
The Linux Kernel Tracepoint API

Jason Baron <jbaron@redhat.com>
William Cohen <wcohen@redhat.com>

The Linux Kernel Tracepoint API
by Jason Baron and William Cohen

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction .. 1
2. IRQ ... 2

trace_irq_handler_entry .. 3
trace_irq_handler_exit .. 4
trace_softirq_entry ... 5
trace_softirq_exit ... 6
trace_softirq_raise ... 7

3. SIGNAL .. 8
trace_signal_generate ... 9
trace_signal_deliver ... 10

4. Block IO .. 11
trace_block_touch_buffer .. 12
trace_block_dirty_buffer ... 13
trace_block_rq_abort .. 14
trace_block_rq_requeue .. 15
trace_block_rq_complete ... 16
trace_block_rq_insert ... 17
trace_block_rq_issue .. 18
trace_block_bio_bounce .. 19
trace_block_bio_complete ... 20
trace_block_bio_backmerge ... 21
trace_block_bio_frontmerge ... 22
trace_block_bio_queue ... 23
trace_block_getrq .. 24
trace_block_sleeprq .. 25
trace_block_plug ... 26
trace_block_unplug .. 27
trace_block_split .. 28
trace_block_bio_remap ... 29
trace_block_rq_remap ... 30

5. Workqueue ... 31
trace_workqueue_queue_work ... 32
trace_workqueue_activate_work ... 33
trace_workqueue_execute_start .. 34
trace_workqueue_execute_end ... 35

iii

Chapter 1. Introduction
Tracepoints are static probe points that are located in strategic points throughout the kernel. 'Probes' reg-
ister/unregister with tracepoints via a callback mechanism. The 'probes' are strictly typed functions that
are passed a unique set of parameters defined by each tracepoint.

From this simple callback mechanism, 'probes' can be used to profile, debug, and understand kernel be-
havior. There are a number of tools that provide a framework for using 'probes'. These tools include Sys-
temtap, ftrace, and LTTng.

Tracepoints are defined in a number of header files via various macros. Thus, the purpose of this document
is to provide a clear accounting of the available tracepoints. The intention is to understand not only what
tracepoints are available but also to understand where future tracepoints might be added.

The API presented has functions of the form: trace_tracepointname(function parame-
ters). These are the tracepoints callbacks that are found throughout the code. Registering and unregis-
tering probes with these callback sites is covered in the Documentation/trace/* directory.

1

Chapter 2. IRQ

2

IRQ

Name
trace_irq_handler_entry — called immediately before the irq action handler

Synopsis
void trace_irq_handler_entry (int irq, struct irqaction * action);

Arguments
irq irq number

action pointer to struct irqaction

Description
The struct irqaction pointed to by action contains various information about the handler, including the
device name, action->name, and the device id, action->dev_id. When used in conjunction with the
irq_handler_exit tracepoint, we can figure out irq handler latencies.

3

IRQ

Name
trace_irq_handler_exit — called immediately after the irq action handler returns

Synopsis
void trace_irq_handler_exit (int irq, struct irqaction * action, int
ret);

Arguments
irq irq number

action pointer to struct irqaction

ret return value

Description
If the ret value is set to IRQ_HANDLED, then we know that the corresponding action->handler
scuccessully handled this irq. Otherwise, the irq might be a shared irq line, or the irq was not handled
successfully. Can be used in conjunction with the irq_handler_entry to understand irq handler latencies.

4

IRQ

Name
trace_softirq_entry — called immediately before the softirq handler

Synopsis
void trace_softirq_entry (unsigned int vec_nr);

Arguments
vec_nr softirq vector number

Description
When used in combination with the softirq_exit tracepoint we can determine the softirq handler routine.

5

IRQ

Name
trace_softirq_exit — called immediately after the softirq handler returns

Synopsis
void trace_softirq_exit (unsigned int vec_nr);

Arguments
vec_nr softirq vector number

Description
When used in combination with the softirq_entry tracepoint we can determine the softirq handler routine.

6

IRQ

Name
trace_softirq_raise — called immediately when a softirq is raised

Synopsis
void trace_softirq_raise (unsigned int vec_nr);

Arguments
vec_nr softirq vector number

Description
When used in combination with the softirq_entry tracepoint we can determine the softirq raise to run
latency.

7

Chapter 3. SIGNAL

8

SIGNAL

Name
trace_signal_generate — called when a signal is generated

Synopsis
void trace_signal_generate (int sig, struct siginfo * info, struct
task_struct * task, int group, int result);

Arguments
sig signal number

info pointer to struct siginfo

task pointer to struct task_struct

group shared or private

result TRACE_SIGNAL_*

Description
Current process sends a 'sig' signal to 'task' process with 'info' siginfo. If 'info' is SEND_SIG_NOINFO
or SEND_SIG_PRIV, 'info' is not a pointer and you can't access its field. Instead, SEND_SIG_NOINFO
means that si_code is SI_USER, and SEND_SIG_PRIV means that si_code is SI_KERNEL.

9

SIGNAL

Name
trace_signal_deliver — called when a signal is delivered

Synopsis
void trace_signal_deliver (int sig, struct siginfo * info, struct
k_sigaction * ka);

Arguments
sig signal number

info pointer to struct siginfo

ka pointer to struct k_sigaction

Description
A 'sig' signal is delivered to current process with 'info' siginfo, and it will be handled by 'ka'. ka->sa.sa_han-
dler can be SIG_IGN or SIG_DFL. Note that some signals reported by signal_generate tracepoint can be
lost, ignored or modified (by debugger) before hitting this tracepoint. This means, this can show which
signals are actually delivered, but matching generated signals and delivered signals may not be correct.

10

Chapter 4. Block IO

11

Block IO

Name
trace_block_touch_buffer — mark a buffer accessed

Synopsis
void trace_block_touch_buffer (struct buffer_head * bh);

Arguments
bh buffer_head being touched

Description
Called from touch_buffer.

12

Block IO

Name
trace_block_dirty_buffer — mark a buffer dirty

Synopsis
void trace_block_dirty_buffer (struct buffer_head * bh);

Arguments
bh buffer_head being dirtied

Description
Called from mark_buffer_dirty.

13

Block IO

Name
trace_block_rq_abort — abort block operation request

Synopsis
void trace_block_rq_abort (struct request_queue * q, struct request *
rq);

Arguments
q queue containing the block operation request

rq block IO operation request

Description
Called immediately after pending block IO operation request rq in queue q is aborted. The fields in the
operation request rq can be examined to determine which device and sectors the pending operation would
access.

14

Block IO

Name
trace_block_rq_requeue — place block IO request back on a queue

Synopsis
void trace_block_rq_requeue (struct request_queue * q, struct request
* rq);

Arguments
q queue holding operation

rq block IO operation request

Description
The block operation request rq is being placed back into queue q. For some reason the request was not
completed and needs to be put back in the queue.

15

Block IO

Name
trace_block_rq_complete — block IO operation completed by device driver

Synopsis
void trace_block_rq_complete (struct request_queue * q, struct request
* rq, unsigned int nr_bytes);

Arguments
q queue containing the block operation request

rq block operations request

nr_bytes number of completed bytes

Description
The block_rq_complete tracepoint event indicates that some portion of operation request has been com-
pleted by the device driver. If the rq->bio is NULL, then there is absolutely no additional work to do for
the request. If rq->bio is non-NULL then there is additional work required to complete the request.

16

Block IO

Name
trace_block_rq_insert — insert block operation request into queue

Synopsis
void trace_block_rq_insert (struct request_queue * q, struct request
* rq);

Arguments
q target queue

rq block IO operation request

Description
Called immediately before block operation request rq is inserted into queue q. The fields in the operation
request rq struct can be examined to determine which device and sectors the pending operation would
access.

17

Block IO

Name
trace_block_rq_issue — issue pending block IO request operation to device driver

Synopsis
void trace_block_rq_issue (struct request_queue * q, struct request *
rq);

Arguments
q queue holding operation

rq block IO operation operation request

Description
Called when block operation request rq from queue q is sent to a device driver for processing.

18

Block IO

Name
trace_block_bio_bounce — used bounce buffer when processing block operation

Synopsis
void trace_block_bio_bounce (struct request_queue * q, struct bio *
bio);

Arguments
q queue holding the block operation

bio block operation

Description
A bounce buffer was used to handle the block operation bio in q. This occurs when hardware limitations
prevent a direct transfer of data between the bio data memory area and the IO device. Use of a bounce
buffer requires extra copying of data and decreases performance.

19

Block IO

Name
trace_block_bio_complete — completed all work on the block operation

Synopsis
void trace_block_bio_complete (struct request_queue * q, struct bio *
bio, int error);

Arguments
q queue holding the block operation

bio block operation completed

error io error value

Description
This tracepoint indicates there is no further work to do on this block IO operation bio.

20

Block IO

Name
trace_block_bio_backmerge — merging block operation to the end of an existing operation

Synopsis
void trace_block_bio_backmerge (struct request_queue * q, struct request
* rq, struct bio * bio);

Arguments
q queue holding operation

rq request bio is being merged into

bio new block operation to merge

Description
Merging block request bio to the end of an existing block request in queue q.

21

Block IO

Name
trace_block_bio_frontmerge — merging block operation to the beginning of an existing operation

Synopsis
void trace_block_bio_frontmerge (struct request_queue * q, struct re-
quest * rq, struct bio * bio);

Arguments
q queue holding operation

rq request bio is being merged into

bio new block operation to merge

Description
Merging block IO operation bio to the beginning of an existing block operation in queue q.

22

Block IO

Name
trace_block_bio_queue — putting new block IO operation in queue

Synopsis
void trace_block_bio_queue (struct request_queue * q, struct bio * bio);

Arguments
q queue holding operation

bio new block operation

Description
About to place the block IO operation bio into queue q.

23

Block IO

Name
trace_block_getrq — get a free request entry in queue for block IO operations

Synopsis
void trace_block_getrq (struct request_queue * q, struct bio * bio,
int rw);

Arguments
q queue for operations

bio pending block IO operation

rw low bit indicates a read (0) or a write (1)

Description
A request struct for queue q has been allocated to handle the block IO operation bio.

24

Block IO

Name
trace_block_sleeprq — waiting to get a free request entry in queue for block IO operation

Synopsis
void trace_block_sleeprq (struct request_queue * q, struct bio * bio,
int rw);

Arguments
q queue for operation

bio pending block IO operation

rw low bit indicates a read (0) or a write (1)

Description
In the case where a request struct cannot be provided for queue q the process needs to wait for an request
struct to become available. This tracepoint event is generated each time the process goes to sleep waiting
for request struct become available.

25

Block IO

Name
trace_block_plug — keep operations requests in request queue

Synopsis
void trace_block_plug (struct request_queue * q);

Arguments
q request queue to plug

Description
Plug the request queue q. Do not allow block operation requests to be sent to the device driver. Instead,
accumulate requests in the queue to improve throughput performance of the block device.

26

Block IO

Name
trace_block_unplug — release of operations requests in request queue

Synopsis
void trace_block_unplug (struct request_queue * q, unsigned int depth,
bool explicit);

Arguments
q request queue to unplug

depth number of requests just added to the queue

explicit whether this was an explicit unplug, or one from schedule

Description
Unplug request queue q because device driver is scheduled to work on elements in the request queue.

27

Block IO

Name
trace_block_split — split a single bio struct into two bio structs

Synopsis
void trace_block_split (struct request_queue * q, struct bio * bio,
unsigned int new_sector);

Arguments
q queue containing the bio

bio block operation being split

new_sector The starting sector for the new bio

Description
The bio request bio in request queue q needs to be split into two bio requests. The newly created bio
request starts at new_sector. This split may be required due to hardware limitation such as operation
crossing device boundaries in a RAID system.

28

Block IO

Name
trace_block_bio_remap — map request for a logical device to the raw device

Synopsis
void trace_block_bio_remap (struct request_queue * q, struct bio * bio,
dev_t dev, sector_t from);

Arguments
q queue holding the operation

bio revised operation

dev device for the operation

from original sector for the operation

Description
An operation for a logical device has been mapped to the raw block device.

29

Block IO

Name
trace_block_rq_remap — map request for a block operation request

Synopsis
void trace_block_rq_remap (struct request_queue * q, struct request *
rq, dev_t dev, sector_t from);

Arguments
q queue holding the operation

rq block IO operation request

dev device for the operation

from original sector for the operation

Description
The block operation request rq in q has been remapped. The block operation request rq holds the current
information and from hold the original sector.

30

Chapter 5. Workqueue

31

Workqueue

Name
trace_workqueue_queue_work — called when a work gets queued

Synopsis
void trace_workqueue_queue_work (unsigned int req_cpu, struct
pool_workqueue * pwq, struct work_struct * work);

Arguments
req_cpu the requested cpu

pwq pointer to struct pool_workqueue

work pointer to struct work_struct

Description
This event occurs when a work is queued immediately or once a delayed work is actually queued on a
workqueue (ie: once the delay has been reached).

32

Workqueue

Name
trace_workqueue_activate_work — called when a work gets activated

Synopsis
void trace_workqueue_activate_work (struct work_struct * work);

Arguments
work pointer to struct work_struct

Description
This event occurs when a queued work is put on the active queue, which happens immediately after queue-
ing unless max_active limit is reached.

33

Workqueue

Name
trace_workqueue_execute_start — called immediately before the workqueue callback

Synopsis
void trace_workqueue_execute_start (struct work_struct * work);

Arguments
work pointer to struct work_struct

Description
Allows to track workqueue execution.

34

Workqueue

Name
trace_workqueue_execute_end — called immediately after the workqueue callback

Synopsis
void trace_workqueue_execute_end (struct work_struct * work);

Arguments
work pointer to struct work_struct

Description
Allows to track workqueue execution.

35

	The Linux Kernel Tracepoint API
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. IRQ
	trace_irq_handler_entry
	trace_irq_handler_exit
	trace_softirq_entry
	trace_softirq_exit
	trace_softirq_raise

	Chapter 3. SIGNAL
	trace_signal_generate
	trace_signal_deliver

	Chapter 4. Block IO
	trace_block_touch_buffer
	trace_block_dirty_buffer
	trace_block_rq_abort
	trace_block_rq_requeue
	trace_block_rq_complete
	trace_block_rq_insert
	trace_block_rq_issue
	trace_block_bio_bounce
	trace_block_bio_complete
	trace_block_bio_backmerge
	trace_block_bio_frontmerge
	trace_block_bio_queue
	trace_block_getrq
	trace_block_sleeprq
	trace_block_plug
	trace_block_unplug
	trace_block_split
	trace_block_bio_remap
	trace_block_rq_remap

	Chapter 5. Workqueue
	trace_workqueue_queue_work
	trace_workqueue_activate_work
	trace_workqueue_execute_start
	trace_workqueue_execute_end

