_linearize — convert paged skb to linear one
Synopsis

int skb _linearize (struct sk_buff * skb);
Arguments

skb buffer to linarize
Description

If thereisno free memory -ENOMEM isreturned, otherwise zero isreturned and the old skb data rel eased.

66

Linux Networking

Name
skb_has_shared_frag — can any frag be overwritten

Synopsis

bool skb_has shared frag (const struct sk _buff * skb);
Arguments

skb buffer to test

Description

Return true if the skb has at |east one frag that might be modified by an external entity (asinvnspl i ce/
sendfil e)

67

Linux Networking

Name

skb_linearize cow — make sure skb islinear and writable
Synopsis

int skb_linearize cow (struct sk _buff * skb);
Arguments

skb buffer to process
Description

If thereisno free memory -ENOMEM isreturned, otherwise zero isreturned and the old skb data rel eased.

68

Linux Networking

Name
skb_postpull_rcsum — update checksum for received skb after pull

Synopsis

void skb_postpull _rcsum (struct sk buff * skb, const void * start,
unsi gned int |en);

Arguments
skb buffer to update
start start of databefore pull

[en length of data pulled

Description

After doing a pull on areceived packet, you need to call this to update the CHECKSUM_COMPLETE
checksum, or set ip_summed to CHECKSUM_NONE so that it can be recomputed from scratch.

69

Linux Networking

Name
skb_push_rcsum — push skb and update receive checksum

Synopsis

unsi gned char * skb_push rcsum(struct sk _buff * skb, unsigned int |en);
Arguments

skb buffer to update

| en length of datapulled

Description

Thisfunction performsan skb_push on the packet and updates the CHECK SUM_COMPLETE checksum.
It should be used on receive path processing instead of skb_push unless you know that the checksum
differenceis zero (e.g., avalid IP header) or you are setting ip_summed to CHECKSUM_NONE.

70

Linux Networking

Name
pskb_trim_rcsum — trim received skb and update checksum
Synopsis
int pskb_trimrcsum (struct sk _buff * skb, unsigned int len);
Arguments
skb buffer totrim
| en new length
Description

This is exactly the same as pskb_trim except that it ensures the checksum of received packets are still
valid after the operation.

71

Linux Networking

Name
skb_needs_linearize — check if we need to linearize a given skb depending on the given device features.
Synopsis
bool skb_needs l|inearize (struct sk buff * skb, netdev _features t fea-
tures);
Arguments
skb socket buffer to check

f eat ur es net device features

Returns true if either

1. skb has frag_list and the device doesn't support FRAGLIST, or 2. skb is fragmented and the device
does not support SG.

72

Linux Networking

Name
skb_get timestamp — get timestamp from a skb

Synopsis
void skb get tinestanp (const struct sk buff * skb, struct tinmeval *
stanp) ;

Arguments

skb skb to get stamp from

st anp pointer to struct timeval to store stampin

Description

Timestamps are stored in the skb as offsets to a base timestamp. This function converts the offset back
to astruct timeval and storesit in stamp.

73

Linux Networking

Name

skb_tx_timestamp — Driver hook for transmit timestamping
Synopsis
void skb_tx tinmestanp (struct sk_buff * skb);

Arguments

skb A socket buffer.

Description

Ethernet MAC Drivers should call thisfunction in their har d_xmi t function immediately before giving
the sk_buff to the MAC hardware.

Specifically, one should make absolutely sure that this function is called before TX completion of this
packet can trigger. Otherwise the packet could potentially already be freed.

74

Linux Networking

Name

skb_checksum_complete — Calculate checksum of an entire packet
Synopsis
__suml6 skb_checksum conplete (struct sk _buff * skb);

Arguments

skb packet to process

Description

This function calculates the checksum over the entire packet plus the value of skb->csum. The latter can
be used to supply the checksum of a pseudo header as used by TCP/UDP. It returns the checksum.

For protocols that contain complete checksums such as ICMP/TCP/UDP, this function can be used to
verify that checksum on received packets. In that case the function should return zero if the checksum is
correct. In particular, thisfunction will return zero if skb->ip_summedis CHECKSUM_UNNECESSARY
which indicates that the hardware has aready verified the correctness of the checksum.

75

Linux Networking

Name
skb_checksum_none_assert — make sure skb ip_summed is CHECKSUM_NONE

Synopsis

voi d skb_checksum none_assert (const struct sk _buff * skb);
Arguments

skb skbto check

Description

fresh skbs have their ip_summed set to CHECKSUM_NONE. Instead of forcing ip_summed to CHECK -
SUM_NONE, we can use this helper, to document places where we make this assertion.

76

Linux Networking

Name
skb_head is locked — Determine if the skb->head is locked down

Synopsis
bool skb_head is | ocked (const struct sk _buff * skb);

Arguments

skb skbto check

Description

The head on skbs build around a head frag can be removed if they are not cloned. This function returns
true if the skb head is locked down due to either being allocated via kmalloc, or by being a clone with

multiple references to the head.

77

Linux Networking

Name

skb_gso_network_seglen — Return length of individual segments of a gso packet
Synopsis

unsi gned int skb_gso network _seglen (const struct sk _buff * skb);
Arguments

skb GSOskb
Description

skb_gso_network_seglen is used to determine the real size of the individual segments, including Layer3
(IP, IPv6) and L4 headers (TCP/UDP).

The MAC/L2 header is not accounted for.

78

Linux Networking

Name

struct sock_common — minimal network layer representation of sockets

Synopsis

struct sock_conmon {
uni on {unnaned_uni on};

b
Members

{unnamed_union} anonymous

Description

Thisistheminimal network layer representation of sockets, the header for struct sock and struct inet_time-
wait_sock.

79

Linux Networking

Name

struct sock — network layer representation of sockets

Synopsis

struct sock {
struct sock_conmon __ sk _common;

#defi ne sk_node __sk_conmon. skc_node
#define sk _nulls_node _ sk _comron. skc_nul | s_node
#define sk _refcnt _ sk _comon. skc_refcnt

#def i ne sk_t x_queue_mappi ng __sk_common. skc_t Xx_queue_nmappi ng
#def i ne sk_dont copy_begin __sk_comon. skc_dont copy_begi n

#def i ne sk_dontcopy_end __ sk_conmon. skc_dont copy_end
#defi ne sk_hash __sk_conmon. skc_hash

#define sk_portpair _ sk _comon. skc_portpair

#define sk_num _ sk _comon. skc_num

#defi ne sk_dport _ sk _common. skc_dport

#defi ne sk_addrpair _ sk _common. skc_addr pair

#define sk _daddr _ sk _conmon. skc_daddr

#define sk _rcv_saddr _ sk _conmon. skc_rcv_saddr
#define sk_famly _ sk _common.skc_fanmly

#define sk _state _ sk _conmon.skc_state

#define sk reuse _ sk _conmon. skc_reuse

#defi ne sk_reuseport _ sk_conmon. skc_reuseport
#defi ne sk_ipvbéonly _ sk _common. skc_i pv6éonly
#define sk _net _refcnt _ sk _comon. skc_net _refcnt
#define sk _bound dev_if _ sk _comron. skc_bound_dev_if
#define sk_bind_node _ sk _common. skc_bi nd_node
#def i ne sk_pr ot __sk_common. skc_pr ot

#defi ne sk_net __sk_conmon. skc_net

#define sk _v6_daddr _ sk_comon. skc_v6_daddr

#define sk _v6_rcv_saddr _ sk _conmon. skc_v6_rcv_saddr
#define sk _cookie _ sk _comon. skc_cooki e

#defi ne sk_incom ng_cpu __ sk_conmon. skc_i nconi ng_cpu
#define sk _flags _ sk _comon. skc_fl ags

#define sk_rxhash _ sk _comon. skc_r xhash

socket | ock t sk _|ock;
struct sk_buff_head sk_recei ve_queue;
struct {unnamed_struct};
#i f def CONFI G_XFRM
struct xfrmpolicy __rcu * sk_policy[2];
#endi f
struct dst_entry * sk_rx_dst;
struct dst_entry _ rcu * sk_dst_cache;
atom c_t sk _wrem all oc;
atom c_t sk _onmem all oc;
i nt sk_sndbuf;
struct sk_buff_head sk_wite_queue;
unsi gned int sk_shutdown: 2;
unsi gned int sk_no_check_tx:1;
unsi gned int sk_no_check _rx:1
unsi gned int sk_userl ocks: 4;

80

Linux Networking

unsi gned int sk_protocol:8;
unsi gned int sk_type: 16;
#def i ne SK_PROTOCOL_MAX U8_MAX
i nt sk_wrem queued,;
of p_t sk_allocation
u32 sk_pacing_rate;
u32 sk_max_paci ng_rate;
netdev_features_t sk_route_caps;
net dev_features_t sk_route_nocaps;
int sk_gso_type;
unsi gned int sk_gso_max_size;
ulé sk _gso_max_segs;
int sk_rcvl owat;
unsi gned |l ong sk_lingertine;
struct sk_buff_head sk_error_queue;
struct proto * sk_prot_creator
rw ock_t sk_call back_| ock;
int sk _err;
int sk_err_soft;
u32 sk_ack_backl og;
u32 sk_max_ack_backl og;
_u32 sk_priority;
#if 1 S_ENABLED(CONFI G_CGROUP_NET_PRI O
_u32 sk_cgrp_prioidx;
#endi f
struct pid * sk_peer_pid;
const struct cred * sk_peer_cred;
| ong sk_rcvtineo;
| ong sk_sndti neo;
struct timer_list sk _tinmer;
ktime_t sk_stanp;
ulé sk_tsfl ags;
u32 sk_tskey;
struct socket * sk_socket;
void * sk _user_data
struct page_frag sk_frag;
struct sk _buff * sk _send_head;
_s32 sk_peek_off;
int sk_ wite_pending;
f def CONFI G_SECURI TY
void * sk_security;
#endi f
__u32 sk_nark;
#i f def CONFI G_CGROUP_NET_CLASSI D
u32 sk_cl assi d;
#endi f
struct cg_proto * sk_cgrp
void (* sk_state_change) (struct sock *sk);
void (* sk _data_ready) (struct sock *sk);
void (* sk _wite_space) (struct sock *sk);
void (* sk_error_report) (struct sock *sk);
int (* sk_backlog_rcv) (struct sock *sk,struct sk_buff *skb);
void (* sk_destruct) (struct sock *sk);

#i

81

Linux Networking

Members

__sk_common
sk_lock
sk_receive_queue
{unnamed_struct}
sk_policy[2]
sk_rx_dst

sk _dst_cache
sk_wmem_alloc
sk_omem_alloc
sk_sndbuf
sk_write_queue
sk_shutdown
sk_no_check_tx
sk_no_check rx
sk_userlocks
sk_protocol
sk_type
sk_wmem_queued
sk_allocation

sk_pacing_rate

sk_max_pacing_rate

sk_route_caps
sk_route_nocaps
sk_gso_type
sk_gso_max_size
SK_gso_max_segs
sk_rcvliowat
sk_lingertime

sk_error_queue

shared layout with inet_timewait_sock

synchronizer

incoming packets

anonymous

flow policy

receive input route used by early demux

destination cache

transmit queue bytes committed

"0" is”option* or " other"

size of send buffer in bytes

Packet sending queue

mask of SEND_SHUTDOWN and/or RCV_SHUTDOWN
SO _NO_CHECK setting, set checksum in TX packets
alow zero checksum in RX packets

SO_SNDBUF and SO_RCVBUF settings

which protocol this socket belongsin this network family
socket type (SOCK _STREAM etc)

persistent queue size

allocation mode

Pacing rate (if supported by transport/packet scheduler)
Maximum pacing rate (SO_MAX_PACI NG_RATE)
route capabilities (e.g. NETI F_F_TSO)

forbidden route capabilities (e.g NETIF_F GSO_MASK)
GSO type (e.g. SKB_GSO TCPV4)

Maximum GSO segment size to build

Maximum number of GSO segments

SO_RCVLOWAT setting

SO _LI NCERI_linger setting

rarely used

82

Linux Networking

sk_prot_creator

sk_callback_lock
sKk_err

sk_err_soft

sk_ack _backlog
sk_max_ack_backlog
sk_priority
sk_cgrp_prioidx
sk_peer_pid
sk_peer_cred
sk_rcvtimeo
sk_sndtimeo
sk_timer
sk_stamp
sk_tsflags
SK_tskey
sk_socket

sk _user_data
sk_frag
sk_send_head
sk_peek_off
sk_write_pending
sk_security
sk_mark
sk_classid
sk_cgrp
sk_state change
sk_data ready

sk_write_space

sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM
for instance)

used with the callbacks in the end of this struct
last error

errorsthat don't cause failure but are the cause of a persistent failure not just
‘timed out'

current listen backlog

listen backlog setinl i st en

SO PRI ORI TY setting

socket group's priority map index

struct pid for this socket's peer

SO_PEERCRED setting

SO _RCVTI MEOsetting

SO _SNDTI MEOsetting

sock cleanup timer

time stamp of last packet received
SO_TIMESTAMPING socket options

counter to disambiguate concurrent tstamp requests
Identd and reporting 10 signals

RPC layer private data

cached page frag

front of stuff to transmit

current peek_offset value

awrite to stream socket waits to start

used by security modules

generic packet mark

this socket's cgroup classid

this socket's cgroup-specific proto data

callback to indicate change in the state of the sock
callback to indicate there is data to be processed

callback to indicate there is bf sending space available

83

Linux Networking

sk_error_report callback to indicate errors (e.g. MSG_ERRQUEUE)
sk_backlog_rcv callback to process the backlog
Sk_destruct called at sock freeing time, i.e. when al refent ==

Linux Networking

Name

sk_nulls for_each entry offset — iterate over alist at a given struct offset
Synopsis

sk _nulls for _each _entry offset (tpos, pos, head, offset);
Arguments

t pos the type * to use as aloop cursor.

pos the struct hlist_node to use as aloop cursor.

head the head for your list.

of f set offset of hlist_node within the struct.

85

Linux Networking

Name

unlock_sock_fast — complement of lock_sock fast
Synopsis

voi d unl ock_sock fast (struct sock * sk, bool slow);
Arguments

sk socket

sl ow sSlow mode

Description

fast unlock socket for user context. If slow modeison, wecall regular r el ease_sock

86

Linux Networking

Name
sk_wmem_alloc_get — returns write allocations
Synopsis
int sk wrem alloc_get (const struct sock * sk);
Arguments
sk socket
Description

Returns sk_wmem_alloc minusinitial offset of one

87

Linux Networking

Name
sk_rmem_alloc_get — returns read alocations
Synopsis
int sk rmemalloc_get (const struct sock * sk);
Arguments
sk socket
Description

Returns sk_rmem_alloc

88

Linux Networking

Name

sk_has allocations — check if alocations are outstanding
Synopsis
bool sk _has_allocations (const struct sock * sk);

Arguments

sk socket

Description

Returnstrueif socket haswrite or read allocations

89

Linux Networking

Name

skwq_has_sleeper — check if there are any waiting processes
Synopsis
bool skwg_has_sl eeper (struct socket _wgq * wq);

Arguments

wg struct socket wq

Description
Returnstrueif socket wq has waiting processes

The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory barrier call. They were
added due to the race found within the tcp code.

Consider following tcp code paths

CPU1 CPU2

sys select receive packet __add wait_queue update tp->rcv_nxt tp->rcv_nxt check sock_de-
f readable...{ scheduler cu_r ead_| ock;wqg=rcu_dereference(sk->sk_waq); if (wq& & waitqueue ac-
tive(wg->wait)) wake up_interruptible(wg->wait) ... }

The race for tcp fireswhen the __add_wait_queue changes done by CPU1 stay in its cache, and so does
the tp->rcv_nxt update on CPU2 side. The CPU1 could then endup calling schedule and sleep forever if
there are no more data on the socket.

90

Linux Networking

Name

sock_poll_wait — place memory barrier behind the poll_wait call.

Synopsis

void sock poll _wait (struct file * filp, wait_queue head t * wait_ad-
dress, poll _table * p);

Arguments
filp file
wai t _address socket wait queue

p poll_table

Description

See the comments in thewq_has_sleeper function.

91

Linux Networking

Name
sk_page frag — return an appropriate page_frag
Synopsis
struct page frag * sk _page frag (struct sock * sk);
Arguments
sk socket
Description
If socket allocation mode allows current thread to sleep, it means its safe to use the per task page frag
instead of the per socket one.

92

Linux Networking

Name

sock_tx_timestamp — checks whether the outgoing packet isto be time stamped
Synopsis

void sock tx timestamp (const struct sock * sk, _ u8 * tx flags);
Arguments

sk socket sending this packet

tx_flags completed with instructionsfor time stamping

Note

callers should take care of initial *tx_flags value (usualy 0)

93

Linux Networking

Name
sk_eat_skb — Release askb if it isno longer needed
Synopsis
void sk _eat skb (struct sock * sk, struct sk _buff * skb);
Arguments
sk socket to eat this skb from
skb socket buffer to eat
Description
This routine must be called with interrupts disabled or with the socket locked so that the sk_buff queue
operation is ok.

94

Linux Networking

Name
sk_state load — read sk->sk_state for lockless contexts

Synopsis

int sk state load (const struct sock * sk);

Arguments

sk socket pointer

Description

Paired with sk_st at e_st or e. Used in places we do not hold socket lock : t cp_di ag_get _i nf o,
tcp_get _info,tcp_poll,get _tcp4_sock..

95

Linux Networking

Name
sk_state store — update sk->sk_state

Synopsis

void sk _state store (struct sock * sk, int newstate);
Arguments

sk socket pointer

newstate new state

Description

Paired with sk_st at e_| oad. Should be used in contexts where state change might impact lockless
readers.

96

Linux Networking

Name

sockfd_lookup — Go from afile number to its socket slot
Synopsis

struct socket * sockfd |ookup (int fd, int * err);
Arguments

fd filehandle

err pointer to an error code return

Description

The file handle passed in is locked and the socket it is bound too is returned. If an error occurs the err
pointer is overwritten with a negative errno code and NULL is returned. The function checks for both
invalid handles and passing a handle which is not a socket.

On a success the socket object pointer is returned.

97

Linux Networking

Name
sock_release — close a socket
Synopsis
voi d sock rel ease (struct socket * sock);
Arguments
sock socket to close
Description

The socket is released from the protocol stack if it has a release callback, and the inode is then released
if the socket is bound to an inode not afile.

98

Linux Networking

Name

kernel_recvmsg — Receive a message from a socket (kernel space)
Synopsis

int kernel _recvnsg (struct socket * sock, struct nsghdr * nsg, struct
kvec * vec, size_t num size t size, int flags);

Arguments
sock The socket to receive the message from
nsg Received message
vec Input s/g array for message data
num Size of input §/g array
size Number of bytesto read

flags Messageflags(MSG_DONTWAIT, etc...)
Description

On return the msg structure contains the scatter/gather array passed in the vec argument. The array is
modified so that it consists of the unfilled portion of the original array.

Thereturned value is the total number of bytes received, or an error.

99

Linux Networking

Name

sock_register — add a socket protocol handler

Synopsis

int sock register (const struct net _proto famly * ops);

Arguments
ops description of protocol

Description

This function is called by a protocol handler that wants to advertise its address family, and have it linked
into the socket interface. The value ops->family corresponds to the socket system call protocol family.

100

Linux Networking

Name

sock_unregister — remove a protocol handler
Synopsis

voi d sock unregister (int famly);
Arguments

fam |y protocol family to remove

Description

Thisfunctionis called by a protocol handler that wants to remove its address family, and have it unlinked
from the new socket creation.

If protocol handler isamodule, then it can use modul e reference counts to protect against new references.
If protocol handler is not amodule then it needs to provide its own protection in the ops->create routine.

101

Linux Networking

Name
__dloc_skb — dllocate a network buffer

Synopsis

struct sk buff * alloc_skb (unsigned int size, gfp_t gfp_mask, int
flags, int node);

Arguments
size sizeto allocate

of p_nmask alocation mask

fl ags If SKB_ALLOC_FCLONE is set, alocate from fclone cache instead of head cache and
alocate a cloned (child) skb. If SKB_ALLOC RX issat, GFP_MEMALLOC will be
used for alocations in case the datais required for writeback

node numa node to allocate memory on

Description

Allocate a new sk_buff. The returned buffer has no headroom and a tail room of at least size bytes. The
object has areference count of one. The return is the buffer. On afailure the return is NULL.

Buffers may only be alocated from interrupts using agf p_nask of G-P_ATOM C.

102

Linux Networking

Name
netdev_alloc_frag — allocate a page fragment
Synopsis
void * netdev_alloc frag (unsigned int fragsz);
Arguments
fragsz fragmentsize
Description

Allocates afrag from a page for receive buffer. Uses GFP_ATOMIC alocations.

103

Linux Networking

Name

__hnetdev_alloc_skb — allocate an skbuff for rx on a specific device
Synopsis

struct sk _buff * netdev_all oc_skb (struct net_device * dev, unsigned
int len, gfp_t gfp_mask);

Arguments
dev network device to receive on
I en length to allocate

of p_nmask get free pages mask, passed to alloc_skb

Description

Allocate anew sk_buff and assign it ausage count of one. The buffer hasNET_SKB_PAD headroom built
in. Users should allocate the headroom they think they need without accounting for the built in space. The
built in space is used for optimisations.

NULL isreturned if thereis no free memory.

104

Linux Networking

Name
__hapi_alloc_skb — allocate skbuff for rx in a specific NAPI instance

Synopsis

struct sk _buff * napi_alloc_skb (struct napi _struct * napi,
int len, gfp_t gfp_mask);

Arguments
napi napi instance this buffer was allocated for
I en length to allocate

of p_nmask get free pages mask, passed to aloc_skb and alloc_pages

Description

unsi gned

Allocate anew sk_buff for usein NAPI receive. Thisbuffer will attempt to all ocate the head from a special
reserved region used only for NAPI Rx alocation. By doing this we can save several CPU cycles by

avoiding having to disable and re-enable IRQs.

NULL isreturned if thereis no free memory.

105

Linux Networking

Name
__kfree_skb — private function

Synopsis

void _ kfree skb (struct sk _buff * skb);
Arguments

skb buffer

Description

Freean sk_buff. Release anything attached to the buffer. Clean the state. Thisisaninternal helper function.
Users should always call kfree_skb

106

Linux Networking

Name
kfree skb — free an sk_buff
Synopsis
void kfree skb (struct sk _buff * skb);
Arguments
skb buffer to free
Description

Drop areference to the buffer and freeit if the usage count has hit zero.

107

Linux Networking

Name

skb_tx_error — report an sk_buff xmit error
Synopsis

void skb_tx error (struct sk _buff * skb);
Arguments

skb buffer that triggered an error
Description

Report xmit error if a device callback is tracking this skb. skb must be freed afterwards.

108

Linux Networking

Name
consume_skb — free an skbuff
Synopsis
voi d consunme_skb (struct sk_buff * skb);
Arguments
skb buffer to free
Description

Drop aref to the buffer and free it if the usage count has hit zero Functions identically to kfree_skb, but
kfree_skb assumes that the frame is being dropped after a failure and notes that

109

Linux Networking

Name
skb_morph — morph one skb into another
Synopsis
struct sk_buff * skb_norph (struct sk_buff * dst, struct sk_buff * src);
Arguments
dst theskb to receive the contents
src theskb to supply the contents
Description

Thisisidentical to skb_clone except that the target skb is supplied by the user.

The target skb is returned upon exit.

110

Linux Networking

Name
skb_copy_ubufs— copy userspace skb frags buffers to kernel

Synopsis

i nt skb_copy_ubufs (struct sk _buff * skb, gfp_t gf p_nask);
Arguments

skb the skb to modify

of p_nmask alocation priority
Description

This must be called on SKBTX_DEV_ZEROCOPY skb. It will copy al frags into kernel and drop the
reference to userspace pages.

If thisfunction is called from an interrupt gf p_nmask must be GFP_ATOM C.

Returns 0 on success or a negative error code on failure to allocate kernel memory to copy to.

111

Linux Networking

Name

skb_clone — duplicate an sk_buff
Synopsis

struct sk_buff * skb_clone (struct sk _buff * skb, gfp_t gfp_mask);
Arguments

skb buffer to clone

of p_nmask alocation priority

Description

Duplicate an sk_buff. The new oneis not owned by a socket. Both copies share the same packet data but
not structure. The new buffer has areference count of 1. If the allocation fails the function returns NULL
otherwise the new buffer is returned.

If thisfunction is called from an interrupt gf p_nmask must be GFP_ATOM C.

112

Linux Networking

Name

skb_copy — create private copy of an sk_buff
Synopsis

struct sk_buff * skb_copy (const struct sk_buff * skb, gfp_t gof p_mask);
Arguments

skb buffer to copy

of p_nmask alocation priority

Description

Make a copy of both an sk_buff and its data. Thisis used when the caller wishes to modify the data and
needs a private copy of the datato alter. Returns NULL on failure or the pointer to the buffer on success.
The returned buffer has a reference count of 1.

As by-product thisfunction converts non-linear sk_buff to linear one, so that sk_buff becomes completely
private and caller is alowed to modify all the data of returned buffer. This means that this function is
not recommended for use in circumstances when only header is going to be modified. Use pskb_copy
instead.

113

Linux Networking

Name
__pskb_copy_fclone — create copy of an sk_buff with private head.

Synopsis

struct sk _buff * pskb_copy fclone (struct sk _buff * skb, int headroom
gf p_t gf p_mask, bool fclone);

Arguments
skb buffer to copy
headr oom headroom of new skb
gf p_mask alocation priority

fcl one if true alocate the copy of the skb from the fclone cache instead of the head cache; it is
recommended to set thisto true for the cases where the copy will likely be cloned

Description

Make a copy of both an sk_buff and part of its data, located in header. Fragmented data remain shared.
Thisis used when the caller wishesto modify only header of sk_buff and needs private copy of the header
to alter. ReturnsNULL on failure or the pointer to the buffer on success. Thereturned buffer hasareference

count of 1.

114

Linux Networking

Name
pskb_expand_head — reallocate header of sk_buff
Synopsis
i nt pskb_expand _head (struct sk _buff * skb, int nhead, int ntail, gfp_t
of p_nmask) ;
Arguments
skb buffer to reallocate

nhead room to add at head
nt ai | room to add at tail

gf p_mask alocation priority

Description

Expands (or creates identical copy, if nhead and nt ai | are zero) header of skb. sk_buff itself is not
changed. sk_buff MUST havereference count of 1. Returnszeroin the case of successor error, if expansion
failed. In the last case, sk_buff is not changed.

All the pointers pointing into skb header may change and must be reloaded after call to this function.

115

Linux Networking

Name
skb_copy_expand — copy and expand sk_buff

Synopsis

struct sk_buff * skb_copy_expand (const struct sk buff * skb, int new
headroom int newtailroom gfp_t gfp_mask);

Arguments
skb buffer to copy
newheadr oom new free bytes at head
newt ai | room new free bytes at tail

gf p_mask alocation priority

Description
Make a copy of both an sk_buff and its data and while doing so allocate additional space.

This is used when the caller wishes to modify the data and needs a private copy of the data to alter as
well as more space for new fields. Returns NULL on failure or the pointer to the buffer on success. The
returned buffer has a reference count of 1.

Y ou must pass G-P_ATOM C asthe alocation priority if thisfunction is called from an interrupt.

116

Linux Networking

Name
skb_pad — zero pad the tail of an skb
Synopsis
int skb_pad (struct sk buff * skb, int pad);
Arguments
skb buffer to pad
pad spaceto pad
Description

Ensure that a buffer is followed by a padding areathat is zero filled. Used by network drivers which may
DMA or transfer data beyond the buffer end onto the wire.

May return error in out of memory cases. The skb isfreed on error.

117

Linux Networking

Name
pskb_put — add data to the tail of a potentially fragmented buffer
Synopsis
unsi gned char * pskb_put (struct sk buff * skb, struct sk _buff * tail,
int len);
Arguments
skb start of the buffer to use
tail tail fragment of the buffer to use
[en amount of datato add
Description

This function extends the used data area of the potentially fragmented buffer. t ai | must be the last
fragment of skb -- or skb itself. If thiswould exceed the total buffer size the kernel will panic. A pointer

to the first byte of the extradatais returned.

118

Linux Networking

Name
skb_put — add data to a buffer

Synopsis
unsi gned char * skb_put (struct sk_buff * skb, unsigned int |en);
Arguments

skb buffer to use

| en amount of datato add

Description

This function extends the used data area of the buffer. If thiswould exceed the total buffer size the kernel
will panic. A pointer to the first byte of the extra datais returned.

119

Linux Networking

Name
skb_push — add data to the start of a buffer

Synopsis
unsi gned char * skb_push (struct sk _buff * skb, unsigned int len);
Arguments

skb buffer to use

| en amount of datato add

Description

This function extends the used data area of the buffer at the buffer start. If this would exceed the total
buffer headroom the kernel will panic. A pointer to the first byte of the extradatais returned.

120

Linux Networking

Name

skb_pull — remove data from the start of a buffer

Synopsis

unsi gned char * skb _pull (struct sk _buff * skb, unsigned int len);
Arguments

skb buffer to use

| en amount of datato remove

Description

This function removes data from the start of a buffer, returning the memory to the headroom. A pointer
to the next data in the buffer is returned. Once the data has been pulled future pushes will overwrite the

old data.

121

Linux Networking

Name

skb_trim — remove end from a buffer
Synopsis

void skb trim (struct sk _buff * skb, unsigned int |en);
Arguments

skb buffer to alter

| en new length

Description

Cut the length of a buffer down by removing data from the tail. If the buffer is already under the length
specified it is not modified. The skb must be linear.

122

Linux Networking

Name
__pskb_pull_tail — advance tail of skb header

Synopsis
unsi gned char * _ pskb pull tail (struct sk _buff * skb, int delta);
Arguments

skb buffer to reallocate

del ta number of bytesto advance tail

Description

The function makes a sense only on a fragmented sk_buff, it expands header moving its tail forward and
copying necessary data from fragmented part.

sk_buff MUST have reference count of 1.
Returns NULL (and sk_buff does not change) if pull failed or value of new tail of skb in the case of success.

All the pointers pointing into skb header may change and must be reloaded after call to this function.

123

Linux Networking

Name
skb_copy_bits — copy bits from skb to kernel buffer
Synopsis
int skb_copy bits (const struct sk buff * skb, int offset, void * to,
int len);
Arguments
skb source skb

of f set offsetin source

to destination buffer
I en number of bytesto copy
Description

Copy the specified number of bytes from the source skb to the destination buffer.

CAUTION ! : If its prototype is ever changed, check arch/{*}/net/{ *}.Sfiles, sinceit is caled from BPF
assembly code.

124

Linux Networking

Name
skb_store bits — store bits from kernel buffer to skb
Synopsis
int skb store bits (struct sk _buff * skb, int offset, const void * from
int len);
Arguments
skb destination buffer

of f set offset in destination
from source buffer

I en number of bytesto copy

Description

Copy the specified number of bytes from the source buffer to the destination skb. This function handles
all the messy bits of traversing fragment lists and such.

125

Linux Networking

Name
skb_zerocopy — Zero copy skb to skb

Synopsis
int skb_zerocopy (struct sk buff * to, struct sk buff * from int |en,
int hlen);

Arguments

to destination buffer
from source buffer
[en number of bytesto copy from source buffer

hl en sizeof linear headroom in destination buffer

Description
Copies up to “len” bytesfrom “from™ to "to” by creating references to the frags in the source buffer.

The “hlen” ascalculated by skb_zer ocopy_headl en specifies the headroom in the “to™ buffer.

everything is OK -ENOMEM: couldn't orphan frags of f r om due to lack of memory -EFAULT:
skb_copy_bi t s found some problem with skb geometry

126

Linux Networking

Name

skb_dequeue — remove from the head of the queue

Synopsis

struct sk_buff * skb _dequeue (struct sk buff _head * list);

Arguments
Iist listtodequeuefrom

Description

Remove the head of the list. Thelist lock is taken so the function may be used safely with other locking
list functions. The head item isreturned or NULL if the list is empty.

127

Linux Networking

Name

skb_dequeue_tail — remove from the tail of the queue

Synopsis

struct sk_buff * skb _dequeue tail (struct sk buff _head * list);

Arguments
Iist listtodequeuefrom

Description

Remove thetail of thelist. Thelist ock istaken so the function may be used safely with other locking list
functions. The tail item isreturned or NULL if thelist is empty.

128

Linux Networking

Name
skb_queue purge — empty alist

Synopsis
voi d skb_queue_purge (struct sk _buff _head * list);

Arguments

list listtoempty

Description

Delete dl buffers on an sk_buff list. Each buffer isremoved from the list and one reference dropped. This
function takes the list lock and is atomic with respect to other list locking functions.

129

Linux Networking

Name
skb_queue_head — queue a buffer at the list head

Synopsis

voi d skb_queue_head (struct sk_buff _head * |ist, struct sk_buff * newsk);

Arguments
list list to use

newsk buffer to queue

Description

Queue a buffer at the start of the list. This function takes the list lock and can be used safely with other
locking sk_buff functions safely.

A buffer cannot be placed on two lists at the same time.

130

Linux Networking

Name

skb_queue_tail — queue abuffer at the list tail
Synopsis

voi d skb_queue_tail (struct sk _buff head * |ist, struct sk _buff * newsk);
Arguments

list list to use

newsk buffer to queue

Description

Queue a buffer at the tail of the list. This function takes the list lock and can be used safely with other
locking sk_buff functions safely.

A buffer cannot be placed on two lists at the same time.

131

Linux Networking

Name

skb_unlink — remove a buffer from alist

Synopsis

void skb_unlink (struct sk _buff * skb, struct sk _buff _head * list);
Arguments

skb buffer to remove

list listtouse

Description

Remove a packet from alist. The list locks are taken and this function is atomic with respect to other list
locked calls

Y ou must know what list the SKB ison.

132

Linux Networking

Name
skb_append — append a buffer

Synopsis

voi d skb_append (struct sk _buff * old, struct sk _buff * newsk, struct
sk_buff _head * list);

Arguments
old buffer to insert after
newsk buffer toinsert

| i st list to use

Description

Place a packet after agiven packet in alist. Thelist locks are taken and thisfunction is atomic with respect
to other list locked calls. A buffer cannot be placed on two lists at the sametime.

133

Linux Networking

Name

skb_insert — insert a buffer

Synopsis

void skb insert (struct sk _buff * old, struct sk _buff * newsk, struct
sk_buff _head * list);

Arguments
old buffer to insert before
newsk buffer toinsert

| i st list to use

Description

Place a packet before a given packet in a list. The list locks are taken and this function is atomic with
respect to other list locked calls.

A buffer cannot be placed on two lists at the same time.

134

Linux Networking

Name
skb_split — Split fragmented skb to two parts at length len.

Synopsis
void skb_split (struct sk buff * skb, struct sk buff * skbl, const u32
l en);

Arguments

skb thebuffer to split
skbl thebuffer to receive the second part

[en new length for skb

135

Linux Networking

Name
skb_prepare _seq _read — Prepare a sequentia read of skb data

Synopsis

void skb _prepare_seq_read (struct sk _buff * skb, unsigned int from
unsigned int to, struct skb seq_state * st);

Arguments
skb the buffer to read
from lower offset of datato be read
to upper offset of datato be read

st State variable

Description

Initializes the specified state variable. Must be called beforeinvoking skb_seq_r ead for thefirst time.

136

Linux Networking

Name
skb_seq read — Sequentially read skb data

Synopsis

unsi gned int skb _seq_read (unsigned int consuned, const u8 ** data,
struct skb _seq_state * st);

Arguments

consuned number of bytes consumed by the caller so far

dat a destination pointer for data to be returned
st state variable
Description

Reads a block of skb data at consuned relative to the lower offset specified to skb_pr epar e_se-
g_r ead. Assigns the head of the data block to dat a and returns the length of the block or O if the end
of the skb data or the upper offset has been reached.

The caller isnot required to consume all of the datareturned, i.e. consumed istypically set to the number
of bytesalready consumed and thenext call toskb_seq_r ead will return theremaining part of the block.

Note 1

The size of each block of data returned can be arbitrary, this limitation is the cost for zerocopy sequential
reads of potentially non linear data.

Note 2

Fragment lists within fragments are not implemented at the moment, state->root_skb could be replaced
with astack for this purpose.

137

Linux Networking

Name
skb_abort_seq _read — Abort a sequential read of skb data

Synopsis
voi d skb_abort _seq read (struct skb seq_state * st);

Arguments

st satevariable

Description

Must be called if skb_seq_r ead was not called until it returned O.

138

Linux Networking

Name
skb_find_text — Find atext pattern in skb data

Synopsis

unsigned int skb find text (struct sk _buff * skb, unsigned int from
unsigned int to, struct ts config * config);

Arguments
skb the buffer to look in
from search offset
to search limit

config textsearch configuration

Description

Finds a pattern in the skb data according to the specified textsearch configuration. Use
t ext sear ch_next to retrieve subsequent occurrences of the pattern. Returns the offset to the first oc-
currence or UINT_MAX if no match was found.

139

Linux Networking

Name
skb_append_datato_frags — append the user datato askb
Synopsis

int skb_append_datato frags (struct sock * sk, struct sk buff * skb,
int (*getfrag) (void *from char *to, int offset, int len, int odd,
struct sk_buff *skb), void * from int length);

Arguments
sk sock structure
skb skb structure to be appended with user data.

getfrag cal back function to be used for getting the user data
from pointer to user message iov

| engt h length of theiov message

Description

Thisprocedure append the user datain thefragment part of theskbif any page alloc failsuser thisprocedure
returns-ENOMEM

140

Linux Networking

Name

skb_pull_rcsum — pull skb and update receive checksum

Synopsis

unsi gned char * skb_pull _rcsum(struct sk _buff * skb, unsigned int |en);
Arguments

skb buffer to update

| en length of datapulled

Description

Thisfunction performs an skb_pull on the packet and updates the CHECKSUM_COMPLETE checksum.
It should be used on receive path processing instead of skb_pull unless you know that the checksum dif-
ferenceiszero (e.g., avalid IP header) or you are setting ip_summed to CHECKSUM_NONE.

141

Linux Networking

Name
skb_segment — Perform protocol segmentation on skb.

Synopsis

struct sk buff * skb_segment (struct sk buff * head skb, netdev_fea-
tures_t features);

Arguments

head_skb buffer to segment

features featuresfor the output path (see dev->features)

Description

This function performs segmentation on the given skb. It returns a pointer to thefirst in alist of new skbs
for the segments. In case of error it returns ERR_PTR(err).

142

Linux Networking

Name
skb_cow_data— Check that a socket buffer's data buffers are writable

Synopsis

int skb_cow data (struct sk buff * skb, int tailbits, struct sk _buff
** trailer);

Arguments
skb The socket buffer to check.
tail bits Amount of trailing space to be added

trailer Returned pointer to the skb wherethet ai | bi t s space begins

Description

Make sure that the data buffers attached to a socket buffer are writable. If they are not, private copies are
made of the data buffers and the socket buffer is set to use these instead.

If t ai | bits isgiven, make sure that there is space to write t ai | bi t s bytes of data beyond current
end of socket buffer. t r ai | er will be set to point to the skb in which this space begins.

The number of scatterlist elements required to completely map the COW'd and extended socket buffer
will be returned.

143

Linux Networking

Name

skb_clone sk — create clone of skb, and take reference to socket
Synopsis
struct sk_buff * skb _clone_sk (struct sk_buff * skb);

Arguments

skb theskbto clone

Description

Thisfunction createsacloneof abuffer that holdsareferenceon sk_refent. Bufferscreated viathisfunction
are meant to be returned using sock_queue_err_skb, or free viakfree_skb.

When passing buffers allocated with this function to sock_queue_err_skb it is necessary to wrap the call
with sock _hold/sock_put in order to prevent the socket from being released prior to being enqueued on
the sk_error_gueue.

144

Linux Networking

Name
skb_partial_csum_set — set up and verify partial csum values for packet
Synopsis
bool skb_partial _csumset (struct sk _buff * skb, ul6 start, ul6 off);
Arguments
skb the skb to set
start thenumber of bytes after skb->data to start checksumming.
of f the offset from start to place the checksum.
Description

For untrusted partially-checksummed packets, we need to make sure the values for skb->csum_start and
skb->csum_offset are valid so we don't oops.

This function checks and sets those values and skb->ip_summed: if this returns false you should drop the
packet.

145

Linux Networking

Name
skb_checksum_setup — set up partial checksum offset

Synopsis
i nt skb_checksum setup (struct sk _buff * skb, bool recalcul ate);
Arguments

skb the skb to set up

recal cul at e if true the pseudo-header checksum will be recal cul ated

146

Linux Networking

Name

skb_checksum_trimmed — validate checksum of an skb

Synopsis

struct sk_buff * skb _checksumtrimed (struct sk_buff * skb, unsigned
int transport _len, _ sunil6(*skb_chkf) (struct sk buff *skb));

Arguments
skb the skb to check
transport | en thedatalength beyond the network header

skb_chkf checksum function to use

Description

Appliesthe given checksum function skb_chkf to the provided skb. Returns achecked and maybe trimmed
skb. Returns NULL on error.

If the skb has data beyond the given transport length, then atrimmed & cloned skbis checked and returned.

Caller needsto set the skb transport header and free any returned skb if it differs from the provided skb.

147

Linux Networking

Name
skb_try coalesce — try to merge skb to prior one

Synopsis

bool skb try coal esce (struct sk buff * to, struct sk buff * from bool
* fragstolen, int * delta_truesize);

Arguments
to prior buffer
from buffer to add
fragstol en pointer to boolean

delta_truesi ze how much morewas alocated than was requested

148

Linux Networking

Name
skb_scrub_packet — scrub an skb

Synopsis

voi d skb_scrub_packet (struct sk_buff * skb, bool xnet);

Arguments
skb buffer to clean

xnet packet iscrossing netns

Description

skb_scrub_packet can be used after encapsulating or decapsulting a packet into/from a tunnel. Some in-
formation have to be cleared during these operations. skb_scrub_packet can also be used to clean a skb
before injecting it in another namespace (xnet == true). We haveto clear all information in the skb that
could impact namespace isolation.

149

Linux Networking

Name
skb_gso_transport_seglen — Return length of individual segments of a gso packet

Synopsis
unsi gned int skb _gso transport_seglen (const struct sk _buff * skb);

Arguments

skb GSO skb

Description

skb_gso_transport_seglen is used to determine the real size of the individual segments, including Layer4
headers (TCP/UDP).

The MAC/L2 or network (1P, IPv6) headers are not accounted for.

150

Linux Networking

Name
alloc_skb_with_frags — allocate skb with page frags

Synopsis

struct sk _buff * alloc_skb with frags (unsigned |ong header |en, un-
signed | ong data_| en, int max_page_order, int * errcode, gfp_t gf p_mask);

Arguments
header | en size of linear part
data_l en needed length in frags

max_page_order max page order desired.

errcode pointer to error code if any
of p_nmask alocation mask
Description

This can be used to allocate a paged skb, given amaximal order for frags.

151

Linux Networking

Name
sk_ns_capable — General socket capability test

Synopsis

bool sk _ns _capable (const struct sock * sk, struct user_ nanespace *
user_ns, int cap);

Arguments
sk Socket to use a capability on or through
user _ns The user namespace of the capability to use
cap The capability to use

Description

Test to see if the opener of the socket had when the socket was created and the current process has the
capability cap in the user namespaceuser _ns.

152

Linux Networking

Name
sk_capable — Socket global capability test
Synopsis
bool sk _capable (const struct sock * sk, int cap);
Arguments
sk Socket to use a capability on or through
cap Theglobal capability to use
Description

Test to see if the opener of the socket had when the socket was created and the current process has the
capability cap in al user namespaces.

153

Linux Networking

Name
Sk_net_capable — Network namespace socket capability test

Synopsis

bool sk_net capable (const struct sock * sk, int cap);
Arguments

sk Socket to use a capability on or through

cap Thecapability to use

Description

Test to see if the opener of the socket had when the socket was created and the current process has the
capability cap over the network namespace the socket is a member of .

154

Linux Networking

Name

sk_set memalloc — sets SOCK_MEMALLCC
Synopsis

void sk _set _nmemalloc (struct sock * sk);
Arguments

sk socket to setit on
Description

Set SOCK_MEMALLOC on a socket for access to emergency reserves. It's the responsibility of the admin
to adjust min_free_kbytes to meet the requirements

155

Linux Networking

Name
sk_alloc — All socket objects are allocated here

Synopsis

struct sock * sk alloc (struct net * net, int famly, gfp_t priority,
struct proto * prot, int kern);

Arguments
net the applicable net namespace
fam |y protocol family

priority forallocation (GFP_KERNEL, GFP_ATOM C, etc)
pr ot struct proto associated with this new sock instance

kern isthisto be akernel socket?

156

Linux Networking

Name
sk_clone lock — clone a socket, and lock its clone
Synopsis
struct sock * sk clone |ock (const struct sock * sk, const gfp_t pri-
ority);
Arguments
sk the socket to clone

priority foralocation (G-P_KERNEL, G-P_ATOM C, €tc)

Description

Caller must unlock socket even in error path (bh_unlock _sock(newsk))

157

Linux Networking

Name
skb_page frag_refill — check that a page_frag contains enough room
Synopsis
bool skb_page frag refill (unsigned int sz, struct page frag * pfrag,
of p_t gfp);
Arguments
sz minimum size of the fragment we want to get

pfrag pointerto page frag

of p priority for memory allocation

Note

Whilethisallocator triesto use high order pages, there is no guarantee that all ocations succeed. Therefore,
sz MUST beless or equal than PAGE_SIZE.

158

Linux Networking

Name
sk_wait_data— wait for datato arrive at Sk_receive_queue
Synopsis
int sk wait_data (struct sock * sk, long * tinmeo, const struct sk _buff
* skb);
Arguments
sk sock to wait on

ti meo for how long

skb last skb seen on sk_receive_queue

Description

Now socket state including sk->sk_err is changed only under lock, hence we may omit checks after join-
ing wait queue. We check receive queue before schedul e only as optimization; it is very likely that
rel ease_sock added new data.

159

Linux Networking

Name
__sk_mem_schedule— increase sk_forward_alloc and memory_allocated
Synopsis
int sk _memschedule (struct sock * sk, int size, int kind);
Arguments
sk socket

si ze memory sizeto allocate

ki nd allocation type

Description

IfkindisSK_MEM_SEND, it meanswmem allocation. Otherwiseit meansrmem allocation. Thisfunction
assumes that protocols which have memory pressure use sk_wmem_queued as write buffer accounting.

160

Linux Networking

Name

__sk_mem_reclaim — reclaim memory_allocated
Synopsis

void sk memreclaim(struct sock * sk, int anount);
Arguments

sk socket

amount number of bytes (rounded down to aSK_MEM_QUANTUM multiple)

161

Linux Networking

Name

lock_sock fast — fast version of lock_sock
Synopsis

bool lock sock fast (struct sock * sk);
Arguments

sk socket

Description

This version should be used for very small section, where process wont block return false if fast path
is taken sk_lock.slock locked, owned = 0, BH disabled return true if slow path is taken sk_lock.slock

unlocked, owned = 1, BH enabled

162

Linux Networking

Name
__skb recv_datagram — Receive a datagram skbuff

Synopsis

struct sk buff * _ skb recv_datagram (struct sock * sk, unsigned int
flags, int * peeked, int * off, int * err);

Arguments
sk socket
flags MSG_flags

peeked returns non-zero if this packet has been seen before

of f an offset in bytes to peek skb from. Returns an offset within an skb where data actually starts
err error code returned
Description

Get a datagram skbuff, understands the peeking, nonblocking wakeups and possible races. This replaces
identical codein packet, raw and udp, aswell asthe IPX AX.25 and Appletalk. It also finally fixesthelong
standing peek and read race for datagram sockets. If you alter this routine remember it must be re-entrant.

This function will lock the socket if askb isreturned, so the caller needs to unlock the socket in that case
(usually by calling skb_free datagram)

* |t does not lock socket since today. This function is * free of race conditions. This measure should/
can improve * significantly datagram socket latencies at high loads, * when data copying to user space
takes lots of time. * (BTW I've just killed the last cl i in IP/IPv6/core/netlink/packet * 8) Great win.) *
--ANK (980729)

The order of the tests when we find no data waiting are specified quite explicitly by POSIX 1003.1g, don't
change them without having the standard around please.

163

Linux Networking

Name
skb_kill_datagram — Free a datagram skbuff forcibly

Synopsis

int skb_kill _datagram (struct sock * sk, struct sk _buff * skb, unsigned
int flags);

Arguments
sk socket

skb datagram skbuff

flags MSG._flags
Description

This function frees a datagram skbuff that was received by skb_recv_datagram. The flags argument must
match the one used for skb_recv_datagram.

If the MSG_PEEK flag is set, and the packet is still on the receive queue of the socket, it will be taken
off the queue before it is freed.

Thisfunction currently only disables BH when acquiring the sk_receive_queue lock. Thereforeit must not
be used in a context where that lock is acquired in an IRQ context.

It returns O if the packet was removed by us.

164

Linux Networking

Name
skb_copy_datagram_iter — Copy a datagram to an iovec iterator.

Synopsis

int skb _copy datagramiter (const struct sk _buff * skb, int offset,
struct iov_iter * to, int len);

Arguments
skb buffer to copy
of fset offset in the buffer to start copying from
to iovec iterator to copy to

I en amount of datato copy from buffer to iovec

165

Linux Networking

Name

skb_copy_datagram_from_iter — Copy a datagram from an iov_iter.

Synopsis

int skb copy datagramfrom.iter (struct sk _buff * skb, int offset,
struct iov_iter * from int len);

Arguments
skb buffer to copy
of fset offset in the buffer to start copying to
from the copy source

I en amount of datato copy to buffer from iovec

Description

Returns O or -EFAULT.

166

Linux Networking

Name

zerocopy_sg_from_iter — Build a zerocopy datagram from aniov_iter

Synopsis
int zerocopy_sg fromiter (struct sk buff * skb, struct iov_iter * from;
Arguments

skb buffer to copy

from the sourceto copy from
Description
The function will first copy up to headlen, and then pin the userspace pages and build frags through them.

Returns O, -EFAULT or -EMSGSIZE.

167

Linux Networking

Name

skb_copy_and_csum_datagram msg — Copy and checksum skb to user iovec.
Synopsis

int skb_copy and_csum datagram nmsg (struct sk buff * skb, int hlen,
struct nmsghdr * nsg);

Arguments

skb skbuff

hl en hardware length

nmsg destination
Description

Caller _must_ check that skb will fit to thisiovec.
Returns

0 - success. -EINVAL - checksum failure. -EFAULT - fault during copy.

168

Linux Networking

Name
datagram_poll — generic datagram poll

Synopsis

unsi gned int datagrampoll (struct file * file, struct socket * sock,
poll table * wait);

Arguments
file filestruct
sock socket
wai t poll table
Datagram poll

Again totally generic. This also handles sequenced packet sockets providing the socket receive queue is
only ever holding data ready to receive.

Note

when you _don't_ use this routine for this protocol, and you use a different write policy from
sock_writ eabl e then please supply your own write_space callback.

169

Linux Networking

Name

sk_stream_write_space — stream socket write_space callback.
Synopsis

void sk _streamwite_space (struct sock * sk);
Arguments

sk socket
FIXME

write proper description

170

Linux Networking

Name

sk_stream_wait_connect — Wait for a socket to get into the connected state
Synopsis

int sk streamwait_connect (struct sock * sk, long * tineo_p);
Arguments

sk sock to wait on

ti meo_p for how long to wait

Description

Must be called with the socket locked.

171

Linux Networking

Name

sk_stream_wait_memory — Wait for more memory for a socket
Synopsis

int sk streamwait_nenory (struct sock * sk, long * tineo_p);
Arguments

sk socket to wait for memory

ti meo_p for how long

Socket Filter

172

Linux Networking

Name
sk_filter_trim_cap — run a packet through a socket filter

Synopsis
int sk filter_trimcap (struct sock * sk, struct sk _buff * skb, unsigned
int cap);

Arguments

sk sock associated with sk_buff
skb buffer to filter

cap limit on how short the eBPF program may trim the packet

Description

Run the eBPF program and then cut skb->data to correct size returned by the program. If pkt_lenis0we
tosspacket. If skb->lenissmaller than pkt_len wekeep whole skb->data. Thisisthe socket level wrapper to
BPF_PROG_RUN. It returns O if the packet should be accepted or -EPERM if the packet should be tossed.

173

Linux Networking

Name
bpf_prog_create — create an unattached filter

Synopsis
int bpf _prog create (struct bpf _prog ** pfp, struct sock fprog kern *
fprog);

Arguments

pfp the unattached filter that is created
fprog thefilter program

Description

Create afilter independent of any socket. We first run some sanity checks on it to make sure it does not
explode on us later. If an error occurs or there is insufficient memory for the filter a negative errno code

is returned. On success the return is zero.

174

Linux Networking

Name

bpf_prog_create from_user — create an unattached filter from user buffer

Synopsis

i nt bpf _prog_create fromuser (struct bpf _prog ** pfp, struct sock fprog
* fprog, bpf_aux_classic_check t trans, bool save orig);

Arguments
pfp the unattached filter that is created
f prog the filter program
trans post-classic verifier transformation handler

save_ori g saveclassic BPF program

Description

This function effectively does the same as bpf _pr og_cr eat e, only that it builds up its insns buffer
from user space provided buffer. It also allows for passing abpf_aux_classic_check_t handler.

175

Linux Networking

Name
__sk_attach_filter — attach a socket filter

Synopsis

int sk attach filter (struct sock fprog * fprog, struct sock * sk,
bool | ocked);

Arguments
fprog thefilter program
sk the socket to use

| ocked --undescribed --

Description
Attach the user's filter code. We first run some sanity checks on it to make sure it does not explode on

us later. If an error occurs or there is insufficient memory for the filter a negative errno code is returned.
On success the return is zero.

Generic Network Statistics

176

Linux Networking

Name
struct gnet_stats basic — byte/packet throughput statistics

Synopsis
struct gnet_stats basic {
___u6b4 bhytes;

__u32 packets;
s

Members

bytes number of seen bytes

packets number of seen packets

177

Linux Networking

Name
struct gnet_stats rate est — rate estimator
Synopsis
struct gnet_stats rate_est {
__u32 bps;
__U32 pps;
s
Members

bps current byte rate

pps current packet rate

178

Linux Networking

Name
struct gnet_stats rate est64 — rate estimator
Synopsis
struct gnet_stats rate est64 {
__u64 bps;
__u64 pps;
b
Members

bps current byte rate

pps current packet rate

179

Linux Networking

Name
struct gnet_stats queue — queuing statistics
Synopsis
struct gnet_stats_queue {
_u32 glen;
__u32 backl og;
__u32 drops;

__u32 regueues;
_u32 overlimts;

b
Members

glen

backlog

drops

requeues

overlimits

queue length

backlog size of queue
number of dropped packets
number of requeues

number of enqueues over the limit

180

Linux Networking

Name
struct gnet_estimator — rate estimator configuration

Synopsis

struct gnet_estimtor ({
signed char interval;
unsi gned char ewra_| og;

} y
Members
interval sampling period

ewma log thelog of measurement window weight

181

Linux Networking

Name

gnet_stats start_copy_compat — start dumping procedure in compatibility mode

Synopsis

int gnet _stats start_copy_conpat (struct sk _buff * skb, int type, int

tc_stats_type,
d);

Arguments
skb
type
tc_stats_type
xstats_type

| ock

d

Description

int xstats type, spinlock t * |ock, struct gnet_dunp *

socket buffer to put statistics TLVsinto

TLV typefor top level statistic TLV

TLV type for backward compatibility struct tc_stats TLV
TLV type for backward compatibility xstats TLV
statistics lock

dumping handle

Initializes the dumping handle, grabs the statistic lock and appends an empty TLV header to the socket
buffer for use a container for al other statistic TLVS.

The dumping handle is marked to be in backward compatibility mode telling all gnet st at -
s_copy_ XXX functionsto fill alocal copy of struct tc_stats.

Returns 0 on success or -1 if the room in the socket buffer was not sufficient.

182

Linux Networking

Name
gnet_stats start_copy — start dumping procedure in compatibility mode

Synopsis

int gnet _stats start_copy (struct sk buff * skb, int type, spinlock_t
* | ock, struct gnet_dunp * d);

Arguments
skb socket buffer to put statistics TLVsinto
type TLV typefortopleve statistic TLV
| ock statisticslock

d dumping handle

Description

Initializes the dumping handle, grabs the statistic lock and appends an empty TLV header to the socket
buffer for use a container for all other statistic TLVS.

Returns 0 on success or -1 if the room in the socket buffer was not sufficient.

183

Linux Networking

Name
gnet_stats copy_basic — copy basic statistics into statistic TLV

Synopsis

int gnet _stats copy_basic (struct gnet_dunp * d, struct gnet_stats_ ba-
sic_cpu __percpu * cpu, struct gnet_stats_basic_packed * b);

Arguments
d dumping handle
cpu -- undescribed --
b basic statistics
Description
Appends the basic statisticsto thetop level TLV created by gnet _stats_start _copy.

Returns 0 on success or -1 with the statistic lock released if the room in the socket buffer was not sufficient.

184

Linux Networking

Name
gnet_stats copy_rate est — copy rate estimator statisticsinto statistics TLV

Synopsis

int gnet_stats_copy rate est (struct gnet_dunp * d, const struct gnet_s-
tats_basic_packed * b, struct gnet_stats rate est64 * r);

Arguments

d dumping handle

b basic statistics

r rate estimator statistics
Description

Appends the rate estimator statisticsto thetop level TLV created by gnet _stats_start _copy.

Returns 0 on success or -1 with the statistic lock released if the room in the socket buffer was not sufficient.

185

Linux Networking

Name
gnet_stats copy_queue — copy queue statistics into statistics TLV
Synopsis
int gnet_stats _copy_queue (struct gnet _dunp * d, struct gnet_stats_queue
__percpu * cpu_q, struct gnet_stats_queue * g, __u32 glen);
Arguments
d dumping handle

Cpu_(Q per cpu queue statistics
q gueue statistics

gl en queuelength statistics

Description

Appends the queue statistics to the top level TLV created by gnet _stats_start _copy. Using per
cpu queue statistics if they are available.

Returns 0 on success or -1 with the statistic lock released if theroom in the socket buffer was not sufficient.

186

Linux Networking

Name
gnet_stats copy_app — copy application specific statisticsinto statistics TLV

Synopsis

int gnet stats copy_app (struct gnet_dunp * d, void * st, int |en);
Arguments

d dumping handle

st application specific statistics data

| en length of data

Description

Appends the application specific statisticsto thetop level TLV createdby gnet _stats_start _copy
and remembers the datafor XSTATS if the dumping handleis in backward compatibility mode.

Returns 0 on success or -1 with the statistic lock released if the room in the socket buffer was not sufficient.

187

Linux Networking

Name
gnet_stats finish_copy — finish dumping procedure

Synopsis

int gnet _stats finish copy (struct gnet_dunp * d);

Arguments

d dumping handle

Description

Correctsthe length of thetop level TLV to include al TLVsadded by gnet _st ats_copy_XXXcalls.
Addsthebackward compatibility TLVsif gnet _stats_start_copy_conpat wasused andreleases

the statistics lock.

Returns 0 on success or -1 with the statistic lock released if theroom in the socket buffer was not sufficient.

188

Linux Networking

Name

gen_new_estimator — create a new rate estimator
Synopsis
int gen_new estimator (struct gnet_stats basic_packed * bstats, struct

gnet _stats_basic_cpu __percpu * cpu_bstats, struct gnet_stats_rate_es-
t64 * rate_est, spinlock t * stats lock, struct nlattr * opt);

Arguments
bstats basic statistics
cpu_bstats --undescribed --
rate_est rate estimator statistics
stats_| ock datisticslock

opt rate estimator configuration TLV

Description

Createsanew rate estimator with bstats as source and rate_est as destination. A new timer with theinterval
specified in the configuration TLV is created. Upon each interval, the latest statistics will be read from
bstats and the estimated rate will be stored in rate_est with the statistics lock grabbed during this period.

Returns 0 on success or a negative error code.

189

Linux Networking

Name
gen_kill_estimator — remove a rate estimator
Synopsis
void gen kill _estimator (struct gnet _stats_basic_packed * bstats, struct

ghet _stats rate _est64 * rate_est);

Arguments
bstats basic statistics

rate_est rateestimator statistics

Description

Removes the rate estimator specified by bstats and rate_est.

Note

Caller should respect an RCU grace period before freeing stats |ock

190

Linux Networking

Name

gen_replace_estimator — replace rate estimator configuration

Synopsis

int gen_replace estimator (struct gnet_stats basic_packed * bstats,
struct gnet_stats basic_cpu _ _percpu * cpu_bstats, struct gnet_stat-
s rate _est64 * rate_est, spinlock t * stats lock, struct nlattr * opt);

Arguments
bstats basic statistics
cpu_bstats --undescribed --
rate_est rate estimator statistics

stats_| ock datisticslock

opt rate estimator configuration TLV

Description
Replaces the configuration of arate estimator by callinggen_ki | | _esti mat or andgen_new_es-
timator.

Returns 0 on success or a negative error code.

191

Linux Networking

Name

gen_estimator_active — test if estimator is currently in use
Synopsis

bool gen_estimator_active (const struct gnet_stats_basic_packed *
bstats, const struct gnet_stats_rate_est64 * rate_est);

Arguments
bstats basic statistics

rate_est rateestimator statistics

Description

Returnstrueif estimator is active, and false if not.

SUN RPC subsystem

192

Linux Networking

Name
xdr_encode_opaque_fixed — Encode fixed length opaque data

Synopsis

__be32 * xdr _encode_opaque_fixed (__be32 * p, const void * ptr, unsigned
i nt nbytes);

Arguments
p pointer to current position in XDR buffer.
ptr pointer to data to encode (or NULL)
nbyt es sizeof data

Description

Copy the array of data of length nbytes at ptr to the XDR buffer at position p, then align to the next 32-
bit boundary by padding with zero bytes (see RFC1832).

Note
if ptrisNULL, only the padding is performed.

Returns the updated current XDR buffer position

193

Linux Networking

Name
xdr_encode_opaque — Encode variable length opague data
Synopsis
__be32 * xdr_encode_opaque (__be32 * p, const void * ptr, unsigned int
nbyt es);
Arguments
p pointer to current position in XDR buffer.
ptr pointer to data to encode (or NULL)

nbyt es sizeof data

Description

Returns the updated current XDR buffer position

194

Linux Networking

Name

xdr_terminate_string — "\O'-terminate a string residing in an xdr_buf
Synopsis

void xdr_terminate_string (struct xdr_buf * buf, const u32 len);
Arguments

buf XDR buffer where string resides

| en length of string, in bytes

195

Linux Networking

Name
_copy_from_pages —

Synopsis

void _copy frompages (char * p, struct page ** pages, size_ t pgbase,
size t len);

Arguments
p pointer to destination
pages array of pages
pgbase offset of source data

I en length

Description

Copies data into an arbitrary memory location from an array of pages The copy is assumed to be non-
overlapping.

196

Linux Networking

Name

xdr_stream_pos — Return the current offset from the start of the xdr_stream
Synopsis
unsi gned int xdr_stream pos (const struct xdr_stream* xdr);

Arguments

xdr pointer to struct xdr_stream

197

Linux Networking

Name
xdr_init_encode — Initialize a struct xdr_stream for sending data.

Synopsis
void xdr_init_encode (struct xdr_stream * xdr, struct xdr_buf * buf,
__be32 * p);

Arguments

xdr pointer to xdr_stream struct
buf pointer to XDR buffer in which to encode data

p current pointer inside XDR buffer

Note

at the moment the RPC client only passes the length of our scratch buffer in the xdr_buf's header kvec.
Previously this meant we needed to call xdr _adj ust _i ovec after encoding the data. With the new
scheme, the xdr_stream manages the details of the buffer length, and takes care of adjusting the kvec
length for us.

198

Linux Networking

Name

xdr_commit_encode — Ensure all datais written to buffer
Synopsis
void xdr_conmit_encode (struct xdr_stream* xdr);

Arguments

xdr pointer to xdr_stream

Description

We handle encoding across page boundaries by giving the caller a temporary location to write to, then
later copying the datainto place; xdr_commit_encode does that copying.

Normally the caller doesn't need to call thisdirectly, asthe following xdr_reserve_space will doit. But an
explicit call may berequired at the end of encoding, or any other time when the xdr_buf datamight be read.

199

Linux Networking

Name

xdr_reserve_space — Reserve buffer space for sending

Synopsis

__be32 * xdr_reserve_space (struct xdr_stream* xdr, size_t nbytes);
Arguments

xdr pointer to xdr_stream

nbyt es number of bytesto reserve

Description

Checks that we have enough buffer space to encode 'nbytes more bytes of data. If so, update the total
xdr_buf length, and adjust the length of the current kvec.

200

Linux Networking

Name

xdr_truncate_encode — truncate an encode buffer
Synopsis

void xdr_truncate_encode (struct xdr_stream* xdr, size_ t |en);
Arguments

xdr pointer to xdr_stream

I en new length of buffer

Description

Truncates the xdr stream, so that xdr->buf->len == len, and xdr->p points at offset len from the start of
the buffer, and head, tail, and page lengths are adjusted to correspond.

If this means moving xdr->p to a different buffer, we assume that that the end pointer should be set to the
end of the current page, except in the case of the head buffer when we assume the head buffer's current
length represents the end of the available buffer.

Thisis *not* safe to use on a buffer that already has inlined page cache pages (as in a zero-copy server
read reply), except for the simple case of truncating from one position in the tail to another.

201

Linux Networking

Name

xdr_restrict_buflen — decrease available buffer space
Synopsis

int xdr_restrict_buflen (struct xdr_stream* xdr, int newbuflen);
Arguments

xdr pointer to xdr_stream

newbuf | en new maximum number of bytes available

Description

Adjust our idea of how much space is available in the buffer. If we've already used too much spacein the
buffer, returns -1. If the available space is already smaller than newbuflen, returns 0 and does nothing.
Otherwise, adjusts xdr->buf->buflen to newbuflen and ensures xdr->end is set at most offset newbuflen
from the start of the buffer.

202

Linux Networking

Name
xdr_write_pages— Insert alist of pagesinto an XDR buffer for sending

Synopsis

void xdr_wite pages (struct xdr_stream * xdr, struct page ** pages,
unsi gned int base, unsigned int |en);

Arguments
xdr pointer to xdr_stream
pages list of pages
base offset of first byte

I en length of datain bytes

203

Linux Networking

Name
xdr_init_decode — Initialize an xdr_stream for decoding data.

Synopsis
void xdr _init_decode (struct xdr_stream * xdr, struct xdr_buf * buf,
__be32 * p);

Arguments

xdr pointer to xdr_stream struct
buf pointer to XDR buffer from which to decode data

p current pointer inside XDR buffer

204

Linux Networking

Name

xdr_init_decode _pages— Initialize an xdr_stream for decoding data.
Synopsis

void xdr_init_decode_pages (struct xdr_stream* xdr, struct xdr_buf *
buf, struct page ** pages, unsigned int len);

Arguments
xdr pointer to xdr_stream struct
buf pointer to XDR buffer from which to decode data
pages list of pagesto decode into

I en length in bytes of buffer in pages

205

Linux Networking

Name
xdr_set_scratch_buffer — Attach a scratch buffer for decoding data.
Synopsis
voi d xdr_set _scratch_buffer (struct xdr_stream* xdr, void * buf, size_t
bufl en);
Arguments
xdr pointer to xdr_stream struct
buf pointer to an empty buffer

bufl en sizeof 'buf’

Description

The scratch buffer is used when decoding from an array of pages. If anxdr _i nl i ne_decode call spans
across page boundaries, then we copy the data into the scratch buffer in order to alow linear access.

206

Linux Networking

Name

xdr_inline_decode — Retrieve XDR datato decode
Synopsis

__be32 * xdr_inline_decode (struct xdr_stream* xdr, size_ t nbytes);
Arguments

xdr pointer to xdr_stream struct

nbyt es number of bytes of datato decode

Description

Check if the input buffer islong enough to enable us to decode 'nbytes more bytes of data starting at the
current position. If so return the current pointer, then update the current pointer position.

207

Linux Networking

Name
xdr_read pages— Ensure page-based XDR datato decodeis aligned at current pointer position

Synopsis

unsi gned i nt xdr_read_pages (struct xdr_stream* xdr, unsigned int |en);
Arguments

xdr pointer to xdr_stream struct

I en number of bytes of page data

Description

Moves data beyond the current pointer position from the XDR head[] buffer into the page list. Any data
that lies beyond current position + “len” bytesis moved into the XDR tail[].

Returns the number of XDR encoded bytes now contained in the pages

208

Linux Networking

Name
xdr_enter page — decode data from the XDR page

Synopsis

voi d xdr_enter _page (struct xdr_stream* xdr, unsigned int len);
Arguments

xdr pointer to xdr_stream struct

I en number of bytes of page data

Description

Moves data beyond the current pointer position from the XDR head[] buffer into the page list. Any data
that lies beyond current position + “len” bytes is moved into the XDR tail[]. The current pointer is then

repositioned at the beginning of the first XDR page.

209

Linux Networking

Name
xdr_buf _subsegment — set subbuf to a portion of buf

Synopsis

i nt xdr_buf subsegnent (struct xdr_buf * buf, struct xdr_buf * subbuf,
unsi gned int base, unsigned int |en);

Arguments
buf an xdr buffer

subbuf theresult buffer

base beginning of range in bytes
I en length of rangein bytes
Description

setssubbuf to an xdr buffer representing the portion of buf of length| en starting at offset base.
buf and subbuf may be pointers to the same struct xdr_buf.

Returns -1 if base of length are out of bounds.

210

Linux Networking

Name

xdr_buf_trim — lop at most “len” bytes off the end of “buf”

Synopsis
void xdr_buf trim(struct xdr_buf * buf, unsigned int len);
Arguments

buf buf to be trimmed

| en number of bytesto reduce “buf” by

Description

Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note that it's possible that well
trim less than that amount if the xdr_buf istoo small, or if (for instance) it'sal in the head and the parser

has already read too far into it.

211

Linux Networking

Name
svc_print_addr — Format rq_addr field for printing

Synopsis
char * svc_print_addr (struct svc_rqgst * rgqstp, char * buf, size t len);
Arguments

rqstp svc rgst struct containing address to print
buf target buffer for formatted address

[en length of target buffer

212

Linux Networking

Name

svc_reserve — change the space reserved for the reply to a regquest.
Synopsis

void svc_reserve (struct svc_rgst * rqgstp, int space);
Arguments

rqstp Therequestin question

space new max space to reserve

Description

Each request reserves some space on the output queue of the transport to make sure the reply fits. This
function reduces that reserved space to be the amount of space used already, plusspace.

213

Linux Networking

Name

svc_find_xprt — find an RPC transport instance

Synopsis

*

struct svc_xprt * svc_find xprt (struct svc_serv * serv, const char
xcl _nane, struct net * net, const sa family t af, const unsigned short

port);

Arguments
serv pointer to svc_serv to search

xcl _nane C string containing transport's class name

net owner net pointer

af Address family of transport's local address

port transport's | P port number
Description

Return the transport instance pointer for the endpoint accepting connections/peer traffic from the specified
transport class, address family and port.

Specifying 0 for the address family or port is effectively awild-card, and will result in matching the first
transport in the service's list that has a matching class name.

214

Linux Networking

Name
svc_xprt_names — format a buffer with alist of transport names
Synopsis
int svc_xprt_nanes (struct svc_serv * serv, char * buf, const int
bufl en);
Arguments
serv pointer to an RPC service
buf pointer to abuffer to befilled in

buf | en length of buffer to befilled in

Description
Fillsin buf with astring containing alist of transport names, each name terminated with \n'.

Returns positive length of the filled-in string on success; otherwise a negative errno value is returned if
an error occurs.

215

Linux Networking

Name

Xprt_register_transport — register a transport implementation
Synopsis
int xprt_register_transport (struct xprt_class * transport);

Arguments

transport transport to register

Description

If atransport implementation is loaded as a kernel module, it can call this interface to make itself known
to the RPC client.

transport successfully registered -EEXIST: transport already registered -EINVAL: transport module being
unloaded

216

Linux Networking

Name

Xprt_unregister_transport — unregister a transport implementation

Synopsis

int xprt_unregister _transport (struct xprt_class * transport);

Arguments

transport transport to unregister

transport successfully unregistered -ENOENT: transport never registered

217

Linux Networking

Name

xprt_load_transport — load atransport implementation

Synopsis

int xprt_load transport (const char * transport_nane);

Arguments

transport _nane transport to load

transport successfully loaded -ENOENT: transport module not available

218

Linux Networking

Name

xXprt_reserve xprt — serialize write access to transports

Synopsis
int xprt_reserve xprt (struct rpc_xprt * xprt, struct rpc_task * task);
Arguments

Xprt pointer to the target transport

t ask task that isrequesting access to the transport

Description

This prevents mixing the payload of separate requests, and preventstransport connects from colliding with
writes. No congestion control is provided.

219

Linux Networking

Name

xprt_release xprt — allow other requests to use a transport

Synopsis

void xprt_release xprt (struct rpc_xprt * xprt, struct rpc_task * task);
Arguments

xprt transport with other tasks potentially waiting

t ask task that isreleasing access to the transport

Description

Note that “task” can be NULL. No congestion control is provided.

220

Linux Networking

Name
xprt_release xprt_cong — allow other requests to use a transport

Synopsis
void xprt_rel ease_xprt_cong (struct rpc_xprt * xprt, struct rpc_task
* task);

Arguments

xprt transport with other tasks potentially waiting

t ask task that isreleasing access to the transport

Description

Note that “task” can be NULL. Ancther task is awoken to use the transport if the transport's congestion
window allowsit.

221

Linux Networking

Name

xprt_release rgst_cong — housekeeping when request is complete
Synopsis

void xprt_release rqgst_cong (struct rpc_task * task);
Arguments

task RPC request that recently completed
Description

Useful for transports that require congestion control.

222

Linux Networking

Name
xprt_adjust_cwnd — adjust transport congestion window
Synopsis
void xprt_adjust_cwnd (struct rpc_xprt * xprt, struct rpc_task * task,
int result);
Arguments
Xprt pointer to xprt

t ask recently completed RPC request used to adjust window

result result code of completed RPC request

Description

The transport code maintains an estimate on the maximum number of out- standing RPC requests, using a
smoothed version of the congestion avoidance implemented in 44BSD. Thisisbasically the VVan Jacobson

congestion algorithm
If aretransmit occurs, the congestion window is halved; otherwise, it isincremented by 1/cwnd when

- areply isreceived and - a full number of requests are outstanding and - the congestion window hasn't
been updated recently.

223

Linux Networking

Name
xprt_wake pending_tasks — wake all tasks on atransport's pending queue

Synopsis
voi d xprt_wake pendi ng tasks (struct rpc_xprt * xprt, int status);
Arguments

Xprt transport with waiting tasks

st at us result codeto plant in each task before waking it

224

Linux Networking

Name
xprt_wait_for_buffer _space — wait for transport output buffer to clear

Synopsis
void xprt_wait for_ buffer space (struct rpc_task * task, rpc_action
action);

Arguments

t ask task to be put to sleep

action function pointer to be executed after wait

Description

Note that we only set the timer for the case of RPC_| S_SOFT, since we don't in general want to force a
socket disconnection due to an incomplete RPC call transmission.

225

Linux Networking

Name

xprt_write_space — wake the task waiting for transport output buffer space
Synopsis

void xprt_wite space (struct rpc_xprt * xprt);
Arguments

xprt transport with waiting tasks
Description

Can be called in a soft IRQ context, so xprt_write_space never sleeps.

226

Linux Networking

Name

xprt_set_retrans_timeout_def — set arequest's retransmit timeout

Synopsis

void xprt_set _retrans_tineout _def (struct rpc_task * task);

Arguments
t ask task whosetimeout isto be set

Description

Set arequest's retransmit timeout based on the transport's default timeout parameters. Used by transports
that don't adjust the retransmit timeout based on round-trip time estimation.

227

Linux Networking

Name

xprt_set_retrans_timeout_rtt — set arequest's retransmit timeout
Synopsis
void xprt_set retrans_tineout _rtt (struct rpc_task * task);

Arguments

t ask task whosetimeout isto be set

Description

Set arequest's retransmit timeout using the RTT estimator.

228

Linux Networking

Name

xprt_disconnect_done — mark atransport as disconnected
Synopsis
voi d xprt _disconnect _done (struct rpc_xprt * xprt);

Arguments

xprt transport to flag for disconnect

229

Linux Networking

Name

xprt_lookup_rgst — find an RPC request corresponding to an XI1D
Synopsis

struct rpc_rqst * xprt_| ookup rqgst (struct rpc_xprt * xprt, _ be32 xid);
Arguments

xprt transport on which the original request was transmitted

xi d RPC XID of incoming reply

230

Linux Networking

Name
xprt_complete rgst — called when reply processing is complete
Synopsis
void xprt_conplete rqgst (struct rpc_task * task, int copied);
Arguments
t ask RPC request that recently completed
copi ed actua number of bytes received from the transport
Description

Caller holds transport lock.

231

Linux Networking

Name

rpc_wake up — wake up al rpc_tasks
Synopsis

void rpc_wake up (struct rpc_wait_queue * queue);
Arguments

queue rpc_wait_gueue on which the tasks are sleeping
Description

Grabs queue->lock

232

Linux Networking

Name
rpc_wake up_status— wake up all rpc_tasks and set their status value.
Synopsis
void rpc_wake up_status (struct rpc_wait_queue * queue, int status);
Arguments
gqueue rpc_wait_queue on which the tasks are sleeping
status statusvalueto set
Description

Grabs queue->lock

233

Linux Networking

Name
rpc_malloc — allocate an RPC buffer

Synopsis
void * rpc_nalloc (struct rpc_task * task, size t size);
Arguments

t ask RPC task that will use this buffer

si ze requested bytesize

Description

To prevent rpciod from hanging, this allocator never slegps, returning NULL and suppressing warning if
the request cannot be serviced immediately. The caller can arrangeto sleep in away that is safe for rpciod.

Most requests are 'small’ (under 2KiB) and can be serviced from a mempool, ensuring that NFS reads and
writes can aways proceed, and that there is good locality of reference for these buffers.

In order to avoid memory starvation triggering more writebacks of NFS requests, we avoid using GFP_K-
ERNEL.

234

Linux Networking

Name

rpc_free — free buffer allocated viarpc_malloc
Synopsis
void rpc_free (void * buffer);

Arguments

buf f er buffer to free

235

Linux Networking

Name
xdr_skb read bits— copy some data bits from skb to internal buffer

Synopsis

size t xdr_skb read bits (struct xdr_skb reader * desc, void * to,
size t len);

Arguments
desc sk_buff copy helper
to copy destination

[en number of bytesto copy

Description

Possibly called several timesto iterate over an sk_buff and copy data out of it.

236

Linux Networking

Name
xdr_partial_copy_from_skb — copy data out of an skb

Synopsis

ssize_t xdr_partial_copy fromskb (struct xdr_buf * xdr, unsigned int
base, struct xdr_skb reader * desc, xdr_skb read actor copy_actor);

Arguments
xdr target XDR buffer
base starting offset
desc sk_buff copy helper

copy_act or virtual method for copying data

237

Linux Networking

Name

csum_partial_copy_to_xdr — checksum and copy data

Synopsis

int csumpartial _copy to xdr (struct xdr_buf * xdr, struct sk buff *
skb);

Arguments
xdr target XDR buffer
skb source skb

Description

We have set things up such that we perform the checksum of the UDP packet in parallel with the copies
into the RPC client iovec. -DaveM

238

Linux Networking

Name

rpc_aloc_iostats — allocate an rpc_iostats structure
Synopsis
struct rpc_iostats * rpc_alloc_iostats (struct rpc_clnt * clnt);

Arguments

cl nt RPC program, version, and xprt

239

Linux Networking

Name

rpc_free iostats — release an rpc_iostats structure
Synopsis
void rpc_free iostats (struct rpc_iostats * stats);

Arguments

stats doomed rpc_iostats structure

240

Linux Networking

Name
rpc_count_iostats metrics — tally up per-task stats

Synopsis

void rpc_count iostats nmetrics (const struct rpc_task * task, struct
rpc_iostats * op_netrics);

Arguments

t ask completed rpc_task

op_netrics dat structure for OP that will accumulate stats fromt ask

241

Linux Networking

Name
rpc_count_iostats — tally up per-task stats

Synopsis
void rpc_count _iostats (const struct rpc_task * task, struct rpc_iostats
* stats);

Arguments

task completed rpc_task

stats array of stat structures

Description

Usesthe statidx from t ask

242

Linux Networking

Name
rpc_queue_upcall — queue an upcall message to userspace

Synopsis
int rpc_queue_upcall (struct rpc_pipe * pipe, struct rpc_pipe_nsg *
nsg) ;

Arguments

pi pe upcal pipe on which to queue given message
nNsg message to queue

Description

Cadl with an i node created by r pc_nkpi pe to queue an upcall. A userspace process may then later
read the upcall by performing aread on an open file for thisinode. It is up to the caller to initialize the
fields of msg (other than ns g->list) appropriately.

243

Linux Networking

Name

rpc_mkpipe_dentry — make an rpc_pipefs file for kernel <->userspace communication
Synopsis

struct dentry * rpc_nkpipe dentry (struct dentry * parent, const char
* nanme, void * private, struct rpc_pipe * pipe);

Arguments

par ent dentry of directory to create new “pipe” in
nane name of pipe
private private datato associate with the pipe, for the caller'suse

pi pe rpc_pipe containing input parameters
Description

Data is made available for userspace to read by callsto r pc_queue_upcal | . The actua reads will
result in calls to ops->upcall, which will be called with the file pointer, message, and userspace buffer
to copy to.

Writes can come at any time, and do not necessarily have to be responses to upcalls. They will result in
callsto msg->downcall.

The pri vat e argument passed here will be available to al these methods from the file pointer, via
RPC _I(file_inode(file))->private.

244

Linux Networking

Name

rpc_unlink — remove a pipe
Synopsis

int rpc_unlink (struct dentry * dentry);
Arguments

dentry dentry for the pipe, as returned from rpc_mkpipe
Description

After this call, lookups will no longer find the pipe, and any attempts to read or write using preexisting
opens of the pipe will return -EPIPE.

245

Linux Networking

Name
rpc_init_pipe_dir_head — initialise a struct rpc_pipe_dir_head

Synopsis
void rpc_init_pipe dir_head (struct rpc_pipe _dir_head * pdh);
Arguments

pdh pointer to struct rpc_pipe _dir_head

246

Linux Networking

Name
rpc_init_pipe_dir_object — initialise a struct rpc_pipe dir_object

Synopsis

void rpc_init_pipe dir_object (struct rpc_pipe_dir_object * pdo, const
struct rpc_pipe_dir_object _ops * pdo_ops, void * pdo_data);

Arguments
pdo pointer to struct rpc_pipe_dir_object
pdo_ops pointer to const struct rpc_pipe dir_object_ops

pdo_dat a pointer to caller-defined data

247

Linux Networking

Name
rpc_add pipe dir_object — associate arpc_pipe_dir_object to adirectory

Synopsis

int rpc_add pi pe_dir_object (struct net * net, struct rpc_pi pe_dir_head
* pdh, struct rpc_pipe_dir_object * pdo);

Arguments
net pointer to struct net
pdh pointer to struct rpc_pipe dir_head

pdo pointer to struct rpc_pipe_dir_object

248

Linux Networking

Name
rpc_remove _pipe dir_object — remove arpc_pipe dir_object from a directory
Synopsis
voi d rpc_renove_pi pe_dir_object (struct net * net, st ruct

rpc_pi pe_dir_head * pdh, struct rpc_pipe_dir_object * pdo);
Arguments

net pointer to struct net

pdh pointer to struct rpc_pipe dir_head

pdo pointer to struct rpc_pipe_dir_object

249

Linux Networking

Name
rpc_find_or_alloc_pipe dir_object —

Synopsis
struct rpc_pipe_dir_object * rpc_find or_alloc_pipe_dir_object (struct
net * net, struct rpc _pipe dir_head * pdh, int (*match) (struct

rpc_pipe_dir_object *, void *), struct rpc_pipe_dir_object *(*alloc)
(void *), void * data);

Arguments
net pointer to struct net
pdh pointer to struct rpc_pipe dir_head
mat ch match struct rpc_pipe_dir_object to data
al | oc adlocate anew struct rpc_pipe dir_object

data user defined datafor mat ch andal | oc

250

Linux Networking

Name

rpch_getport_async — obtain the port for a given RPC service on a given host
Synopsis

void rpcb_getport _async (struct rpc_task * task);
Arguments

task task that iswaiting for portmapper request
Description

This one can be called for an ongoing RPC request, and can be used in an async (rpciod) context.

251

Linux Networking

Name

rpc_create — create an RPC client and transport with one call

Synopsis

struct rpc_clnt * rpc_create (struct rpc_create_args * args);

Arguments

args rpc_clnt create argument structure

Description
Creates and initializes an RPC transport and an RPC client.

It can ping the server in order to determine if it is up, and to see if it supports this program and version.
RPC_CLNT_CREATE_NOPING disables this behavior so asynchronous tasks can also use rpc_create.

252

Linux Networking

Name

rpc_clone_client — Clone an RPC client structure

Synopsis

struct rpc_clnt * rpc_clone _client (struct rpc_clnt * clnt);

Arguments

cl nt RPC client whose parameters are copied

Description

Returns afresh RPC client or an ERR_PTR.

253

Linux Networking

Name

rpc_clone_client_set_auth — Clone an RPC client structure and set its auth

Synopsis

struct rpc_clnt * rpc_clone client _set _auth (struct rpc_clnt * clnt,
rpc_authflavor_t flavor);

Arguments
cl nt RPC client whose parameters are copied

fl avor security flavor for new client

Description

Returns afresh RPC client or an ERR_PTR.

254

Linux Networking

Name

rpc_switch_client_transport —
Synopsis

int rpc_switch client _transport (struct rpc_clnt * «clnt, struct
Xprt_create * args, const struct rpc_timeout * tineout);

Arguments
cl nt pointer to astruct rpc_clnt
args pointer to the new transport arguments

ti meout pointer to the new timeout parameters

Description

This function allows the caller to switch the RPC transport for the rpc_clnt structure ‘cint' to allow it to
connect to a mirrored NFS server, for instance. It assumes that the caller has ensured that there are no
active RPC tasks by using some form of locking.

Returns zero if “cInt” is now using the new xprt. Otherwise a negative errno is returned, and “cInt” con-
tinues to use the old xprt.

255

Linux Networking

Name

rpc_bind_new_program — bind a new RPC program to an existing client

Synopsis

struct rpc_clnt * rpc_bind new program (struct rpc_clnt * old, const
struct rpc_program* program u32 vers);

Arguments
old old rpc_client
program rpcprogram to set

vers rpc program version

Description

Clones the rpc client and sets up a new RPC program. Thisis mainly of use for enabling different RPC
programs to share the same transport. The Sun NFSv2/v3 ACL protocol can do this.

256

Linux Networking

Name
rpc_run_task — Allocate anew RPC task, then run rpc_execute against it

Synopsis
struct rpc_task * rpc_run_task (const struct rpc_task setup * task set-
up_data);

Arguments

task_setup_data pointer totask initialisation data

257

Linux Networking

Name
rpc_call_sync — Perform a synchronous RPC call

Synopsis

int rpc_call_sync (struct rpc_clnt * clnt, const struct rpc_nessage *
nsg, int flags);

Arguments
cl nt pointer to RPC client

nsg RPC call parameters

flags RPC call flags

258

Linux Networking

Name
rpc_call_async — Perform an asynchronous RPC call

Synopsis

int rpc_call _async (struct rpc_clnt * clnt, const struct rpc_nessage *
nsg, int flags, const struct rpc_call _ops * tk ops, void * data);

Arguments
cl nt pointer to RPC client
nsg RPC call parameters

flags RPCcall flags
tk_ops RPCcal ops

dat a user call data

259

Linux Networking

Name
rpc_peeraddr — extract remote peer address from clnt's xprt
Synopsis
size_ t rpc_peeraddr (struct rpc_clnt * clnt, struct sockaddr * buf,
size_t bufsize);
Arguments
cl nt RPC client structure
buf target buffer
buf si ze length of target buffer
Description

Returns the number of bytes that are actually in the stored address.

260

Linux Networking

Name

rpc_peeraddr2str — return remote peer address in printable format

Synopsis

const char * rpc_peeraddr2str (struct rpc_clnt * clnt, enum rpc_dis-
play format t format);

Arguments
cl nt RPC client structure

format addressformat

NB

the lifetime of the memory referenced by the returned pointer is the same as the rpc_xprt itself. Aslong
asthe caller uses this pointer, it must hold the RCU read lock.

261

Linux Networking

Name
rpc_localaddr — discover local endpoint address for an RPC client
Synopsis
int rpc_localaddr (struct rpc_clnt * clnt, struct sockaddr * buf, size_t
bufl en);
Arguments
cl nt RPC client structure
buf target buffer

bufl en sizeof target buffer, in bytes

Description
Returns zero and fillsin “buf” and “buflen” if successful; otherwise, a negative errno is returned.

Thisworksevenif theunderlying transport isnot currently connected, or if the upper layer never previously
provided a source address.

The result of this function call is transient

multiple calls in succession may give different results, depending on how local networking configuration
changes over time.

262

Linux Networking

Name

rpc_protocol — Get transport protocol number for an RPC client
Synopsis
int rpc_protocol (struct rpc_clnt * clnt);

Arguments

cl nt RPCclient to query

263

Linux Networking

Name
rpc_net_ns— Get the network namespace for this RPC client

Synopsis
struct net * rpc_net _ns (struct rpc_clnt * clnt);

Arguments

cl nt RPCclient to query

264

Linux Networking

Name

rpc_max_payload — Get maximum payload size for atransport, in bytes
Synopsis

size_t rpc_max_payl oad (struct rpc_clnt * clnt);
Arguments

cl nt RPCclient to query

Description

For stream transports, thisis one RPC record fragment (see RFC 1831), as we don't support multi-record
requests yet. For datagram transports, thisis the size of an |P packet minus the IP, UDP, and RPC header

sizes.

265

Linux Networking

Name

rpc_get_timeout — Get timeout for transport in units of HZ
Synopsis
unsi gned long rpc_get tinmeout (struct rpc_clnt * clnt);

Arguments

cl nt RPCclient to query

266

Linux Networking

Name

rpc_force_rebind — force transport to check that remote port is unchanged
Synopsis

void rpc_force_rebind (struct rpc_clnt * clnt);
Arguments

cl nt clienttorebind

WIMAX

267

Linux Networking

Name

wimax_msg_alloc — Create a new skb for sending a message to userspace
Synopsis

struct sk_buff * winmax_nsg_alloc (struct w nax_dev * w nmax_dev, const
char * pipe_nanme, const void * nsg, size t size, gfp_t gfp _flags);

Arguments
wi max_dev WiMAX device descriptor
pi pe_nane "named pipe" the message will be sent to
nsg pointer to the message data to send
si ze size of the message to send (in bytes), including the header.

of p_flags flagsfor memory alocation.

Returns

0 if ok, negative errno code on error

Description

Allocates an skb that will contain the message to send to user space over the messaging pipe and initializes
it, copying the payload.

Once this call isdone, you can deliver it withwi max_nsg_send.

IMPORTANT

Don'tuseskb_push/skb_pul | /skb_reser ve ontheskb, aswi max_nmsg_send depends on skb-
>data being placed at the beginning of the user message.

Unlike other WiMAX stack calls, thiscall can be used way early, even beforewi max_dev_add iscalled,
as long as the wimax_dev->net_dev pointer is set to point to a proper net_dev. Thisis so that drivers can
useit early in case they need to send stuff around or communicate with user space.

268

Linux Networking

Name

wimax_msg_data |len — Return a pointer and size of a message's payload

Synopsis

const void * winax_nsg_data |len (struct sk buff * nsg, size t * size);
Arguments

nmsg Pointer to a message created withwi max_nsg_al | oc

si ze Pointer to where to store the message's size

Description

Returns the pointer to the message data.

269

Linux Networking

Name
wimax_msg_data— Return a pointer to a message's payload

Synopsis
const void * wi nax_nmsg_data (struct sk_buff * nsg);

Arguments

nmeg Pointer to a message created withwi max_nsg_al | oc

270

Linux Networking

Name
wimax_msg_len — Return a message's payload length

Synopsis
ssize t winmax_nsg_len (struct sk _buff * nsg);

Arguments

nmeg Pointer to a message created withwi max_nsg_al | oc

271

Linux Networking

Name
wimax_msg_send — Send a pre-allocated message to user space

Synopsis
int wimax_nsg_send (struct wi nax_dev * wi max_dev, struct sk_buff * skb);

Arguments

wi max_dev WiMAX device descriptor

skb struct sk_buff returned by wi max_nsg_al | oc. Note the ownership of skb is trans-
ferred to this function.

Returns

0if ok, < 0 errno code on error

Description

Sends a free-form message that was preallocated withwi max_nsg_al | oc and filled up.

Assumes that once you pass an skb to this function for sending, it owns it and will release it when done
(on success).

IMPORTANT

Don'tuseskb_push/skb_pul | /skb_reser ve ontheskb, aswi max_nmsg_send depends on skb-
>data being placed at the beginning of the user message.

Unlike other WiMAX stack calls, thiscall can be used way early, even beforewi max_dev_add iscalled,
as long as the wimax_dev->net_dev pointer is set to point to a proper net_dev. Thisis so that drivers can
useit early in case they need to send stuff around or communicate with user space.

272

Linux Networking

Name

wimax_msg — Send a message to user space
Synopsis

int wimax_nsg (struct wi nmax_dev * w nmax_dev, const char * pipe_naneg,
const void * buf, size t size, gfp_t gfp_flags);

Arguments
wi max_dev WiMAX device descriptor (properly referenced)
pi pe_nane "named pipe" the message will be sent to
buf pointer to the message to send.
si ze size of the buffer pointed to by buf (in bytes).
of p_flags flagsfor memory alocation.

Returns

0 if ok, negative errno code on error.

Description

Sends a free-form message to user space on the devicewi nax_dev.

NOTES

Once the skb is given to this function, who will own it and will release it when done (unless it returns
error).

273

Linux Networking

Name
wimax_reset — Reset aWiMAX device

Synopsis
int winmax_reset (struct w nax_dev * w max_dev);
Arguments

wi max_dev WiMAX device descriptor

Returns

0 if ok and awarm reset was done (the device still existsin the system).

-ENODEYV if a cold/bus reset had to be done (device has disconnected and reconnected, so current handle
isnot valid any more).

-El NVAL if the deviceis not even registered.

Any other negative error code shall be considered as non-recoverable.

Description

Called when wanting to reset the device for any reason. Device is taken back to power on status.

This call blocks; on successful return, the device has completed the reset process and is ready to operate.

274

Linux Networking

Name
wimax_report_rfkill_hw — Reports changes in the hardware RF switch
Synopsis
void wi max_report rfkill _hw(struct wi nax_dev * wi nax_dev, enumw max_r -

f state state);

Arguments

wi max_dev WiMAX device descriptor

state New state of the RF Kill switch. W MAX_RF_ONradio on, W MAX_RF_OFF radio off.

Description

When the device detects a change in the state of thehardware RF switch, it must call this function to let
the WiMAX kernel stack know that the state has changed so it can be properly propagated.

The WiMAX stack caches the state (the driver doesn't need to). As well, as the change is propagated it
will come back as arequest to change the software state to mirror the hardware state.

If the device doesn't have a hardware kill switch, just report it on initialization as always on (W MAX_R-
F_ON, radio on).

275

Linux Networking

Name
wimax_report_rfkill_sw — Reports changesin the software RF switch
Synopsis
void wi max_report rfkill _sw(struct wi nax_dev * wi nax_dev, enumw max_r -

f state state);

Arguments

wi max_dev WiMAX device descriptor

state New state of the RF kill switch. W MAX_RF_ONradio on, W MAX_RF_OFF radio off.
Description

Reports changes in the software RF switch state to the WiMAX stack.

The main use is during initialization, so the driver can query the device for its current software radio kill
switch state and feed it to the system.

On the side, the device does not change the software state by itself. In practice, this can happen, as the
device might decide to switch (in software) the radio off for different reasons.

276

Linux Networking

Name
wimax_rfkill — Set the software RF switch state for aWiMAX device
Synopsis
int wmax_rfkill (struct w max_dev * w max_dev,
state);
Arguments

wi max_dev WiMAX device descriptor

state New RF state.

Returns

enum wi nmax_rf _state

>= 0 toggle state if ok, < 0 errno code on error. The toggle state is returned as a bitmap, bit 0 being the

hardware RF state, bit 1 the software RF state.

0 means disabled (W MAX_RF_ON, radio on), 1 means enabled radio off (W MAX_RF_CFF).

Description

Called by the user when he wantsto request the WiMAX radio to be switched on (W MAX_RF_ON) or off
(W MAX_RF_OFF). With W MAX_RF_QUERY, just the current state is returned.

NOTE

This call will block until the operation is complete.

277

Linux Networking

Name
wimax_state change — Set the current state of aWiMAX device

Synopsis
void wi nmax_state change (struct w nax_dev * w max_dev, enum w nmax_st
new state);

Arguments

wi max_dev WiMAX device descriptor (properly referenced)

new st ate New stateto switchto

Description
Thisimplements the state changes for the wimax devices. It will

- verify that the state transition is legal (for now it'll just print awarning if not) according to the table in
linux/wimax.h's documentation for 'enum wimax_st'.

- perform the actions needed for leaving the current state and whichever are needed for entering the new
State.

- issue a report to user space indicating the new state (and an optional payload with information about
the new state).

NOTE

wi max_dev must be locked

278

Linux Networking

Name
wimax_state get — Return the current state of aWiMAX device

Synopsis

enum wi nax_st wi max_state_get (struct w nmax_dev * wi nmax_dev);

Arguments

wi max_dev WiMAX device descriptor

Returns

Current state of the device according to its driver.

279

Linux Networking

Name

wimax_dev_init — initialize a newly alocated instance

Synopsis

void wimax_dev_init (struct wi nmax_dev * w nax_dev);

Arguments

wi max_dev WiMAX device descriptor to initialize.

Description

Initializes fields of afreshly allocated wi max_dev instance. This function assumes that after allocation,
the memory occupied by wi max_dev was zeroed.

280

Linux Networking

Name
wimax_dev_add — Register anew WiMAX device

Synopsis
int winax _dev_add (struct w max_dev * wi nmax_dev, struct net_device *
net dev);

Arguments

wi max_dev WiMAX device descriptor (as embedded in your net _dev's priv data). Y ou must have
caledw max_dev_init onit before.

net dev net devicethewi max_dev isassociated with. The function expects SET_NETDEV_DEV
andr egi st er _net dev were already caled onit.

Description

Registersthe new WiMAX device, sets up the user-kernel control interface (generic netlink) and common
WiMAX infrastructure.

Note that the parts that will allow interaction with user space are setup at the very end, when therest isin
place, as once that happens, the driver might get user space control requests via netlink or from debugfs
that might translate into callsinto wimax_dev->op_*().

281

Linux Networking

Name
wimax_dev_rm — Unregister an existing WiMAX device
Synopsis

void wi max_dev_rm (struct wi max_dev * w nax_dev);

Arguments

wi max_dev WiMAX device descriptor

Description
UnregistersaWiMAX device previously registered for use withwi max_add_rm
IMPORTANT! Must call before calling unr egi st er _net dev.

After this function returns, you will not get any more user space control requests (via netlink or debugfs)
and thus to wimax_dev->ops.

Reentrancy control is ensured by setting the stateto W MAX_ST_QUI ESCI NG. rfkill operations com-
ing through wimax_*rfkill* () will be stopped by the quiescing state; ops coming from the rfkill subsystem
will be stopped by the support being removed by wi max_rfkill _rm

282

Linux Networking

Name

struct wimax_dev — Generic WiMAX device

Synopsis

struct w nax_dev {
struct net _device * net_dev;
struct |list_head id_table node;
struct mutex nutex;
struct mutex nutex_reset;
enum wi nax_st state;
int (* op_nsg _fromuser) (struct wi max_dev *w max_dev, const char *,const void *,
int (* op_rfkill_sw toggle) (struct wi max_dev *w max_dev, enum wi max_rf_state);
int (* op_reset) (struct wi max_dev *w max_dev);
struct rfkill * rfkill;
unsigned int rf_hw
unsigned int rf_sw
char nane[32];
struct dentry * debugfs _dentry;

1
Members

net_dev [fill] Pointer to the struct net_device thisWiMAX device implements.

id_table node [private] link to the list of wimax devices kept by id-table.c. Protected by
it's own spinlock.

mutex [private] Serializes all concurrent access and execution of operations.

mutex_reset [private] Serializesreset operations. Needsto be adifferent mutex because
as part of the reset operation, the driver hasto call back into the stack to do
things such as state change, that require wimax_dev->mutex.

state [private] Current state of the WiMAX device.

op_msg_from_user [fill] Driver-specific operation to handle a raw message from user space
to the driver. The driver can send messages to user space using with
Wi max_nsg_to_user.

op_rfkill_sw_toggle [fill] Driver-specific operation to act on userspace (or any other agent) re-
questing the WiMAX device to change the RF Kill software switch (WI-
MAX_RF_ON or WIMAX_RF_OFF). If such hardware support is not
present, it is assumed the radio cannot be switched off and it is always on
(and the stack will error out when trying to switch it off). In such case, this
function pointer can be left as NULL.

op_reset [fill] Driver specific operation to reset the device. This operation should

aways attempt first awarm reset that does not disconnect the device from
the bus and return 0. If that fails, it should resort to some sort of cold or
busreset (even if it implies abus disconnection and device disappearance).
In that case, -ENODEV should be returned to indicate the device is gone.
This operation has to be synchronous, and return only when the reset is

283

Linux Networking

NOTE

complete. In case of having had to resort to bus/cold reset implying adevice
disconnection, the call is allowed to return immediately.

rfkill [private] integration into the RF-Kill infrastructure.

rf_hw [private] State of the hardware radio switch (OFF/ON)

rf_sw [private] State of the software radio switch (OFF/ON)

name[32] [fill] A way to identify this device. We need to register a name with many

subsystems (rfkill, workqueue creation, etc). We can't use the network de-
vice name as that might change and in some instances we don't know it
yet (until we don't call r egi st er _net dev). So we generate an unique
one using the driver name and device busid, placeit here and use it across
the board. Recommended naming: DRIVERNAME-BUSNAME:BUSID
(dev->bus->name, dev->bus id).

debugfs dentry [private] Used to hook up a debugfs entry. This shows up in the debugfs
root as wimax\:DEVICENAME.

wimax_dev->mutex is NOT locked when this op is being called; however, wimax_dev->mutex_reset IS
locked to ensure serialization of callstowi max_r eset . Seewi nax_r eset 's documentation.

Description

Usage

This structure defines a common interface to access all WiMAX devices from different vendors and pro-
vides acommon API aswell as afree-form device-specific messaging channel.

1. Embed a struct wimax_dev at *the beginning* the network device structure so that net dev_pri v
pointstoit.

2. menset ittozero

3. Initialize with wi max_dev_i ni t. Thiswill leave the WiMAX deviceinthe W MAX_ ST _NULL
state.

4. Fill al thefieldsmarked with [fill]; once calledwi max_dev_add, thosefields CANNOT be modified.

5. Cal wi max_dev_add *after* registering the network device. This will leave the WiMAX device
in the W MAX_ST_DOWN state. Protect the driver's net_device->open against succeeding if the wimax
device state is lower than W MAX_ST_DOWN.

6. Select when the deviceisgoing to beturned on/initialized; for example, it could beinitialized on ‘ifconfig
up' (when the netdev op 'open' iscaled on the driver).

When the device is initidlized (at “ifconfig up™ time, or right after calling wi max_dev_add from
_pr obe, make sure the following steps are taken

a. Move the device to W MAX_ST_UNI NI TI ALI ZED. Thisis needed so some API calls that shouldn't
work until the deviceis ready can be blocked.

284

Linux Networking

b. Initialize the device. Make sure to turn the SW radio switch off and move the device to state W -
MAX_ST RADI O OFF when done. When just initialized, a device should be left in RADIO OFF state
until user space devicesto turn it on.

c. Query the device for the state of the hardware rfkill switch and call wi max_rfki | | _report _hw
andwi max_rfkill _report_swasneeded. See below.

wi max_dev_r mundoes before unregistering the network device. Oncewi max_dev_add iscalled, the
driver can get called on the wimax_dev->op_* function pointers

CONCURRENCY

The stack provides a mutex for each device that will disallow API calls happening concurrently; thus,
op calls into the driver through the wimax_dev->op* () function pointers will always be serialized and
never concurrent.

For locking, takewimax_dev->mutex istaken; (most) operationsinthe API haveto check forwi max_de-
v_is_ready toreturn 0 before continuing (thisis done internally).

REFERENCE COUNTING

The WiMAX device is reference counted by the associated network device. The only operation that can
be used to referencethe deviceiswi nax_dev_get by genl _i nf o, and thereferenceit acquires has
to be released with dev_put(wimax_dev->net_dev).

RFKILL

At startup, both HW and SW radio switchess are assumed to be off.

At initialization time [after calling wi max_dev_add], have the driver query the device for the status

of the software and hardware RF kill switchesand call wi max_r eport _rfkill_hwandwi max_r -
fkill _report_swtoindicatetheir state. If any ismissing, just call ittoindicateitisON (radio aways
on).

Whenever the driver detects a change in the state of the RF kill switches, it should call wi max_r e-
port_rfkill _hworw max_report _rfkill _swtoreportitto the stack.

285

Linux Networking

Name

enum wimax_st — The different states of aWiMAX device

Synopsis

enum wi max_st {
W MAX_ST_NULL,
W MAX_ST_DOVN,

W MAX_ST_QUI ESCI NG,

W MAX_ST_UNI NI TI ALI ZED,

W MAX_ST_RADI O OFF,
W MAX_ST_READY,
W MAX_ST_SCANNI NG,
W MAX_ST_CONNECTI NG,
W MAX_ST_CONNECTED,
W MAX_ST I NVALI D

}s
Constants

_ WIMAX_ST_NULL

WIMAX_ST_DOWN

__WIMAX_ST_QUIESCING

WIMAX_ST_UNINITIALIZED

WIMAX_ST_RADIO_OFF

WIMAX_ST_READY

WIMAX_ST_SCANNING

WIMAX_ST_CONNECTING

The device structure has been alocated and zeroed, but still
wi max_dev_add hasn't been called. Thereis no state.

The device has been registered with the WiMAX and networking
stacks, but it is not initialized (normally that is done with 'ifconfig
DEV up' [or equivalent], which can upload firmware and enable com-
municationswith the device). In this state, the deviceis powered down
and using as less power as possible. This state is the default after
acal to wi max_dev_add. It is ok to have drivers move directly
to W MAX_ST_UNI NI TI ALl ZED or W MAX_ST_RADI O _OFF in
_pr obe after the call towi max_dev_add. It is recommended that
the driver leaves this state when calling ‘ifconfig DEV up' and enters
it back on ‘ifconfig DEV down'.

The device is being torn down, so no APl operations are allowed
to proceed except the ones needed to complete the device clean up
process.

[optional] Communication with the deviceis setup, but the device till
requires some configuration before being operational. Some WiMAX
API calls might work.

The device is fully up; radio is off (wether by hardware or software
switches). It is recommended to always leave the device in this state
after initialization.

The deviceisfully up and radio ison.

[optional] The device has been instructed to scan. In this state, the de-
vice cannot be actively connected to a network.

The device is connecting to a network. This state exists because in
some devices, the connect process can include a number of negoti-

286

Linux Networking

ations between user space, kernel space and the device. User space
needs to know what the device is doing. If the connect sequencein a
device is atomic and fast, the device can transition directly to CON-
NECTED

WIMAX_ST_CONNECTED The device is connected to a network.

__ WIMAX_ST_INVALID Thisis an invalid state used to mark the maximum numeric value of
states.

Description

Transitions from one state to another one are atomic and can only be caused in kernel space with
Wi max_st at e_change. To read the state, usewi max_st at e_get .

States starting with __areinternal and shall not be used or referred to by drivers or userspace. They ook
ugly, but that's the point -- if any use is made non-internal to the stack, it is easier to catch on review.

All API operations[with well defined exceptions] will takethe device mutex before starting and then check
the state. If the state is__ W MAX_ST_NULL, W MAX_ST_DOWN, W MAX_ST_UNI NI TI ALI ZED or
W MAX_ST_QUI ESCI NG, it will drop the lock and quit with -EI NVAL, -ENOVEDI UM -ENOTCONN
or -ESHUTDOWN.

The order of the definitions is important, so we can do numerical comparisons (eg: < W -
MAX_ST_RADI O_OFF meansthe deviceis not ready to operate).

287

Chapter 2. Network device support
Driver Support

288

Network device support

Name
dev_add pack — add packet handler

Synopsis

voi d dev_add_pack (struct packet type * pt);

Arguments

pt packet type declaration

Description

Add aprotocol handler to the networking stack. The passed packet_typeislinked into kernel lists and may
not be freed until it has been removed from the kernel lists.

This call does not sleep therefore it can not guarantee all CPU's that are in middle of receiving packets
will seethe new packet type (until the next received packet).

289

Network device support

Name

__dev_remove_pack — remove packet handler

Synopsis

void _ dev_renove_pack (struct packet type * pt);

Arguments

pt packet type declaration

Description

Removeaprotocol handler that was previously added to the kernel protocol handlersby dev_add_pack.
The passed packet_type is removed from the kernel lists and can be freed or reused once this function

returns.

The packet type might still be in use by receivers and must not be freed until after all the CPU's have gone
through a quiescent state.

290

Network device support

Name

dev_remove_pack — remove packet handler
Synopsis
voi d dev_renove pack (struct packet type * pt);

Arguments

pt packet type declaration

Description

Removeaprotocol handler that was previously added to the kernel protocol handlersby dev_add_pack.
The passed packet_type is removed from the kernel lists and can be freed or reused once this function

returns.

This call sleeps to guarantee that no CPU is looking at the packet type after return.

291

Network device support

Name
dev_add offload — register offload handlers

Synopsis
voi d dev_add offload (struct packet offload * po);

Arguments

po protocol offload declaration

Description

Add protocol offload handlersto the networking stack. The passed proto_offload islinked into kernel lists
and may not be freed until it has been removed from the kernel lists.

This call does not sleep therefore it can not guarantee all CPU's that are in middle of receiving packets
will seethe new offload handlers (until the next received packet).

292

Network device support

Name

dev_remove_offload — remove packet offload handler

Synopsis

voi d dev_renove offload (struct packet offload * po);

Arguments

po packet offload declaration

Description

Remove a packet offload handler that was previously added to the kernel offload handlers by dev_ad-
d_of f | oad. The passed offload_type is removed from the kernel lists and can be freed or reused once

this function returns.

This call sleeps to guarantee that no CPU is looking at the packet type after return.

293

Network device support

Name
netdev_boot_setup_check — check boot time settings

Synopsis

i nt netdev_boot setup_check (struct net_device * dev);

Arguments
dev thenetdevice

Description

Check boot time settings for the device. The found settings are set for the device to be used later in the
device probing. Returns O if no settings found, 1 if they are.

294

Network device support

Name
dev_get_iflink — get 'iflink’ value of ainterface
Synopsis
int dev_get iflink (const struct net_device * dev);
Arguments
dev targeted interface
Description

Indicatestheifindex theinterfaceislinked to. Physical interfaces have the same'ifindex' and 'iflink’ val ues.

295

Network device support

Name
dev_fill_metadata dst — Retrieve tunnel egressinformation.

Synopsis
int dev fill _netadata dst (struct net_device * dev, struct sk buff *
skb);

Arguments

dev targeted interface

skb The packet.

Description

For better visibility of tunnel traffic OV S needsto retrieve egress tunnel information for a packet. Follow-
ing API allows user to get thisinfo.

296

Network device support

Name
__dev_get by name— find adevice by its name

Synopsis
struct net_device * _ dev_get by nane (struct net * net, const char
* nane);

Arguments

net the applicable net namespace

name nameto find

Description

Find an interface by name. Must be called under RTNL semaphore or dev_base_| ock. If thenameis
found a pointer to the device is returned. If the name is not found then NULL is returned. The reference
counters are not incremented so the caller must be careful with locks.

297

Network device support

Name
dev_get_by name rcu — find adevice by its name

Synopsis
struct net_device * dev_get by nanme_rcu (struct net * net, const char
* nane);

Arguments

net the applicable net namespace

name nameto find

Description

Find an interface by name. If the name isfound a pointer to the device isreturned. If the nameisnot found
then NULL isreturned. The reference counters are not incremented so the caller must be careful with locks.

The caller must hold RCU lock.

298

Network device support

Name
dev_get_by name — find adevice by its name

Synopsis
struct net _device * dev_get by nane (struct net * net, const char *
nane) ;

Arguments

net the applicable net namespace

name nameto find

Description

Find an interface by name. This can be called from any context and does its own locking. The returned
handl e has the usage count incremented and the caller must usedev_put toreleaseit whenitisno longer
needed. NULL isreturned if no matching deviceisfound.

299

Network device support

Name

__dev_get by index — find adevice by itsifindex
Synopsis

struct net_device * _ dev_get by index (struct net * net, int ifindex);
Arguments

net the applicable net namespace

i findex index of device

Description

Search for an interface by index. Returns NULL if the device is not found or a pointer to the device. The
device has not had its reference counter increased so the caller must be careful about locking. The caller
must hold either the RTNL semaphore or dev_base_| ock.

300

Network device support

Name

dev_get_by index_rcu— find adevice by its ifindex
Synopsis

struct net _device * dev_get by index _rcu (struct net * net, int ifindex);
Arguments

net the applicable net namespace

i findex index of device

Description

Search for an interface by index. Returns NULL if the device is not found or a pointer to the device. The
device has not had its reference counter increased so the caller must be careful about locking. The caller

must hold RCU lock.

301

Network device support

Name

dev_get_by index — find adevice by itsifindex
Synopsis

struct net _device * dev_get by index (struct net * net, int ifindex);
Arguments

net the applicable net namespace

i findex index of device

Description

Search for an interface by index. Returns NULL if the device is nhot found or a pointer to the device. The
device returned has had a reference added and the pointer is safe until the user calls dev_put to indicate

they have finished with it.

302

Network device support

Name
dev_getbyhwaddr_rcu — find a device by its hardware address
Synopsis
struct net_device * dev_getbyhwaddr rcu (struct net * net, unsigned
short type, const char * ha);
Arguments
net the applicable net namespace
type mediatypeof device
ha hardware address
Description

Search for an interface by MAC address. Returns NULL if the device is not found or a pointer to the
device. The caller must hold RCU or RTNL. The returned device has not had its ref count increased and

the caller must therefore be careful about locking

303

Network device support

Name
__dev_get by flags— find any device with given flags
Synopsis
struct net_device * _ dev_get by flags (struct net * net, unsigned short
if_flags, unsigned short mask);
Arguments
net the applicable net namespace
if _flags IFF * values
mask bitmask of bitsin if_flags to check
Description

Search for any interface with the given flags. Returns NULL if a device is not found or a pointer to the
device. Must be called insider t nl _| ock, and result refcount is unchanged.

304

Network device support

Name
dev_valid_name — check if name is okay for network device
Synopsis
bool dev_valid name (const char * nane);
Arguments
name namestring
Description
Network device names need to be valid file names to to allow sysfs to work. We aso disallow any kind
of whitespace.

305

Network device support

Name

dev_alloc_name — alocate a name for adevice

Synopsis

int dev_alloc_name (struct net_device * dev, const char * nane);

Arguments
dev device

nane name format string

Description

Passed aformat string - eg “Itd” it will try and find a suitable id. It scans|list of devicesto build up afree
map, then chooses the first empty slot. The caller must hold the dev_base or rtnl lock while alocating the
name and adding the device in order to avoid duplicates. Limited to bits per_byte * page size devices (ie
32K on most platforms). Returns the number of the unit assigned or a negative errno code.

306

Network device support

Name
netdev_features change — device changes features
Synopsis
voi d netdev_features_change (struct net_device * dev);
Arguments
dev deviceto cause notification
Description

Called to indicate a device has changed features.

307

Network device support

Name

netdev_state change — device changes state

Synopsis

voi d netdev_state change (struct net_device * dev);

Arguments

dev deviceto cause notification

Description

Called to indicate a device has changed state. This function calls the notifier chains for netdev_chain and
sends a NEWLINK message to the routing socket.

308

Network device support

Name

netdev_notify_peers — notify network peers about existence of dev
Synopsis
void netdev_notify peers (struct net_device * dev);

Arguments

dev network device

Description

Generate traffic such that interested network peers are aware of dev, such as by generating a gratuitous
ARP. This may be used when a device wants to inform the rest of the network about some sort of recon-

figuration such as afailover event or virtual machine migration.

309

Network device support

Name

dev_open — prepare an interface for use.
Synopsis
i nt dev_open (struct net _device * dev);
Arguments
dev deviceto open
Description
Takes adevice from down to up state. The device's private open function isinvoked and then the multicast

lists are loaded. Finaly the device is moved into the up state and a NETDEV_UP message is sent to the
netdev notifier chain.

Cdling thisfunction on an active interface is a nop. On afailure a negative errno code is returned.

310

Network device support

Name

dev_close — shutdown an interface.

Synopsis

int dev_close (struct net_device * dev);

Arguments

dev deviceto shutdown

Description

This function moves an active device into down state. A NETDEV_GO NG_DOWN is sent to the netdev
notifier chain. The deviceis then deactivated and finally a NETDEV_DOWN is sent to the notifier chain.

311

Network device support

Name
dev_disable Iro — disable Large Receive Offload on a device

Synopsis

void dev_disable Iro (struct net_device * dev);
Arguments

dev device

Description

Disable Large Receive Offload (LRO) on a net device. Must be called under RTNL. This is needed if
received packets may be forwarded to another interface.

312

Network device support

Name

register_netdevice notifier — register a network notifier block

Synopsis

int register_netdevice notifier (struct notifier_block * nb);

Arguments

nb notifier

Description

Register a notifier to be called when network device events occur. The notifier passed is linked into the
kernel structures and must not be reused until it has been unregistered. A negative errno code is returned

on afailure.

When registered al registration and up events are replayed to the new notifier to allow device to have a
race free view of the network devicelist.

313

Network device support

Name

unregister_netdevice notifier — unregister a network notifier block
Synopsis
int unregister_netdevice_notifier (struct notifier_block * nb);

Arguments

nb notifier

Description

Unregister anotifier previously registered by r egi st er _net devi ce_noti fi er. Thenotifier isun-
linked into the kernel structures and may then be reused. A negative errno code is returned on afailure.

After unregistering unregister and down device events are synthesized for al devices on the devicelist to
the removed notifier to remove the need for specia case cleanup code.

314

Network device support

Name
call_netdevice notifiers— call all network notifier blocks

Synopsis
int call_netdevice notifiers (unsigned long val, struct net_device *
dev);

Arguments

val value passed unmodified to notifier function

dev net_device pointer passed unmodified to notifier function

Description

Call al network notifier blocks. Parametersand returnvalueareasforr aw _noti fi er _cal |l _chai n.

315

Network device support

Name
dev_forward skb — loopback an skb to another netif

Synopsis
int dev_forward_skb (struct net_device * dev, struct sk_buff * skb);
Arguments

dev destination network device

skb buffer to forward

return values
NET_RX_SUCCESS (no congestion) NET_RX_DROP (packet was dropped, but freed)

dev_forward skb can be used for injecting an skb from the start_xmit function of one device into the
receive queue of another device.

The receiving device may be in another namespace, so we have to clear al information in the skb that
could impact namespace isol ation.

316

Network device support

Name
netif_set real_num_rx_queues — set actual number of RX queues used

Synopsis
int netif_set real _numrx_queues (struct net _device * dev, unsigned int
rxa);

Arguments

dev Network device

rxq Actua number of RX queues

Description

This must be called either with the rtnl_lock held or before registration of the net device. Returns 0 on
success, or a negative error code. If called before registration, it always succeeds.

317

Network device support

Name
netif_get_num_default_rss_gqueues — default number of RSS queues
Synopsis
int netif_get numdefault rss queues (void);
Arguments
voi d noarguments
Description

Thisroutine should set an upper limit on the number of RSS queues used by default by multiqueue devices.

318

Network device support

Name
netif wake subgueue — allow sending packets on subgqueue
Synopsis
void netif_wake subqueue (struct net_device * dev, ul6 queue_index);
Arguments
dev network device
gueue_i ndex sub queue index
Description

Resume individual transmit queue of a device with multiple transmit queues.

319

Network device support

Name

netif _device detach — mark device as removed
Synopsis
void netif_device detach (struct net_device * dev);

Arguments

dev network device

Description

Mark device as removed from system and therefore no longer available.

320

Network device support

Name

netif _device attach — mark device as attached

Synopsis

void netif_device attach (struct net_device * dev);

Arguments

dev network device

Description

Mark device as attached from system and restart if needed.

321

Network device support

Name

skb_mac_gso_segment — mac layer segmentation handler.
Synopsis

struct sk _buff * skb_mac_gso_segnent (struct sk _buff * skb, netdev_fea-
tures_t features);

Arguments
skb buffer to segment

features featuresfor the output path (see dev->features)

322

Network device support

Name
__skb gso_segment — Perform segmentation on skb.

Synopsis

struct sk _buff * _ skb gso _segnent (struct sk _buff * skb, netdev_fea-
tures_t features, bool tx_path);

Arguments
skb buffer to segment
features featuresfor the output path (see dev->features)

tx_path whetheritiscalledin TX path

Description
This function segments the given skb and returns alist of segments.

It may return NULL if the skb requires no segmentation. This is only possible when GSO is used for
verifying header integrity.

Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.

323

Network device support

Name
dev_loopback_xmit — loop back skb

Synopsis
i nt dev_| oopback xmt (struct net * net, struct sock * sk, struct sk_buff
* skb);

Arguments

net network namespace thisloopback is happening in
sk sk needed to be a netfilter okfn

skb buffer to transmit

324

Network device support

Name

rps_may_expire_flow — check whether an RFS hardware filter may be removed

Synopsis

bool rps_may expire flow (struct net_device * dev, ul6 rxqg_index, u32
flow.id, ul6 filter_id);

Arguments
dev Device on which the filter was set
rxq_i ndex RX queueindex
flow.id Flow ID passedtondo_rx_f | ow_st eer

filter_id FilterlID returnedby ndo_rx_fl ow st eer

Description

Driversthat implement ndo_r x_f | ow_st eer should periodically call this function for each installed
filter and remove the filters for which it returnst r ue.

325

Network device support

Name

netif_rx — post buffer to the network code
Synopsis

int netif rx (struct sk_buff * skb);
Arguments

skb buffer to post

Description

Thisfunction receives apacket from adevicedriver and queuesit for the upper (protocol) levelsto process.
It always succeeds. The buffer may be dropped during processing for congestion control or by the protocol
layers.

return values

NET_RX_SUCCESS (no congestion) NET_RX_DROP (packet was dropped)

326

Network device support

Name

netdev_is rx_handler_busy — check if receive handler is registered

Synopsis

bool netdev_is rx_handl er _busy (struct net_device * dev);

Arguments

dev deviceto check
Description
Check if areceive handler is already registered for agiven device. Return true if there one.

The caller must hold the rtnl_mutex.

327

Network device support

Name

netdev_rx_handler_register — register receive handler

Synopsis

int netdev_rx _handler _register (struct net_device * dev, rx_han-
dler _func_t * rx_handler, void * rx_handl er_data);

Arguments
dev device to register ahandler for
rx_handl er receive handler to register

rx_handl er _dat a datapointer that isused by rx handler

Description

Register a receive handler for a device. This handler will then be called from __ netif receive skb. A
negative errno code is returned on afailure.

The caller must hold the rtnl_mutex.

For ageneral description of rx_handler, see enum rx_handler_result.

328

Network device support

Name

netdev_rx_handler_unregister — unregister receive handler
Synopsis
voi d netdev_rx_handl er _unregi ster (struct net_device * dev);

Arguments

dev deviceto unregister ahandler from

Description
Unregister areceive handler from adevice.

The caller must hold the rtnl_mutex.

329

Network device support

Name

netif _receive skb — process receive buffer from network
Synopsis

int netif_receive skb (struct sk buff * skb);
Arguments

skb buffer to process

Description

netif _recei ve_skb isthemain receivedataprocessing function. It always succeeds. The buffer may
be dropped during processing for congestion control or by the protocol layers.

This function may only be called from softirq context and interrupts should be enabled.

Return values (usually ignored):

NET_RX_SUCCESS

no congestion

NET_RX_DROP

packet was dropped

330

Network device support

Name

__hapi_schedule — schedule for receive

Synopsis

void _ napi _schedul e (struct napi_struct * n);

Arguments

n entry to schedule

Description

The entry's receive function will be scheduled to run. Consider using __napi _schedul e_i r qof f if
hard irgs are masked.

331

Network device support

Name
__hapi_schedule_irqoff — schedule for receive
Synopsis
void _ napi _schedul e_irqoff (struct napi _struct * n);
Arguments
n entry to schedule
Description

Variant of __napi _schedul e assuming hard irgs are masked

332

Network device support

Name

netdev_has_upper_dev — Check if device islinked to an upper device

Synopsis

bool netdev_has_upper_dev (struct net_device * dev, struct net_device
* upper _dev);

Arguments
dev device

upper _dev upper device to check

Description

Find out if adeviceislinked to specified upper deviceand returntruein caseit is. Notethat thischecksonly
immediate upper device, not through a complete stack of devices. The caller must hold the RTNL lock.

333

Network device support

Name
netdev_master_upper_dev_get — Get master upper device

Synopsis

struct net_device * netdev_nmster_upper_dev_get (struct net_device *
dev);

Arguments

dev device

Description

Find a master upper device and return pointer to it or NULL in case it's not there. The caller must hold
the RTNL lock.

334

Network device support

Name

netdev_upper_get_next_dev_rcu — Get the next dev from upper list

Synopsis

struct net _device * netdev_upper_get next _dev_rcu (struct net_device *
dev, struct list _head ** iter);

Arguments

dev device

iter list_head** of the current position

Description

Gets the next device from the dev's upper list, starting from iter position. The caller must hold RCU read
lock.

335

Network device support

Name

netdev_all_upper_get _next_dev_rcu — Get the next dev from upper list

Synopsis

struct net_device * netdev_all upper_get next _dev_rcu (struct net_de-
vice * dev, struct list _head ** iter);

Arguments

dev device

iter list_head** of the current position

Description

Gets the next device from the dev's upper list, starting from iter position. The caller must hold RCU read
lock.

336

Network device support

Name

netdev_lower_get _next_private — Get the next ->private from the lower neighbour list

Synopsis

void * netdev_|ower _get next private (struct net_device * dev, struct
list _head ** iter);

Arguments

dev device

iter list_head** of the current position

Description

Getsthe next netdev_adjacent->private from the dev'slower neighbour list, starting fromiter position. The
caller must hold either hold the RTNL lock or its own locking that guarantees that the neighbour lower

list will remain unchanged.

337

Network device support

Name

netdev_lower_get_next_private rcu — Get the next ->private from the lower neighbour list, RCU variant

Synopsis

void * netdev_|ower_get next private rcu (struct net_device * dev,
struct list_head ** iter);

Arguments

dev device

iter list_head** of the current position

Description

Gets the next netdev_adjacent->private from the dev's lower neighbour list, starting from iter position.
The caller must hold RCU read lock.

338

Network device support

Name
netdev_lower_get_next — Get the next device from the lower neighbour list

Synopsis
void * netdev_| ower_get next (struct net _device * dev, struct |ist_head
** jter);

Arguments

dev device

iter list_head** of the current position

Description

Gets the next netdev_adjacent from the dev's lower neighbour list, starting from iter position. The caller
must hold RTNL lock or its own locking that guarantees that the neighbour lower list will remain un-

changed.

339

Network device support

Name

netdev_lower_get first private rcu — Get the first ->private from the lower neighbour list, RCU variant

Synopsis

void * netdev_|ower _get first _private rcu (struct net_device * dev);
Arguments

dev device

Description

Gets the first netdev_adjacent->private from the dev's lower neighbour list. The caller must hold RCU
read lock.

Network device support

Name

netdev_master_upper_dev_get_rcu — Get master upper device

Synopsis

struct net _device * netdev_naster _upper_dev_get rcu (struct net_device
* dev);

Arguments

dev device

Description

Find a master upper device and return pointer to it or NULL in case it's not there. The caller must hold
the RCU read lock.

341

Network device support

Name

netdev_upper_dev_link — Add alink to the upper device

Synopsis

int netdev_upper _dev_|link (struct net_device * dev, struct net_device
* upper _dev);

Arguments
dev device
upper _dev new upper device

Description

Adds a link to device which is upper to this one. The caler must hold the RTNL lock. On afailure a
negative errno code is returned. On success the reference counts are adjusted and the function returns zero.

342

Network device support

Name
netdev_master_upper_dev_link — Add a master link to the upper device

Synopsis

int netdev_master _upper _dev_|link (struct net_device * dev,
net device * upper_dev, void * upper_priv, void * upper_info);

Arguments
dev device
upper _dev new upper device
upper _priv upper device private

upper _i nf o upper info to be passed down via notifier

Description

struct

Adds alink to device which is upper to this one. In this case, only one master upper device can be linked,
although other non-master devices might be linked as well. The caller must hold the RTNL lock. On a
failure a negative errno code is returned. On success the reference counts are adjusted and the function
returns zero.

Network device support

Name
netdev_upper_dev_unlink — Removes alink to upper device
Synopsis
voi d netdev_upper _dev_unlink (struct net_device * dev, struct net_device
* upper _dev);
Arguments
dev device
upper _dev new upper device
Description

Removes alink to device which is upper to this one. The caller must hold the RTNL lock.

Network device support

Name
netdev_bonding_info_change — Dispatch event about dlave change
Synopsis
voi d netdev_bondi ng_i nfo_change (struct net_device * dev, struct net-
dev_bondi ng_info * bonding_info);
Arguments
dev device
bondi ng_i nfo infoto dispatch
Description

Send NETDEV_BONDING_INFO to netdev notifiers with info. The caller must hold the RTNL lock.

Network device support

Name

netdev_lower_state changed — Dispatch event about lower device state change
Synopsis

voi d netdev_| ower_state changed (struct net _device * | ower_dev, void *
| ower _state_info);

Arguments

| ower _dev device

| ower _state info satetodispatch
Description

Send NETDEV_CHANGEL OWERSTATE to netdev notifiers with info. The caller must hold the RTNL
lock.

346

Network device support

Name

dev_set_promiscuity — update promiscuity count on adevice

Synopsis

int dev_set prom scuity (struct net_device * dev, int inc);

Arguments
dev device
i nc modifier
Description

Add or remove promiscuity from adevice. While the count in the device remains above zero the interface
remains promiscuous. Once it hits zero the device reverts back to normal filtering operation. A negative
inc valueisused to drop promiscuity on the device. Return O if successful or anegative errno code on error.

347

Network device support

Name

dev_set_allmulti — update allmulti count on adevice

Synopsis

int dev_set _allnmulti (struct net _device * dev, int inc);

Arguments
dev device
i nc modifier
Description

Add or remove reception of al multicast framesto a device. While the count in the device remains above
zero the interface remains listening to al interfaces. Once it hits zero the device reverts back to normal
filtering operation. A negative i nc value is used to drop the counter when releasing a resource needing
al multicasts. Return 0 if successful or a negative errno code on error.

Network device support

Name
dev_get_flags— get flags reported to userspace

Synopsis

unsi gned int dev_get flags (const struct net_device * dev);

Arguments

dev device

Description

Get the combination of flag bits exported through APIs to userspace.

349

Network device support

Name
dev_change flags — change device settings
Synopsis
i nt dev_change flags (struct net _device * dev, unsigned int flags);
Arguments
dev device
flags device stateflags
Description

Change settings on device based state flags. The flags are in the userspace exported format.

350

Network device support

Name

dev_set_mtu — Change maximum transfer unit
Synopsis

int dev_set _mu (struct net _device * dev, int new ntu);
Arguments

dev device

new_mu new transfer unit

Description

Change the maximum transfer size of the network device.

351

Network device support

Name
dev_set_group — Change group this device belongs to

Synopsis
voi d dev_set _group (struct net _device * dev, int new group);

Arguments

dev device

new_group group thisdevice should belong to

352

Network device support

Name

dev_set_mac_address — Change Media Access Control Address

Synopsis

i nt dev_set _mac_address (struct net _device * dev, struct sockaddr * sa);
Arguments

dev device

sa hew address

Description

Change the hardware (MAC) address of the device

353

Network device support

Name
dev_change_carrier — Change device carrier
Synopsis
i nt dev_change _carrier (struct net_device * dev, bool new carrier);
Arguments
dev device
new carrier newvaue
Description

Change device carrier

354

Network device support

Name
dev_get_phys port_id — Get device physical port ID

Synopsis

int dev_get phys port id (struct net_device * dev, struct netde-
v_phys itemid * ppid);

Arguments
dev device

ppid portID

Description

Get device physical port ID

355

Network device support

Name
dev_get_phys port_name — Get device physical port name
Synopsis
i nt dev_get phys _port_nane (struct net_device * dev, char * nane, size_t
l en);
Arguments
dev device
name port name
[en --undescribed --
Description

Get device physical port name

356

Network device support

Name
dev_change proto_down — update protocol port state information
Synopsis
i nt dev_change_proto_down (struct net_device * dev, bool proto_down);
Arguments
dev device
prot o_down new value
Description

Thisinfo can be used by switch driversto set the phys state of the port.

357

Network device support

Name

netdev_update features — recal culate device features

Synopsis

voi d netdev_update features (struct net_device * dev);

Arguments

dev thedeviceto check

Description

Recalculate dev->features set and send notifications if it has changed. Should be called after driver or
hardware dependent conditions might have changed that influence the features.

358

Network device support

Name

netdev_change features — recal cul ate device features
Synopsis
voi d netdev_change features (struct net_device * dev);

Arguments

dev thedeviceto check

Description

Recalculate dev->features set and send notifications even if they have not changed. Should be called
instead of net dev_updat e_f eat ur es if also dev->vlan_features might have changed to alow the

changes to be propagated to stacked VLAN devices.

359

Network device support

Name
netif _stacked transfer_operstate — transfer operstate

Synopsis

void netif_stacked transfer_operstate (const struct net_device * root-
dev, struct net _device * dev);

Arguments
root dev theroot or lower level device to transfer state from

dev the device to transfer operstate to

Description

Transfer operational state from root to device. Thisis normally called when a stacking relationship exists
between the root device and the device(aleaf device).

360

Network device support

Name

register_netdevice — register a network device

Synopsis
int register_netdevice (struct net_device * dev);
Arguments
dev deviceto register
Description
Take a completed network device structure and add it to the kernel interfaces. A NETDEV_REG STER

messageis sent to the netdev notifier chain. O isreturned on success. A negative errno code is returned on
afailure to set up the device, or if the nameis a duplicate.

Callers must hold the rtnl semaphore. You may want r egi st er _net dev instead of this.

BUGS

The locking appears insufficient to guarantee two parallel registers will not get the same name.

361

Network device support

Name

init_dummy_netdev — init adummy network device for NAPI
Synopsis

int init_dummy _netdev (struct net_device * dev);
Arguments

dev devicetoinit

Description

This takes a network device structure and initialize the minimum amount of fields so it can be used to
schedule NAPI polls without registering a full blown interface. Thisis to be used by drivers that need to
tie several hardware interfacesto asingle NAPI poll scheduler due to HW limitations.

362

Network device support

Name

register_netdev — register a network device
Synopsis
int register_netdev (struct net_device * dev);

Arguments

dev deviceto register

Description

Take a completed network device structure and add it to the kernel interfaces. A NETDEV_REG STER
messageis sent to the netdev notifier chain. O isreturned on success. A negative errno code is returned on
afailure to set up the device, or if the nameis a duplicate.

This is awrapper around register_netdevice that takes the rtnl semaphore and expands the device name
if you passed aformat string to alloc_netdev.

363

Network device support

Name
dev_get_stats— get network device statistics
Synopsis
struct rtnl_link stats64 * dev_get stats (struct net_device * dev,
struct rtnl _link stats64 * storage);
Arguments
dev device to get statistics from

storage placeto store stats

Description

Get network statistics from device. Return st or age. The device driver may provide its own method
by setting dev->netdev_ops->get_statsb4 or dev->netdev_ops->get_stats; otherwise the internal statistics
structure is used.

364

Network device support

Name
alloc_netdev_mqgs — allocate network device
Synopsis

struct net_device * alloc_netdev_ngs (int sizeof priv, const char *
nane, unsigned char nanme_assign_type, void (*setup) (struct net_device
*), unsigned int txgs, unsigned int rxgs);

Arguments
si zeof _priv size of private data to alocate space for
nane device name format string

nane_assi gn_type origin of device name

set up callback to initialize device

t xgs the number of TX subqueuesto alocate

r Xgs the number of RX subqueues to allocate
Description

Allocates a struct net_device with private data area for driver use and performs basic initialization. Also
allocates subqueue structs for each queue on the device.

365

Network device support

Name

free_netdev — free network device
Synopsis

void free netdev (struct net_device * dev);
Arguments

dev device

Description

This function does the last stage of destroying an allocated device interface. The reference to the device
object isreleased. If thisisthe last reference then it will be freed. Must be called in process context.

366

Network device support

Name

synchronize_net — Synchronize with packet receive processing
Synopsis
voi d synchroni ze net (void);

Arguments

voi d noarguments

Description

Wait for packets currently being received to be done. Does not block later packets from starting.

367

Network device support

Name

unregister_netdevice_queue — remove device from the kernel

Synopsis

void unregister_netdevice queue (struct net_device * dev, struct
list _head * head);

Arguments
dev device

head list

Description

This function shuts down a device interface and removes it from the kernel tables. If head not NULL,
device is queued to be unregistered later.

Callers must hold the rtnl semaphore. You may want unr egi st er _net dev instead of this.

368

Network device support

Name
unregister_netdevice_many — unregister many devices
Synopsis
voi d unregi ster_netdevi ce_nmany (struct |ist _head * head);
Arguments
head list of devices
Note

Asmost callersuseastack allocated list_head, weforceal i st _del tomake surestack wont be corrupted
later.

369

Network device support

Name

unregister_netdev — remove device from the kernel

Synopsis

voi d unregi ster_netdev (struct net_device * dev);
Arguments

dev device
Description

This function shuts down a device interface and removes it from the kernel tables.

Thisisjust awrapper for unregister_netdevice that takes the rtnl semaphore. In general you want to use
this and not unregister _netdevice.

370

Network device support

Name

dev_change net_namespace — move device to different nethost namespace

Synopsis

i nt dev_change_net nanespace (struct net_device * dev, struct net * net,
const char * pat);

Arguments
dev device

net network namespace

pat If not NULL name pattern to try if the current device name is aready taken in the destination
network namespace.

Description

This function shuts down a device interface and moves it to a new network namespace. On success 0 is
returned, on afailure a netagive errno code is returned.

Callers must hold the rtnl semaphore.

371

Network device support

Name

netdev_increment_features — increment feature set by one

Synopsis

netdev_features_t netdev_increnent features (netdev features_t all,
netdev_features_t one, netdev _features_ t nask);

Arguments
al l current feature set
one new feature set

mask mask feature set

Description

Computes a new feature set after adding a device with feature set one to the master device with current
feature set al | . Will not enable anything that is off in mask. Returns the new feature set.

372

Network device support

Name

eth_header — create the Ethernet header

Synopsis

int eth header (struct sk _buff * skb, struct net_device * dev, unsigned
short type, const void * daddr, const void * saddr, unsigned int len);

Arguments
skb
dev
type
daddr
saddr

| en

Description

buffer to alter

source device

Ethernet type field

destination address (NULL leave destination address)
source address (NULL use device source address)

packet length (<= skb->len)

Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length in here instead.

373

Network device support

Name
eth_get _headlen — determine the length of header for an ethernet frame

Synopsis

u32 eth_get headlen (void * data, unsigned int |en);
Arguments

dat a pointer to start of frame

| en totd length of frame

Description

Make a best effort attempt to pull the length for all of the headers for a given framein alinear buffer.

374

Network device support

Name

eth_type trans— determine the packet's protocol 1D.
Synopsis

__bel6 eth_type trans (struct sk buff * skb, struct net _device * dev);
Arguments

skb received socket data

dev receiving network device

Description

Therule hereisthat we assume 802.3 if the typefield is short enough to be alength. Thisisnormal practice
and works for any 'now in use' protocol.

375

Network device support

Name
eth_header_parse — extract hardware address from packet

Synopsis
i nt eth_header_parse (const struct sk _buff * skb, unsi gned char * haddr);

Arguments

skb packet to extract header from

haddr destination buffer

376

Network device support

Name

eth_header_cache — fill cache entry from neighbour

Synopsis

i nt eth_header cache (const struct neighbour * neigh, struct hh_cache
* hh, _ bel6 type);

Arguments

nei gh source neighbour
hh destination cache entry

type Ethernet typefield

Description

Create an Ethernet header template from the neighbour.

377

Network device support

Name
eth_header_cache update — update cache entry
Synopsis
voi d eth_header _cache_update (struct hh_cache * hh, const struct net de-
vice * dev, const unsigned char * haddr);
Arguments
hh destination cache entry
dev network device
haddr new hardware address
Description

Called by Address Resolution module to notify changesin address.

378

Network device support

Name

eth_prepare mac_addr_change — prepare for mac change
Synopsis
int eth _prepare_mac_addr _change (struct net_device * dev, void * p);

Arguments

dev network device

p socket address

379

Network device support

Name

eth_commit_mac_addr_change — commit mac change
Synopsis
void eth _conmit_nac_addr_change (struct net _device * dev, void * p);

Arguments

dev network device

p socket address

380

Network device support

Name
eth_mac_addr — set new Ethernet hardware address

Synopsis
int eth_mac_addr (struct net_device * dev, void * p);
Arguments

dev network device

p socket address

Description
Change hardware address of device.

This doesn't change hardware matching, so needs to be overridden for most real devices.

381

Network device support

Name
eth_change mtu — set new MTU size

Synopsis

int eth _change ntu (struct net_device * dev, int new ntu);
Arguments

dev network device

new_mu new Maximum Transfer Unit

Description

Allow changing MTU size. Needs to be overridden for devices supporting jumbo frames.

382

Network device support

Name
ether_setup — setup Ethernet network device
Synopsis
void ether_setup (struct net_device * dev);
Arguments
dev network device
Description

Fill in the fields of the device structure with Ethernet-generic values.

383

Network device support

Name
alloc_etherdev_mqgs — Allocates and sets up an Ethernet device

Synopsis

struct net _device * alloc_etherdev_ngs (int sizeof priv, unsigned int
t xgs, unsigned int rxqgs);

Arguments
si zeof _priv Sizeof additional driver-private structure to be allocated for this Ethernet device
t xgs The number of TX queues this device has.
r Xgs The number of RX queues this device has.

Description

Fill in the fields of the device structure with Ethernet-generic values. Basically does everything except
registering the device.

Constructs a new net device, complete with a private data area of size (sizeof_priv). A 32-byte (not bit)
alignment is enforced for this private data area.

384

Network device support

Name
netif_carrier_on — set carrier
Synopsis
void netif_carrier_on (struct net_device * dev);
Arguments
dev network device
Description

Device has detected that carrier.

385

Network device support

Name

netif _carrier_off — clear carrier
Synopsis
void netif_carrier_off (struct net_device * dev);

Arguments

dev network device

Description

Device has detected loss of carrier.

386

Network device support

Name
is link_local_ether_addr — Determine if given Ethernet addressis link-local

Synopsis

bool is_link |ocal _ether_addr (const u8 * addr);
Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if addressis link local reserved addr (01:80:¢2:00:00:0X) per |IEEE 802.1Q 8.6.3 Frame fil-
tering.

Please note

addr must be aligned to ul6.

387

Network device support

Name

is zero_ether_addr — Determineif give Ethernet addressis all zeros.
Synopsis

bool is_zero_ether_addr (const u8 * addr);
Arguments

addr Pointer to a six-byte array containing the Ethernet address
Description

Return trueif the addressis all zeroes.

Please note

addr must be aligned to ul6.

388

Network device support

Name
is multicast_ether_addr — Determine if the Ethernet address is a multicast.

Synopsis

bool is_multicast_ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if the address is a multicast address. By definition the broadcast address is also a multicast
address.

389

Network device support

Name
is_local_ether_addr — Determine if the Ethernet address is |ocally-assigned one (IEEE 802).

Synopsis
bool is_|ocal _ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if the addressis alocal address.

390

Network device support

Name
is broadcast_ether_addr — Determine if the Ethernet address is broadcast

Synopsis

bool is_broadcast ether_addr (const u8 * addr);
Arguments

addr Pointer to a six-byte array containing the Ethernet address
Description

Return trueif the addressis the broadcast address.

Please note

addr must be aligned to ul6.

391

Network device support

Name
is unicast_ether_addr — Determineif the Ethernet addressis unicast

Synopsis
bool is_unicast_ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if the addressis a unicast address.

392

Network device support

Name
is valid_ether_addr — Determine if the given Ethernet addressisvalid

Synopsis
bool is_valid ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not a multicast address, and is not
FF:FF.FF:FF.FF:FF.

Return true if the addressisvalid.

Please note

addr must be aligned to ul6.

393

Network device support

Name
eth_proto_is 802_3 — Determine if a given Ethertype/length is a protocol

Synopsis
bool eth proto is 802 3 (__bel6 proto);

Arguments

prot o Ethertype/length valueto be tested

Description
Check that the value from the Ethertype/length field is avalid Ethertype.

Return true if the valid is an 802.3 supported Ethertype.

394

Network device support

Name

eth_random_addr — Generate software assigned random Ethernet address
Synopsis

void eth_random addr (u8 * addr);
Arguments

addr Pointer to a six-byte array containing the Ethernet address
Description

Generate arandom Ethernet address (MAC) that is not multicast and has the local assigned bit set.

395

Network device support

Name

eth_broadcast_addr — Assign broadcast address
Synopsis

voi d eth_broadcast _addr (u8 * addr);
Arguments

addr Pointer to a six-byte array containing the Ethernet address
Description

Assign the broadcast address to the given address array.

396

Network device support

Name
eth zero_addr — Assign zero address
Synopsis
void eth_zero_addr (u8 * addr);
Arguments
addr Pointer to a six-byte array containing the Ethernet address
Description

Assign the zero address to the given address array.

397

Network device support

Name

eth_hw_addr_random — Generate software assigned random Ethernet and set device flag
Synopsis

void eth_hw addr_random (struct net _device * dev);
Arguments

dev pointer to net_device structure
Description

Generate a random Ethernet address (MAC) to be used by a net device and set addr_assign type so the
state can be read by sysfs and be used by userspace.

398

Network device support

Name
ether_addr_copy — Copy an Ethernet address
Synopsis
voi d ether_addr_copy (u8 * dst, const u8 * src);
Arguments
dst Pointer to asix-byte array Ethernet address destination
src Pointer to asix-byte array Ethernet address source
Please note

dst & src must both be aligned to ul6.

399

Network device support

Name
eth_hw_addr_inherit — Copy dev_addr from another net_device

Synopsis
void eth_hw addr _inherit (struct net _device * dst, struct net_device
* src);

Arguments

dst pointer to net_device to copy dev_addr to

src pointer to net_device to copy dev_addr from

Description

Copy the Ethernet address from one net_device to another along with the address attributes (addr_as-
sign_type).

400

Network device support

Name
ether_addr_equal — Compare two Ethernet addresses

Synopsis

bool ether _addr_equal (const u8 * addrl, const u8 * addr?2);
Arguments

addr 1 Pointer to asix-byte array containing the Ethernet address

addr 2 Pointer other six-byte array containing the Ethernet address
Description

Compare two Ethernet addresses, returns true if equal

Please note

addrl & addr2 must both be aligned to ul6.

401

Network device support

Name
ether_addr_equal_64bits — Compare two Ethernet addresses

Synopsis
bool ether _addr_equal 64bits (const u8 addr 1] 6+2], const u8 addr?2[6+2]);
Arguments

addr 1[6+2] Pointer to an array of 8 bytes

addr 2[6+2] Poainter to an other array of 8 bytes

Description
Compare two Ethernet addresses, returns true if equal, false otherwise.

The function doesn't need any conditional branches and possibly uses word memory accesses on CPU
allowing cheap unaligned memory reads. arrays ={ bytel, byte2, byte3, byted, byte5, byte6, padl, pad2 }

Please note that alignment of addrl & addr2 are only guaranteed to be 16 bits.

402

Network device support

Name
ether_addr_equal_unaligned — Compare two not ul6 aligned Ethernet addresses

Synopsis
bool ether_addr_equal _unaligned (const u8 * addrl, const u8 * addr2);
Arguments

addr 1 Pointer to asix-byte array containing the Ethernet address

addr 2 Pointer other six-byte array containing the Ethernet address

Description

Compare two Ethernet addresses, returns true if equal

Please note

Use only when any Ethernet address may not be ul6 aligned.

403

Network device support

Name
is_etherdev_addr — Tell if given Ethernet address belongs to the device.
Synopsis
bool is_etherdev_addr (const struct net_device * dev, const u8 addr[6
+2]);
Arguments
dev Pointer to a device structure

addr[6 + 2] Pointer to asix-byte array containing the Ethernet address

Description

Compare passed address with all addresses of the device. Return true if the address if one of the device
addresses.

Note that thisfunction callset her _addr _equal _64bi t s so take care of the right padding.

404

Network device support

Name
compare_ether_header — Compare two Ethernet headers

Synopsis

unsi gned | ong conpare_et her _header (const void * a, const void * b);

Arguments
a Pointer to Ethernet header

b Pointer to Ethernet header

Description

Comparetwo Ethernet headers, returns O if equal. This assumesthat the network header (i.e., IP header) is
4-byte aligned OR the platform can handle unaligned access. Thisis the case for al packets coming into

netif_receive_skb or similar entry points.

405

Network device support

Name

eth_skb_pad — Pad buffer to mininum number of octets for Ethernet frame
Synopsis

int eth_skb _pad (struct sk_buff * skb);
Arguments

skb Buffer to pad
Description

An Ethernet frame should have a minimum size of 60 bytes. This function takes short frames and pads
them with zeros up to the 60 byte limit.

406

Network device support

Name
napi_schedule prep — check if napi can be scheduled
Synopsis
bool napi _schedul e_prep (struct napi_struct * n);
Arguments
n napi context
Description

Test if NAPI routineis already running, and if not mark it as running. Thisis used as a condition variable
insure only one NAPI poll instance runs. We also make sure there is no pending NAPI disable.

407

Network device support

Name
napi_schedule — schedule NAPI poll

Synopsis
voi d napi _schedul e (struct napi _struct * n);

Arguments

n napi context

Description
Schedule NAPI poll routine to be called if it is not already running.

408

Network device support

Name
napi_schedule_irgoff — schedule NAPI poll

Synopsis
voi d napi _schedul e_irqoff (struct napi_struct * n);

Arguments

n napi context

Description

Variant of napi _schedul e, assuming hard irgs are masked.

409

Network device support

Name
napi_complete— NAPI processing complete
Synopsis
bool napi _conplete (struct napi_struct * n);
Arguments
n napi context
Description

Mark NAPI processing as complete. Consider using napi _conpl et e_done instead. Return false if
device should avoid rearming interrupts.

410

Network device support

Name
napi_enable — enable NAPI scheduling
Synopsis
voi d napi _enabl e (struct napi_struct * n);
Arguments
n napi context
Description

Resume NAPI from being scheduled on this context. Must be paired with napi_disable.

411

Network device support

Name

napi_synchronize — wait until NAPI is not running
Synopsis

voi d napi _synchroni ze (const struct napi _struct * n);
Arguments

n napi context

Description

Wait until NAPI is done being scheduled on this context. Waitstill any outstanding processing completes
but does not disable future activations.

412

Network device support

Name

enum netdev_priv_flags — struct net_device priv_flags

Synopsis

enum netdev_priv_flags {

| FF_802_1Q VLAN,
| FF_EBRI DGE,

| EF_BONDI NG,

| EF_| SATAP,

| FFE_WAN_HDLC,

| FE_XM T_DST_RELEASE,

| FF_DONT_BRI DGE,

| FF_DI SABLE_NETPOLL,

| FE_MACVLAN_PORT,

| FF_BRI DGE_PORT,

| FF_OVS_DATAPATH,

| FE_TX_SKB_SHARI NG,
| FF_UNI CAST_FLT,

| FE_TEAM PORT,

| FF_SUPP_NOFCS,

| FF_LI VE_ADDR_CHANGE,

| FF_MACVLAN,

| FE_XM T_DST_RELEASE_PERM

| FF_I PVLAN_MASTER,

| FF_I PVLAN_SLAVE,

| FF_L3MDEV_MASTER,

| FF_NO_QUEUE,

| FF_OPENVSW TCH,

| FF_L3MDEV_SLAVE,

| FF_TEAM

| FF_RXFH_CONFI GURED

}s

Constants
IFF_802_1Q VLAN
IFF_EBRIDGE
IFF_BONDING
IFF_ISATAP
IFF_ WAN_HDLC
IFF_XMIT_DST_RELEASE
IFF_DONT_BRIDGE
IFF_DISABLE_NETPOLL

IFF_MACVLAN_PORT

802.1Q VLAN device

Ethernet bridging device

bonding master or slave

ISATAP interface (RFC4214)

WAN HDLC device

dev_hard _start_xmt isalowed to release skb->dst
disallow bridging this ether dev

disable netpoll at run-time

device used as macvlan port

413

Network device support

IFF_ BRIDGE_PORT device used as bridge port

IFF_OVS DATAPATH device used as Open vSwitch datapath port

IFF_TX_SKB_SHARING The interface supports sharing skbs on transmit

IFF_UNICAST FLT Supports unicast filtering

IFF_TEAM_PORT device used as team port

IFF_SUPP_NOFCS device supports sending custom FCS

IFF_ LIVE_ ADDR_CHANGE device supports hardware address change when it's running

IFF_MACVLAN Macvlan device

IFF_XMIT_DST_RE- -- undescribed --

LEASE_PERM

IFF_IPVLAN_MASTER -- undescribed --

IFF_IPVLAN_SLAVE -- undescribed --

IFF_ L3AMDEV_MASTER deviceis an L3 master device

IFF_NO_QUEUE device can run without gdisc attached

IFF_OPENVSWITCH device is a Open vSwitch master

IFF_ L3AMDEV_SLAVE deviceis endaved to an L3 master device

IFF_ TEAM deviceisateam device

IFF_RXFH_CONFIGURED device has had Rx Flow indirection table configured
Description

These are the struct net_device, they are only set internally by drivers and used in the kernel. These flags
areinvisible to userspace, this means that the order of these flags can change during any kernel release.

Y ou should have a pretty good reason to be extending these flags.

414

Network device support

Name

struct net_device — The DEVICE structure. Actually, this whole structure is a big mistake. It mixes I/
O data with strictly “high-level” data, and it has to know about almost every data structure used in the
INET module.

Synopsis

struct net_device {
char nane[| FNAMVSI Z] ;
struct hlist_node nanme_hli st;
char * ifalias;
unsi gned | ong nmem end,;
unsi gned long memstart;
unsi gned | ong base_addr
int irq;
atomi c_t carrier_changes;
unsi gned long state
struct list_head dev_list;
struct list_head napi_|Iist;
struct |ist_head unreg_list;
struct list_head close list;
struct {unnamed_struct};
struct garp_port __rcu * garp_port;
struct nrp_port __rcu * nrp_port;
struct device dev;
const struct attribute_group * sysfs_groups[4];
const struct attribute_group * sysfs_rx_queue_group
const struct rtnl_link_ops * rtnl_link_ops;
#defi ne GSO_MAX_SI ZE 65536
unsi gned int gso_max_size;
#defi ne GSO_MAX_SEGS 65535
ulé gso_mex_segs;
ulé gso_ni n_segs;
#i f def CONFI G_DCB
const struct dcbnl _rtnl_ops * dcbnl _ops;
#endi f
u8 numtc;
struct netdev_tc_txq tc_to_txq[TC_MAX QUEUE];
u8 prio_tc_map[TC BI TMASK + 1];
#i f | S_ENABLED(CONFI G_FCOE)
unsi gned int fcoe_ddp_xid;
#endi f
#i f | S_ENABLED(CONFI G_CGROUP_NET_PRI O
struct netprio_map __rcu * priomap
#endi f
struct phy_device * phydev;
struct | ock_class_key * qdisc_tx_busyl ock
bool proto_down;

b

415

Network device support

Members

name[IFNAMSIZ] This is the first field of the “visible” part of this structure (i.e. as
seen by usersin the “Space.c” file). It is the name of the interface.

name_hlist Device name hash chain, please keep it close to name][]

ifalias SNMP dias

mem_end Shared memory end

mem_start Shared memory start

base addr Device I/O address

irq Device IRQ number

carrier_changes Stats to monitor carrier on<->off transitions

state Generic network queuing layer state, see netdev_state t

dev_list The global list of network devices

napi_list List entry, that is used for polling napi devices

unreg_list List entry, that is used, when we are unregistering the device, see
the function unregister_netdev

close list List entry, that is used, when we are closing the device

{unnamed_struct} anonymous

garp_port GARP

mrp_port MRP

dev Clasg/net/name entry

sysfs_groups[4] Space for optional device, statistics and wireless sysfs groups

sysfs_rx_queue_group Space for optional per-rx queue attributes

rtnl_link_ops Rtnl_link_ops

gso_max_size Maximum size of generic segmentation offload

0SO_max_segs Maximum number of segments that can be passed to the NIC for
GSO

gso_min_segs Minimum number of segments that can be passed to the NIC for
GSO

dcbnl_ops Data Center Bridging netlink ops

num_tc Number of traffic classes in the net device

tc to txq[TC_MAX_QUEUE] XXX: need comments on this one

416

Network device support

prio_tc map[TC BITMASK + 1] need comments on this one

fcoe_ddp_xid Max exchange id for FCoE LRO by ddp

priomap XXX: need comments on this one

phydev Physical device may attach itself for hardware timestamping
qdisc_tx_busylock XXX: need comments on this one

proto_down protocol port state information can be sent to the switch driver and

used to set the phys state of the switch port.

FIXME

cleanup struct net_device such that network protocol info moves out.

417

Network device support

Name
netdev_priv — access network device private data
Synopsis
void * netdev_priv (const struct net_device * dev);
Arguments
dev network device
Description

Get network device private data

418

Network device support

Name
netif _tx_napi_add — initialize a napi context
Synopsis
void netif _tx napi_add (struct net _device * dev, struct napi_struct *
napi, int (*poll) (struct napi_struct *, int), int weight);
Arguments
dev network device
napi napi context
pol | polling function

wei ght default weight

Description

This variant of net i f _napi _add should be used from drivers using NAPI to exclusively poll a TX
queue. Thiswill avoid we add it into napi_hash[], thus polluting this hash table.

419

Network device support

Name
netif_start queue — alow transmit
Synopsis
void netif_start_queue (struct net_device * dev);
Arguments
dev network device
Description

Allow upper layersto call the device hard_start_xmit routine.

420

Network device support

Name
netif wake queue — restart transmit
Synopsis
void netif_wake queue (struct net _device * dev);
Arguments
dev network device
Description

Allow upper layers to call the device hard_start_xmit routine. Used for flow control when transmit re-
sources are available.

421

Network device support

Name
netif _stop_queue — stop transmitted packets
Synopsis
void netif_stop_queue (struct net _device * dev);
Arguments
dev network device
Description

Stop upper layerscallingthedevicehard_start_xmit routine. Used for flow control when transmit resources
are unavailable.

422

Network device support

Name
netif_queue_stopped — test if transmit queueis flowblocked

Synopsis

bool netif_queue_stopped (const struct net_device * dev);

Arguments

dev network device

Description

Test if transmit queue on device is currently unable to send.

423

Network device support

Name
netdev_txq _bgl_enqueue_prefetchw — prefetch bgl data for write

Synopsis

void netdev_txq _bgl _enqueue prefetchw (struct netdev_queue * de-
v_queue) ;

Arguments

dev_queue pointer to transmit queue

Description

BQL enabled driversmight usethishelperintheirndo_st art _xmi t , to give appropriate hint to the cpu.

424

Network device support

Name
netdev_txq bgl_complete prefetchw — prefetch bgl data for write

Synopsis

void netdev_txq_bqgl _conplete prefetchw (struct netdev_queue * de-
v_queue) ;

Arguments

dev_queue pointer to transmit queue

Description
BQL enabled drivers might use thishelper in their TX completion path, to give appropriate hint to the cpu.

425

Network device support

Name

netdev_sent_queue — report the number of bytes queued to hardware
Synopsis

voi d netdev_sent _queue (struct net_device * dev, unsigned int bytes);
Arguments

dev network device

byt es number of bytes queued to the hardware device queue

Description

Report the number of bytes queued for sending/completion to the network device hardware queue. byt es
should be a good approximation and should exactly match net dev_conpl et ed_queue byt es

426

Network device support

Name
netdev_completed_gueue — report bytes and packets completed by device
Synopsis
voi d net dev_conpl et ed_queue (struct net _device * dev, unsigned int pkts,
unsi gned int bytes);
Arguments
dev network device
pkts actual number of packets sent over the medium
byt es actual number of bytes sent over the medium
Description

Report the number of bytes and packets transmitted by the network device hardware queue over the phys-
ical medium, byt es must exactly match the byt es amount passed to net dev_sent _queue

427

Network device support

Name

netdev_reset_queue — reset the packets and bytes count of a network device

Synopsis

voi d netdev_reset queue (struct net_device * dev_queue);

Arguments

dev_queue network device

Description

Reset the bytes and packet count of a network device and clear the software flow control OFF bit for this
network device

428

Network device support

Name

netdev_cap_txqueue — check if selected tx queue exceeds device queues
Synopsis

ulé netdev_cap_txqueue (struct net _device * dev, ul6 queue_index);
Arguments

dev network device

gueue_i ndex given tx queue index

Description

Returns 0 if given tx queue index >= number of device tx queues, otherwise returns the originally passed
tx queue index.

429

Network device support

Name
netif_running — test if up
Synopsis
bool netif _running (const struct net_device * dev);
Arguments
dev network device
Description

Test if the device has been brought up.

430

Network device support

Name
netif _start subqueue — allow sending packets on subqueue
Synopsis
void netif_start_subqueue (struct net_device * dev, ul6 queue_index);
Arguments
dev network device
gueue_i ndex sub queue index
Description

Start individual transmit queue of a device with multiple transmit queues.

431

Network device support

Name
netif _stop_subqueue — stop sending packets on subqueue
Synopsis
void netif_stop_subqueue (struct net_device * dev, ul6 queue_i ndex);
Arguments
dev network device
gueue_i ndex sub queue index
Description

Stop individual transmit queue of a device with multiple transmit queues.

432

Network device support

Name
__netif_subqueue_stopped — test status of subqueue
Synopsis
bool _ netif_ subqueue stopped (const struct net_device * dev, ul6
gueue_i ndex) ;
Arguments
dev network device
gueue_i ndex sub queue index
Description

Check individual transmit queue of a device with multiple transmit queues.

433

Network device support

Name
netif_is multiqueue — test if device has multiple transmit queues
Synopsis
bool netif _is multiqueue (const struct net_device * dev);
Arguments
dev network device
Description

Check if device has multiple transmit queues

Network device support

Name
dev_put — release reference to device
Synopsis
void dev_put (struct net_device * dev);
Arguments
dev network device
Description

Release reference to device to allow it to be freed.

435

Network device support

Name
dev_hold — get reference to device
Synopsis
void dev_hold (struct net _device * dev);
Arguments
dev network device
Description

Hold reference to device to keep it from being freed.

436

Network device support

Name
netif _carrier_ok — test if carrier present
Synopsis
bool netif _carrier_ok (const struct net_device * dev);
Arguments
dev network device
Description

Check if carrier is present on device

437

Network device support

Name

netif _dormant_on — mark device as dormant.
Synopsis
void netif_dormant_on (struct net _device * dev);

Arguments

dev network device

Description
Mark device as dormant (as per RFC2863).

The dormant state indicates that the relevant interface is not actually in a condition to pass packets (i.e., it
isnot 'up’) but isin a“pending” state, waiting for some external event. For “on- demand” interfaces, this
new state identifies the situation where the interface is waiting for eventsto place it in the up state.

438

Network device support

Name
netif _dormant_off — set device as not dormant.
Synopsis
void netif_dormant_off (struct net_device * dev);
Arguments
dev network device
Description

Deviceis not in dormant state.

439

Network device support

Name
netif _dormant — test if carrier present
Synopsis
bool netif_dormant (const struct net_device * dev);
Arguments
dev network device
Description

Check if carrier is present on device

Network device support

Name
netif_oper_up — test if deviceis operational
Synopsis
bool netif_oper_up (const struct net_device * dev);
Arguments
dev network device
Description

Check if carrier is operational

441

Network device support

Name

netif_device present — isdevice available or removed
Synopsis
bool netif _device present (struct net _device * dev);

Arguments

dev network device

Description

Check if device has not been removed from system.

442

Network device support

Name

netif _tx_lock — grab network device transmit lock
Synopsis

void netif_tx |lock (struct net _device * dev);
Arguments

dev network device
Description

Get network device transmit lock

Network device support

Name
__dev_uc_sync — Synchonize device's unicast list
Synopsis
int _dev_uc_sync (struct net _device * dev, int (*sync) (struct net_de-
vice *, const unsigned char *), int (*unsync) (struct net_device *,
const unsigned char *));
Arguments
dev deviceto sync
sync function to call if address should be added
unsync function to call if address should be removed
Description

Add newly added addresses to the interface, and release addresses that have been del eted.

Network device support

Name

__dev_uc_unsync — Remove synchronized addresses from device

Synopsis

void __dev_uc_unsync (struct net_device * dev, int (*unsync) (struct
net device *, const unsigned char *));

Arguments

dev deviceto sync

unsync functionto call if address should be removed

Description

Remove all addresses that were added to the device by dev_uc_sync.

Network device support

Name
__dev_mc_sync — Synchonize device's multicast list
Synopsis
int __dev_nt_sync (struct net_device * dev, int (*sync) (struct net_de-
vice *, const unsigned char *), int (*unsync) (struct net_device *,
const unsigned char *));
Arguments
dev deviceto sync
sync function to call if address should be added
unsync function to call if address should be removed
Description

Add newly added addresses to the interface, and release addresses that have been del eted.

446

Network device support

Name

__dev_mc_unsync — Remove synchronized addresses from device
Synopsis

void __dev_nt_unsync (struct net_device * dev, int (*unsync) (struct
net device *, const unsigned char *));

Arguments
dev deviceto sync

unsync functionto call if address should be removed

Description

Remove all addresses that were added to the deviceby dev_nt_sync.

PHY Support

447

Network device support

Name

phy_print_status — Convenience function to print out the current phy status
Synopsis

void phy_print_status (struct phy_device * phydev);
Arguments

phydev thephy_device struct

Network device support

Name
phy_aneg_done — return auto-negotiation status
Synopsis
i nt phy_aneg _done (struct phy_device * phydev);
Arguments
phydev target phy_device struct
Description

Return the auto-negotiation status from thisphydev Returns > 0 on success or < 0 on error. 0 means that
auto-negotiation is still pending.

449

Network device support

Name
phy_ethtool _sset — generic ethtool sset function, handles all the details

Synopsis
int phy ethtool sset (struct phy device * phydev, struct ethtool cnd
* cmd);

Arguments

phydev target phy_device struct

cmd ethtool_cmd

A few notes about parameter checking

- Wedon't set port or transceiver, so we don't care what they were set to. - phy _st art _aneg will make
sure forced settings are sane, and choose the next best ones from the ones selected, so we don't care if

ethtool triesto give us bad values.

450

Network device support

Name
phy_mii_ioctl — generic PHY MII ioctl interface
Synopsis
int phy mi _ioctl (struct phy device * phydev, struct ifreq * ifr, int
cmd) ;
Arguments
phydev thephy_device struct
ifr struct ifreq for socket ioctl's
cnd ioctl cmd to execute
Description

Note that this functionis currently incompatible with the PHY CONTROL layer. It changesregisters with-
out regard to current state. Use at own risk.

451

Network device support

Name
phy_start_aneg — start auto-negotiation for thisPHY device

Synopsis
int phy_start_aneg (struct phy_device * phydev);
Arguments

phydev thephy_device struct

Description

Sanitizes the settings (if we're not autonegotiating them), and then calls the driver's config_aneg function.
If the PHY CONTROL Layer isoperating, we change the state to reflect the beginning of Auto-negotiation

or forcing.

452

Network device support

Name

phy_start_interrupts — request and enable interrupts for aPHY device
Synopsis
int phy start _interrupts (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Request theinterrupt for the given PHY . If thisfails, then we setirqto PHY_POLL. Otherwise, we enable
the interrupts in the PHY . This should only be called with a valid IRQ number. Returns 0 on success or

<0onerror.

453

Network device support

Name
phy_stop_interrupts — disable interrupts from aPHY device

Synopsis
int phy stop_interrupts (struct phy_device * phydev);
Arguments

phydev target phy_device struct

Network device support

Name
phy_stop — Bring down the PHY link, and stop checking the status

Synopsis
voi d phy_stop (struct phy_device * phydev);
Arguments

phydev target phy_device struct

455

Network device support

Name
phy_start — start or restart a PHY device
Synopsis
voi d phy_start (struct phy_device * phydev);
Arguments
phydev target phy_device struct
Description

Indicatesthe attached device'sreadinessto handle PHY -related work. Used during startup to start the PHY,,
and after a call to phy_st op to resume operation. Also used to indicate the MDIO bus has cleared an

error condition.

456

Network device support

Name
phy_read mmd_indirect — reads data from the MMD registers

Synopsis
int phy read nmd_indirect (struct phy device * phydev, int prtad, int
devad) ;

Arguments

phydev ThePHY devicebus

prtad MMD Address

devad MMD DEVAD
Description

it reads data from the MMD registers (clause 22 to access to clause 45) of the specified phy address.

To read these register we have

1) Writereg 13 // DEVAD 2) Writereg 14 // MMD Address 3) Writereg 13 // MMD Data Command for
MMD DEVAD 3) Read reg 14 // Read MMD data

457

Network device support

Name
phy_write_ mmd_indirect — writes data to the MMD registers

Synopsis

void phy wite mm_indirect (struct phy device * phydev, int prtad, int
devad, u32 data);

Arguments

phydev ThePHY device

prtad MMD Address

devad MMD DEVAD

data datato writein the MMD register
Description

Write data from the MMD registers of the specified phy address.

To write these register we have

1) Writereg 13 // DEVAD 2) Writereg 14 // MMD Address 3) Write reg 13 // MMD Data Command for
MMD DEVAD 3) Writereg 14 // Write MMD data

458

Network device support

Name

phy_init_eee — init and check the EEE feature
Synopsis

int phy init_eee (struct phy_device * phydev, bool clk _stop_enable);
Arguments

phydev target phy_device struct

cl k_stop_enabl e PHY may stop the clock during LPI

Description

it checks if the Energy-Efficient Ethernet (EEE) is supported by looking at the MMD registers 3.20 and
7.60/61 and it programs the MMD register 3.0 setting the “Clock stop enable” bit if required.

459

Network device support

Name
phy_get eee err — report the EEE wake error count
Synopsis
int phy get eee err (struct phy_device * phydev);
Arguments
phydev target phy_device struct
Description

it isto report the number of time where the PHY failed to complete its normal wake sequence.

460

Network device support

Name
phy_ethtool _get eee — get EEE supported and status
Synopsis
i nt phy_ethtool get eee (struct phy device * phydev, struct ethtool eee
* data);
Arguments
phydev target phy_device struct
dat a ethtool _eee data
Description

it reportes the Supported/Advertisement/L P Advertisement capabilities.

461

Network device support

Name
phy_ethtool set eee — set EEE supported and status
Synopsis
i nt phy_ethtool set eee (struct phy_device * phydev, struct ethtool eee
* data);
Arguments
phydev target phy_device struct
dat a ethtool _eee data
Description

it isto program the Advertisement EEE register.

462

Network device support

Name
phy_clear_interrupt — Ack the phy device's interrupt
Synopsis
int phy clear _interrupt (struct phy_device * phydev);
Arguments
phydev thephy_device struct
Description

If the phydev driver has an ack_interrupt function, call it to ack and clear the phy device'sinterrupt.

Returns 0 on success or < 0 on error.

463

Network device support

Name
phy_config_interrupt — configure the PHY device for the requested interrupts
Synopsis
int phy config interrupt (struct phy_device * phydev, u32 interrupts);
Arguments
phydev the phy_device struct
i nterrupts interrupt flagsto configure for thisphydev
Description

Returns 0 on success or < 0 on error.

464

Network device support

Name
phy_find_setting — find a PHY settings array entry that matches speed & duplex

Synopsis
unsi gned int phy find setting (int speed, int duplex);
Arguments

speed speedto match

dupl ex duplex to match

Description

Searches the settings array for the setting which matches the desired speed and duplex, and returns the
index of that setting. Returns the index of the last setting if none of the others match.

465

Network device support

Name

phy_find_valid — find aPHY setting that matches the requested features mask
Synopsis

unsi gned int phy find valid (unsigned int idx, u32 features);
Arguments

i dx The first index in settingg[] to search

features A mask of thevalid settings

Description

Returns the index of the first valid setting less than or equal to the one pointed to by idx, as determined by
the mask in features. Returns the index of the last setting if nothing else matches.

466

Network device support

Name

phy_check valid — check if thereisavalid PHY setting which matches speed, duplex, and feature mask
Synopsis

bool phy check valid (int speed, int duplex, u32 features);
Arguments

speed speed to match

dupl ex duplex to match

features A mask of thevalid settings

Description

Returnstrueif thereisavalid setting, false otherwise.

467

Network device support

Name

phy_sanitize_settings — make sure the PHY is set to supported speed and duplex
Synopsis

voi d phy_sanitize settings (struct phy_device * phydev);
Arguments

phydev thetarget phy_device struct
Description

Make surethe PHY is set to supported speeds and duplexes. Drop down by onein this order: 1000/FULL,
1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.

468

Network device support

Name
phy_start_machine — start PHY state machine tracking

Synopsis
voi d phy_start _machi ne (struct phy_device * phydev);
Arguments

phydev thephy_device struct

Description

The PHY infrastructure can run a state machine which tracks whether the PHY is starting up, negotiating,
etc. This function starts the timer which tracks the state of the PHY . If you want to maintain your own

state machine, do not call this function.

469

Network device support

Name
phy_stop_machine — stop the PHY state machine tracking
Synopsis
voi d phy_stop_machine (struct phy_device * phydev);
Arguments
phydev target phy_device struct
Description

Stops the state machine timer, sets the state to UP (unless it wasn't up yet). This function must be called
BEFORE phy_detach.

470

Network device support

Name
phy_error — enter HALTED state for this PHY device

Synopsis
void phy_error (struct phy _device * phydev);
Arguments

phydev target phy_device struct

Description

Movesthe PHY to the HALTED state in response to aread or write error, and tells the controller the link
is down. Must not be called from interrupt context, or while the phydev->lock is held.

471

Network device support

Name
phy_interrupt — PHY interrupt handler
Synopsis
irqreturn_t phy interrupt (int irq, void * phy dat);
Arguments
irg interrupt line
phy_dat phy device pointer
Description
When a PHY interrupt occurs, the handler disables interrupts, and schedules a work task to clear the
interrupt.

472

Network device support

Name
phy_enable_interrupts — Enable the interrupts from the PHY side

Synopsis
int phy _enable_ interrupts (struct phy_device * phydev);
Arguments

phydev target phy_device struct

473

Network device support

Name
phy_disable interrupts — Disable the PHY interrupts from the PHY side

Synopsis
i nt phy disable interrupts (struct phy_device * phydev);
Arguments

phydev target phy_device struct

474

Network device support

Name
phy_change — Scheduled by the phy_interrupt/timer to handle PHY changes

Synopsis
voi d phy_change (struct work struct * work);

Arguments

wor k work_struct that describes the work to be done

475

Network device support

Name
phy_state machine — Handle the state machine

Synopsis
voi d phy_state machine (struct work _struct * work);

Arguments

wor k work_struct that describes the work to be done

476

Network device support

Name
phy_register_fixup — creates anew phy_fixup and adds it to the list

Synopsis

int phy register fixup (const char * bus_id, u32 phy uid, u32
phy uid_mask, int (*run) (struct phy_device *));

Arguments
bus_id A string which matches phydev->mdio.dev.bus id (or PHY_ANY _ID)
phy _uid Used to match against phydev->phy id (the UID of the PHY) It can aso be

PHY_ANY_UID
phy_ui d_mask Applied to phydev->phy_id and fixup->phy_uid before comparison

run The actual code to be run when amatching PHY isfound

477

Network device support

Name
get_phy_device — reads the specified PHY device and returnsits phy_devi ce struct
Synopsis
struct phy_device * get _phy device (struct mi_bus * bus, int addr,
bool is_c45);
Arguments
bus the target MII bus
addr PHY address on the MII bus
i s_c45 |If truethe PHY usesthe 802.3 clause 45 protocol
Description
Reads the ID registers of the PHY at addr on the bus, then alocates and returns the phy_device to
represent it.

478

Network device support

Name
phy_device_register — Register the phy device on the MDIO bus

Synopsis
i nt phy_device register (struct phy_device * phydev);
Arguments

phydev phy_device structure to be added to the MDIO bus

479

Network device support

Name

phy_device remove — Remove a previously registered phy device from the MDIO bus
Synopsis

voi d phy_device renove (struct phy_device * phydev);
Arguments

phydev phy_device structure to remove
Description

This doesn't free the phy_device itself, it merely reversesthe effects of phy_devi ce_r egi st er. Use
phy_devi ce_fr ee to free the device after calling this function.

480

Network device support

Name
phy_find_first — finds the first PHY device on the bus

Synopsis
struct phy _device * phy find first (struct mi_bus * bus);
Arguments

bus thetarget MII bus

481

Network device support

Name

phy_connect_direct — connect an ethernet device to a specific phy_device
Synopsis

i nt phy_connect _direct (struct net _device * dev, struct phy_device *
phydev, void (*handler) (struct net _device *), phy_ interface t inter-

face);
Arguments
dev the network device to connect
phydev the pointer to the phy device
handl er callback function for state change notifications

i nterface PHY devicesinterface

482

Network device support

Name

phy_connect — connect an ethernet deviceto aPHY device

Synopsis

struct phy_device * phy connect (struct net _device * dev, const char
* bus_id, void (*handler) (struct net_device *), phy_ interface t in-

terface);
Arguments
dev the network device to connect
bus id the id string of the PHY device to connect
handl er callback function for state change notifications

i nterface PHY devicesinterface

Description

Convenience function for connecting ethernet devicesto PHY devices. The default behavior isfor the PHY
infrastructure to handle everything, and only notify the connected driver when the link status changes. If
you don't want, or can't use the provided functionality, you may chooseto call only the subset of functions
which provide the desired functionality.

483

Network device support

Name
phy_disconnect — disable interrupts, stop state machine, and detach aPHY device

Synopsis
voi d phy_di sconnect (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Network device support

Name

phy_attach direct — attach a network device to agiven PHY device pointer

Synopsis

int phy attach_direct (struct net_device * dev, struct phy device *
phydev, u32 flags, phy_ interface t interface);

Arguments
dev network device to attach
phydev Pointer to phy_device to attach
fl ags PHY device'sdev_flags

i nterface PHY devicesinterface

Description

Called by driversto attach to a particular PHY device. The phy_deviceis found, and properly hooked up
tothephy_driver. If no driver isattached, then ageneric driver isused. The phy_deviceisgiven aptr to the
attaching device, and given a callback for link status change. The phy_device is returned to the attaching
driver. This function takes a reference on the phy device.

485

Network device support

Name

phy_attach — attach a network device to a particular PHY device

Synopsis

struct phy_device * phy attach (struct net_device * dev, const char *
bus id, phy_ interface t interface);

Arguments
dev network device to attach
bus id Bus ID of PHY deviceto attach

i nterface PHY devicesinterface

Description

Sameasphy_attach_direct exceptthataPHY bus id string is passed instead of apointer to astruct
phy_device.

486

Network device support

Name

phy_detach — detach aPHY device from its network device
Synopsis

voi d phy_detach (struct phy_device * phydev);
Arguments

phydev target phy_device struct
Description

This detaches the phy device from its network device and the phy driver, and drops the reference count
takeninphy_attach_direct.

487

Network device support

Name

genphy_setup _forced — configures/forces speed/duplex from phydev
Synopsis

i nt genphy_setup forced (struct phy_device * phydev);
Arguments

phydev target phy_device struct
Description

Configures M1I_BMCR to force speed/duplex to the values in phydev. Assumes that the values are valid.
Please seephy_saniti ze_settings.

488

Network device support

Name
genphy_restart_aneg — Enable and Restart Autonegotiation

Synopsis
i nt genphy restart_aneg (struct phy_device * phydev);

Arguments

phydev target phy_device struct

489

Network device support

Name

genphy_config_aneg — restart auto-negotiation or write BMCR
Synopsis

i nt genphy_config _aneg (struct phy_device * phydev);
Arguments

phydev target phy_device struct
Description

If auto-negotiation is enabled, we configure the advertising, and then restart auto-negotiation. If it is not
enabled, then we write the BMCR.

490

Network device support

Name

genphy_aneg_done — return auto-negotiation status
Synopsis

i nt genphy_aneg_done (struct phy_device * phydev);
Arguments

phydev target phy_device struct

Description

Reads the status register and returns O either if auto-negotiation is incomplete, or if there was an error.
Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.

4901

Network device support

Name
genphy_update link — update link statusin phydev
Synopsis
i nt genphy_update |ink (struct phy_device * phydev);
Arguments
phydev target phy_device struct
Description

Update the value in phydev->link to reflect the current link value. In order to do this, we need to read the
status register twice, keeping the second value.

492

Network device support

Name
genphy_read status— check the link status and update current link state

Synopsis

i nt genphy_read_status (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Check the link, then figure out the current state by comparing what we advertise with what the link partner
advertises. Start by checking the gigabit possibilities, then move on to 10/100.

493

Network device support

Name
genphy_soft_reset — software reset the PHY viaBMCR_RESET bit

Synopsis
i nt genphy_soft _reset (struct phy_device * phydev);
Arguments
phydev target phy_device struct
Description
Perform asoftware PHY reset using the standard BMCR_RESET bit and poll for thereset bit to be cleared.

Returns

0 on success, < 0 on failure

494

Network device support

Name
phy_driver_register — register aphy_driver with the PHY layer

Synopsis
int phy driver _register (struct phy driver * new. driver,
* owner);

Arguments

new driver new phy driver toregister

owner module owning this PHY

struct

nodul e

495

Network device support

Name
get_phy c45 ids— reads the specified addr for its 802.3-¢45 IDs.

Synopsis

int get phy c45 ids (struct mi_bus * bus, int addr, u32 * phy_id,
struct phy c45 device ids * c45 ids);

Arguments
bus the target MII bus
addr PHY address on the MIl bus

phy_id whereto storetheID retrieved.

c45_ids whereto storethe c45 ID information.

Description

If the PHY devices-in-package appears to be valid, it and the corresponding identifiers are stored in
c45_ i ds, zeroisstoredinphy_i d. Otherwise Oxffffffff isstored in phy_i d. Returns zero on success.

496

Network device support

Name
get_phy_id — reads the specified addr for itsID.

Synopsis

int get phy id (struct mi_bus * bus, int addr, u32 * phy_id, bool
i s_c45, struct phy _c45 device ids * c45 ids);

Arguments
bus the target MII bus
addr PHY address on the MIl bus

phy_id whereto storetheID retrieved.
is_c45 If truethe PHY usesthe 802.3 clause 45 protocol

c45 _ids whereto storethe c45 ID information.

Description

Inthe caseof a802.3-c22 PHY, readsthe D registersof thePHY ataddr onthebus, storesitinphy_i d
and returns zero on SUCcess.

In the case of a802.3-c45 PHY, get _phy_c45_i ds isinvoked, and itsreturn valueisin turn returned.

497

Network device support

Name
phy_prepare_link — preparesthe PHY layer to monitor link status

Synopsis

void phy prepare Iink (struct phy device * phydev,
(struct net_device *));

Arguments
phydev target phy device struct

handl er callback function for link status change notifications

Description

void (*handler)

Tellsthe PHY infrastructure to handle the gory details on monitoring link status (whether through polling
or an interrupt), and to call back to the connected device driver when the link status changes. If you want

to monitor your own link state, don't call this function.

498

Network device support

Name
phy_poll_reset — Safely wait until aPHY reset has properly completed

Synopsis

int phy _poll _reset (struct phy_device * phydev);

Arguments

phydev ThePHY deviceto poll

Description

According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as published in 2008, a PHY reset may take
up to 0.5 seconds. The MIlI BMCR register must be polled until the BMCR_RESET bit clears.

Furthermore, any attemptsto writeto PHY registers may have no effect or even generate MDIO buserrors
until thisis complete.

Some PHY s (such as the Marvell 88E1111) don't entirely conform to the standard and do not fully reset
after the BMCR_RESET bit is set, and may even * REQUIRE* a soft-reset to properly restart autonegotia-
tion. In an effort to support such broken PHY s, thisfunction is separate from the standard phy_i nit _hw
which will zero al the other bitsin the BMCR and reapply all driver-specific and board-specific fixups.

499

Network device support

Name

genphy_config_advert — sanitize and advertise auto-negotiation parameters
Synopsis

i nt genphy_config advert (struct phy_device * phydev);
Arguments

phydev target phy_device struct
Description

Writes MII_ADVERTISE with the appropriate values, after sanitizing the values to make sure we only
advertise what is supported. Returns < 0 on error, O if the PHY's advertisement hasn't changed, and > 0

if it has changed.

500

Network device support

Name

phy_probe — probe and init aPHY device
Synopsis

i nt phy _probe (struct device * dev);
Arguments

dev deviceto probe and init
Description

Take care of setting up the phy_device structure, set the state to READY (the driver'sinit function should
set it to STARTING if needed).

501

Network device support

Name
mdiobus _alloc_size — alocate amii_bus structure
Synopsis
struct mi_bus * ndiobus_alloc_size (size_t size);
Arguments
si ze extraamount of memory to alocate for private storage. If non-zero, then bus->priv is points to
that memory.
Description

called by abusdriver to allocate an mii_bus structure to fill in.

502

Network device support

Name

devm_mdiobus_alloc_size — Resource-managed ndi obus_al | oc_si ze

Synopsis

struct mi_bus * devm ndi obus alloc_size (struct device * dev, int
si zeof priv);

Arguments
dev Device to allocate mii_busfor

si zeof priv Spaceto allocate for private structure.

Description
Managed mdiobus_alloc_size. mii_busallocated with thisfunction isautomatically freed on driver detach.

If an mii_bus allocated with this function needs to be freed separately, devm ndi obus_f r ee must be
used.

RETURNS

Pointer to allocated mii_bus on success, NULL on failure.

503

Network device support

Name
devm_mdiobus_free — Resource-managed ndi obus_fr ee
Synopsis
voi d devm ndi obus free (struct device * dev, struct mi_bus * bus);
Arguments
dev Devicethismii_bus belongsto
bus the mii_bus associated with the device
Description

Free mii_bus alocated withdevm ndi obus_al | oc_si ze.

504

Network device support

Name

of_mdio_find_bus— Given an mii_bus node, find the mii_bus.

Synopsis

struct mi_bus * of _ndio _find bus (struct device node * ndio_bus _np);

Arguments

ndi o_bus_np Pointer to the mii_bus.

Description

Returns a reference to the mii_bus, or NULL if none found. The embedded struct device will have its
reference count incremented, and this must be put once the bus is finished with.

Because the association of a device_node and mii_bus is made viaof _ndi obus_r egi st er, the mi-
i_bus cannot be found before it is registered with of _ndi obus_r egi ster.

505

Network device support

Name

__mdiobus_register — bring up all the PHY s on a given bus and attach them to bus
Synopsis

int _ ndiobus register (struct mi_bus * bus, struct nodule * owner);
Arguments

bus target mii_bus

owner module containing bus accessor functions

Description

Cadlled by abusdriver to bring up all the PHY son agiven bus, and attach them to the bus. Drivers should use
ndi obus_r egi st er rather than ___ndi obus_r egi st er unlessthey need to pass a specific owner
module. MDIO devices which are not PHY swill not be brought up by this function. They are expected to
to be explicitly listed in DT and instantiated by of _ndi obus_r egi ster.

Returns 0 on success or < 0 on error.

506

Network device support

Name
mdiobus_free — free a struct mii_bus
Synopsis
voi d ndi obus free (struct mi_bus * bus);
Arguments
bus mii_busto free
Description

This function rel eases the reference to the underlying device object in the mii_bus. If thisisthe |ast refer-
ence, the mii_bus will be freed.

507

Network device support

Name

mdiobus_scan — scan abus for MDIO devices.
Synopsis

struct phy_device * ndiobus_scan (struct mi_bus * bus, int addr);
Arguments

bus mii_busto scan

addr addresson busto scan

Description

This function scans the MDIO bus, looking for devices which can be identified using a vendor/product
ID inregisters 2 and 3. Not all MDIO devices have such registers, but PHY devices typically do. Hence
this function assumes anything found isa PHY/, or can be treated as a PHY. Other MDIO devices, such
as switches, will probably not be found during the scan.

508

Network device support

Name

mdiobus read nested — Nested version of the mdiobus_read function
Synopsis

i nt ndi obus_read nested (struct mi_bus * bus, int addr, u32 regnum;
Arguments

bus the mii_bus struct

addr the phy address
regnum register number to read
Description

In case of nested MDIO bus access avoid lockdep false positives by using nut ex_| ock_nest ed.

NOTE

MUST NOT becalled frominterrupt context, because the busread/write functions may wait for aninterrupt
to conclude the operation.

509

Network device support

Name

mdiobus_read — Convenience function for reading a given M1l mgmt register
Synopsis

i nt ndi obus read (struct mi_bus * bus, int addr, u32 regnum;
Arguments

bus the mii_bus struct

addr the phy address

regnum register number to read

NOTE

MUST NOT becalled frominterrupt context, because the busread/write functionsmay wait for aninterrupt
to conclude the operation.

510

Network device support

Name
mdiobus_write nested — Nested version of the mdiobus_write function
Synopsis
int ndiobus wite nested (struct mi_bus * bus, int addr, u32 regnum
ulé val);
Arguments
bus the mii_bus struct

addr the phy address

regnum register number to write

val valueto writetor egnum
Description

In case of nested MDIO bus access avoid lockdep false positives by using mut ex_| ock_nest ed.

NOTE

MUST NOT becalled frominterrupt context, because the busread/write functionsmay wait for aninterrupt
to conclude the operation.

511

Network device support

Name

mdiobus_write — Convenience function for writing agiven MIl mgmt register
Synopsis

i nt ndi obus wite (struct mi_bus * bus, int addr, u32 regnum ulé6 val);
Arguments

bus the mii_bus struct

addr the phy address
regnum register number to write

val valueto writetor egnum

NOTE

MUST NOT be called frominterrupt context, because the busread/write functionsmay wait for aninterrupt
to conclude the operation.

512

Network device support

Name

mdiobus_release — mii_bus device release callback
Synopsis

voi d ndi obus_rel ease (struct device * d);
Arguments

d thetarget struct device that contains the mii_bus
Description

called when the last reference to an mii_busis dropped, to free the underlying memory.

513

Network device support

Name

mdio_bus match — determine if given MDIO driver supports the given MDIO device

Synopsis

int nmdio_bus _match (struct device * dev, struct device driver * drv);
Arguments

dev target MDIO device

drv given MDIO driver

Description

Given aMDIO device, and aMDIO driver, return 1 if the driver supports the device. Otherwise, return 0.
This may require calling the devices own match function, since different classes of MDIO devices have

different match criteria

514

	Linux Networking and Network Devices APIs
	Table of Contents
	Chapter 1. Linux Networking
	Networking Base Types
	enum sock_type
	struct socket

	Socket Buffer Functions
	struct skb_shared_hwtstamps
	struct skb_mstamp
	skb_mstamp_get
	skb_mstamp_us_delta
	struct sk_buff
	skb_dst
	skb_dst_set
	skb_dst_set_noref
	skb_dst_is_noref
	skb_fclone_busy
	skb_queue_empty
	skb_queue_is_last
	skb_queue_is_first
	skb_queue_next
	skb_queue_prev
	skb_get
	skb_cloned
	skb_header_cloned
	skb_header_release
	__skb_header_release
	skb_shared
	skb_share_check
	skb_unshare
	skb_peek
	skb_peek_next
	skb_peek_tail
	skb_queue_len
	__skb_queue_head_init
	skb_queue_splice
	skb_queue_splice_init
	skb_queue_splice_tail
	skb_queue_splice_tail_init
	__skb_queue_after
	__skb_fill_page_desc
	skb_fill_page_desc
	skb_headroom
	skb_tailroom
	skb_availroom
	skb_reserve
	skb_tailroom_reserve
	pskb_trim_unique
	skb_orphan
	skb_orphan_frags
	netdev_alloc_skb
	__dev_alloc_pages
	__dev_alloc_page
	skb_propagate_pfmemalloc
	skb_frag_page
	__skb_frag_ref
	skb_frag_ref
	__skb_frag_unref
	skb_frag_unref
	skb_frag_address
	skb_frag_address_safe
	__skb_frag_set_page
	skb_frag_set_page
	skb_frag_dma_map
	skb_clone_writable
	skb_cow
	skb_cow_head
	skb_padto
	skb_put_padto
	skb_linearize
	skb_has_shared_frag
	skb_linearize_cow
	skb_postpull_rcsum
	skb_push_rcsum
	pskb_trim_rcsum
	skb_needs_linearize
	skb_get_timestamp
	skb_tx_timestamp
	skb_checksum_complete
	skb_checksum_none_assert
	skb_head_is_locked
	skb_gso_network_seglen
	struct sock_common
	struct sock
	sk_nulls_for_each_entry_offset
	unlock_sock_fast
	sk_wmem_alloc_get
	sk_rmem_alloc_get
	sk_has_allocations
	skwq_has_sleeper
	sock_poll_wait
	sk_page_frag
	sock_tx_timestamp
	sk_eat_skb
	sk_state_load
	sk_state_store
	sockfd_lookup
	sock_release
	kernel_recvmsg
	sock_register
	sock_unregister
	__alloc_skb
	netdev_alloc_frag
	__netdev_alloc_skb
	__napi_alloc_skb
	__kfree_skb
	kfree_skb
	skb_tx_error
	consume_skb
	skb_morph
	skb_copy_ubufs
	skb_clone
	skb_copy
	__pskb_copy_fclone
	pskb_expand_head
	skb_copy_expand
	skb_pad
	pskb_put
	skb_put
	skb_push
	skb_pull
	skb_trim
	__pskb_pull_tail
	skb_copy_bits
	skb_store_bits
	skb_zerocopy
	skb_dequeue
	skb_dequeue_tail
	skb_queue_purge
	skb_queue_head
	skb_queue_tail
	skb_unlink
	skb_append
	skb_insert
	skb_split
	skb_prepare_seq_read
	skb_seq_read
	skb_abort_seq_read
	skb_find_text
	skb_append_datato_frags
	skb_pull_rcsum
	skb_segment
	skb_cow_data
	skb_clone_sk
	skb_partial_csum_set
	skb_checksum_setup
	skb_checksum_trimmed
	skb_try_coalesce
	skb_scrub_packet
	skb_gso_transport_seglen
	alloc_skb_with_frags
	sk_ns_capable
	sk_capable
	sk_net_capable
	sk_set_memalloc
	sk_alloc
	sk_clone_lock
	skb_page_frag_refill
	sk_wait_data
	__sk_mem_schedule
	__sk_mem_reclaim
	lock_sock_fast
	__skb_recv_datagram
	skb_kill_datagram
	skb_copy_datagram_iter
	skb_copy_datagram_from_iter
	zerocopy_sg_from_iter
	skb_copy_and_csum_datagram_msg
	datagram_poll
	sk_stream_write_space
	sk_stream_wait_connect
	sk_stream_wait_memory

	Socket Filter
	sk_filter_trim_cap
	bpf_prog_create
	bpf_prog_create_from_user
	__sk_attach_filter

	Generic Network Statistics
	struct gnet_stats_basic
	struct gnet_stats_rate_est
	struct gnet_stats_rate_est64
	struct gnet_stats_queue
	struct gnet_estimator
	gnet_stats_start_copy_compat
	gnet_stats_start_copy
	gnet_stats_copy_basic
	gnet_stats_copy_rate_est
	gnet_stats_copy_queue
	gnet_stats_copy_app
	gnet_stats_finish_copy
	gen_new_estimator
	gen_kill_estimator
	gen_replace_estimator
	gen_estimator_active

	SUN RPC subsystem
	xdr_encode_opaque_fixed
	xdr_encode_opaque
	xdr_terminate_string
	_copy_from_pages
	xdr_stream_pos
	xdr_init_encode
	xdr_commit_encode
	xdr_reserve_space
	xdr_truncate_encode
	xdr_restrict_buflen
	xdr_write_pages
	xdr_init_decode
	xdr_init_decode_pages
	xdr_set_scratch_buffer
	xdr_inline_decode
	xdr_read_pages
	xdr_enter_page
	xdr_buf_subsegment
	xdr_buf_trim
	svc_print_addr
	svc_reserve
	svc_find_xprt
	svc_xprt_names
	xprt_register_transport
	xprt_unregister_transport
	xprt_load_transport
	xprt_reserve_xprt
	xprt_release_xprt
	xprt_release_xprt_cong
	xprt_release_rqst_cong
	xprt_adjust_cwnd
	xprt_wake_pending_tasks
	xprt_wait_for_buffer_space
	xprt_write_space
	xprt_set_retrans_timeout_def
	xprt_set_retrans_timeout_rtt
	xprt_disconnect_done
	xprt_lookup_rqst
	xprt_complete_rqst
	rpc_wake_up
	rpc_wake_up_status
	rpc_malloc
	rpc_free
	xdr_skb_read_bits
	xdr_partial_copy_from_skb
	csum_partial_copy_to_xdr
	rpc_alloc_iostats
	rpc_free_iostats
	rpc_count_iostats_metrics
	rpc_count_iostats
	rpc_queue_upcall
	rpc_mkpipe_dentry
	rpc_unlink
	rpc_init_pipe_dir_head
	rpc_init_pipe_dir_object
	rpc_add_pipe_dir_object
	rpc_remove_pipe_dir_object
	rpc_find_or_alloc_pipe_dir_object
	rpcb_getport_async
	rpc_create
	rpc_clone_client
	rpc_clone_client_set_auth
	rpc_switch_client_transport
	rpc_bind_new_program
	rpc_run_task
	rpc_call_sync
	rpc_call_async
	rpc_peeraddr
	rpc_peeraddr2str
	rpc_localaddr
	rpc_protocol
	rpc_net_ns
	rpc_max_payload
	rpc_get_timeout
	rpc_force_rebind

	WiMAX
	wimax_msg_alloc
	wimax_msg_data_len
	wimax_msg_data
	wimax_msg_len
	wimax_msg_send
	wimax_msg
	wimax_reset
	wimax_report_rfkill_hw
	wimax_report_rfkill_sw
	wimax_rfkill
	wimax_state_change
	wimax_state_get
	wimax_dev_init
	wimax_dev_add
	wimax_dev_rm
	struct wimax_dev
	enum wimax_st

	Chapter 2. Network device support
	Driver Support
	dev_add_pack
	__dev_remove_pack
	dev_remove_pack
	dev_add_offload
	dev_remove_offload
	netdev_boot_setup_check
	dev_get_iflink
	dev_fill_metadata_dst
	__dev_get_by_name
	dev_get_by_name_rcu
	dev_get_by_name
	__dev_get_by_index
	dev_get_by_index_rcu
	dev_get_by_index
	dev_getbyhwaddr_rcu
	__dev_get_by_flags
	dev_valid_name
	dev_alloc_name
	netdev_features_change
	netdev_state_change
	netdev_notify_peers
	dev_open
	dev_close
	dev_disable_lro
	register_netdevice_notifier
	unregister_netdevice_notifier
	call_netdevice_notifiers
	dev_forward_skb
	netif_set_real_num_rx_queues
	netif_get_num_default_rss_queues
	netif_wake_subqueue
	netif_device_detach
	netif_device_attach
	skb_mac_gso_segment
	__skb_gso_segment
	dev_loopback_xmit
	rps_may_expire_flow
	netif_rx
	netdev_is_rx_handler_busy
	netdev_rx_handler_register
	netdev_rx_handler_unregister
	netif_receive_skb
	__napi_schedule
	__napi_schedule_irqoff
	netdev_has_upper_dev
	netdev_master_upper_dev_get
	netdev_upper_get_next_dev_rcu
	netdev_all_upper_get_next_dev_rcu
	netdev_lower_get_next_private
	netdev_lower_get_next_private_rcu
	netdev_lower_get_next
	netdev_lower_get_first_private_rcu
	netdev_master_upper_dev_get_rcu
	netdev_upper_dev_link
	netdev_master_upper_dev_link
	netdev_upper_dev_unlink
	netdev_bonding_info_change
	netdev_lower_state_changed
	dev_set_promiscuity
	dev_set_allmulti
	dev_get_flags
	dev_change_flags
	dev_set_mtu
	dev_set_group
	dev_set_mac_address
	dev_change_carrier
	dev_get_phys_port_id
	dev_get_phys_port_name
	dev_change_proto_down
	netdev_update_features
	netdev_change_features
	netif_stacked_transfer_operstate
	register_netdevice
	init_dummy_netdev
	register_netdev
	dev_get_stats
	alloc_netdev_mqs
	free_netdev
	synchronize_net
	unregister_netdevice_queue
	unregister_netdevice_many
	unregister_netdev
	dev_change_net_namespace
	netdev_increment_features
	eth_header
	eth_get_headlen
	eth_type_trans
	eth_header_parse
	eth_header_cache
	eth_header_cache_update
	eth_prepare_mac_addr_change
	eth_commit_mac_addr_change
	eth_mac_addr
	eth_change_mtu
	ether_setup
	alloc_etherdev_mqs
	netif_carrier_on
	netif_carrier_off
	is_link_local_ether_addr
	is_zero_ether_addr
	is_multicast_ether_addr
	is_local_ether_addr
	is_broadcast_ether_addr
	is_unicast_ether_addr
	is_valid_ether_addr
	eth_proto_is_802_3
	eth_random_addr
	eth_broadcast_addr
	eth_zero_addr
	eth_hw_addr_random
	ether_addr_copy
	eth_hw_addr_inherit
	ether_addr_equal
	ether_addr_equal_64bits
	ether_addr_equal_unaligned
	is_etherdev_addr
	compare_ether_header
	eth_skb_pad
	napi_schedule_prep
	napi_schedule
	napi_schedule_irqoff
	napi_complete
	napi_enable
	napi_synchronize
	enum netdev_priv_flags
	struct net_device
	netdev_priv
	netif_tx_napi_add
	netif_start_queue
	netif_wake_queue
	netif_stop_queue
	netif_queue_stopped
	netdev_txq_bql_enqueue_prefetchw
	netdev_txq_bql_complete_prefetchw
	netdev_sent_queue
	netdev_completed_queue
	netdev_reset_queue
	netdev_cap_txqueue
	netif_running
	netif_start_subqueue
	netif_stop_subqueue
	__netif_subqueue_stopped
	netif_is_multiqueue
	dev_put
	dev_hold
	netif_carrier_ok
	netif_dormant_on
	netif_dormant_off
	netif_dormant
	netif_oper_up
	netif_device_present
	netif_tx_lock
	__dev_uc_sync
	__dev_uc_unsync
	__dev_mc_sync
	__dev_mc_unsync

	PHY Support
	phy_print_status
	phy_aneg_done
	phy_ethtool_sset
	phy_mii_ioctl
	phy_start_aneg
	phy_start_interrupts
	phy_stop_interrupts
	phy_stop
	phy_start
	phy_read_mmd_indirect
	phy_write_mmd_indirect
	phy_init_eee
	phy_get_eee_err
	phy_ethtool_get_eee
	phy_ethtool_set_eee
	phy_clear_interrupt
	phy_config_interrupt
	phy_find_setting
	phy_find_valid
	phy_check_valid
	phy_sanitize_settings
	phy_start_machine
	phy_stop_machine
	phy_error
	phy_interrupt
	phy_enable_interrupts
	phy_disable_interrupts
	phy_change
	phy_state_machine
	phy_register_fixup
	get_phy_device
	phy_device_register
	phy_device_remove
	phy_find_first
	phy_connect_direct
	phy_connect
	phy_disconnect
	phy_attach_direct
	phy_attach
	phy_detach
	genphy_setup_forced
	genphy_restart_aneg
	genphy_config_aneg
	genphy_aneg_done
	genphy_update_link
	genphy_read_status
	genphy_soft_reset
	phy_driver_register
	get_phy_c45_ids
	get_phy_id
	phy_prepare_link
	phy_poll_reset
	genphy_config_advert
	phy_probe
	mdiobus_alloc_size
	devm_mdiobus_alloc_size
	devm_mdiobus_free
	of_mdio_find_bus
	__mdiobus_register
	mdiobus_free
	mdiobus_scan
	mdiobus_read_nested
	mdiobus_read
	mdiobus_write_nested
	mdiobus_write
	mdiobus_release
	mdio_bus_match

