| v

ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 7.3.1.4
December 1, 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 1, 2017

1.1 Installing the Binary Release

1 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

1.1 Installing the Binary Release

1.1.1 Windows
The system is delivered as a Windows I nstaller executable. Get it from http://www.erlang.org/download.html

Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.

Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect a command-line window to pop up with an output looking something like this:

Erlang/ OTP 17 [erts-6.0] [64-bit] [snp:2:2]

Eshell V6.0 (abort with ~"QG
1>

» Exit by entering the command hal t () .

2> hal t ().

This closes the Erlang/OTP shell.

1.2 Building and Installing Erlang/OTP

1.2.1 Introduction

This document describes how to build and install Erlang/OTP-18. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://lwww.erlang.org
e https://github.com/erlang/otp

1.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

href
href

1.2 Building and Installing Erlang/OTP

Warning:

Please have alook at the Known platform issues chapter before you start.

Unpacking
* GNU unzip, or amodern uncompress.
e A TAR program that understands the GNU TAR format for long filenames.

Building

« GNU make

e Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, ¢l ang.
e Pelb

« GNU m -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

e ncurses,terncap,orternlib -- Thedevelopment headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

* sed -- Stream Editor for basic text transformation.

Building in Git

* GNU aut oconf of at least version 2.59. Note that aut oconf isnot needed when building an unmodified
version of the released source.

Buildingon OS X
e Xcode-- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing
« Aninstall program that can take multiple file names.

1.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. Y ou will also find the utilities needed for building the documentation.

Building

e OpenSSL -- The opensourcetoolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require aworking crypto application and will also be skipped if
OpenSSL is missing. The publ i c_key application will available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

* Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface andpartsof i c andor ber . Atleast version 1.6.0 of the JDK isrequired.
Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.6.0.

e X Windows -- Development headers and libraries are needed to build the Erlang/OTP application gs on Unix/
Linux.

« fl ex -- Headersand libraries are needed to build the flex scanner for the megaco application on Unix/Linux.

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

1.2 Building and Installing Erlang/OTP

* wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets'wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.
Building Documentation
e Xxsl tproc -- A commandline XSLT processor.

A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSL T/
xdtproc2.html.

« fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.
1.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released sour ce tar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking
Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ tar -zxf otp_src_18.3.4.7.tar.gz # Assum ng bash/sh

Now change directory into the base directory and set the SERL_TOP variable.

$ cd otp_src_18.3.4.7
$ export ERL_TOP=" pwd’ # Assumi ng bash/sh

Configuring

Run the following commands to configure the build:

$./configure [options]

Note:

If you are building Erlang/OTP from git you will need to run . / ot p_bui | d aut oconf to generate the
configure scripts.

By default, Erlang/OTP release will beinstalledin/ usr/ |1 ocal / { bi n, I i b/ er | ang} . If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example, to
install in/ opt/ erl ang/ 18. 3. 4. 7/ {bin, i b/ erl ang},usethe--prefix=/opt/erlang/18.3.4.7
option.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

href
href
href
href
href
href
href
href

1.2 Building and Installing Erlang/OTP

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuni ng bash/sh

Building
Build the Erlang/OTP release.

$ nake

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
is asubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ nmake rel ease_tests

This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stime to start the smoke test.

$ cd rel ease/tests/test_server
$ $ERL_TOP/bin/erl -s ts install -s ts snoke_test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ t est s/ test _server/i ndex. htm
in your web browser and make sure that there are zero failed test cases.

Note:

Onbuildswithout cr ypt 0, ssl andssh thereisafailed test case for undefined functions. Verify that thefailed
test case log only shows calls to skipped applications.

Installing
You are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ nmake install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation

Make sure you're in the top directory in the source tree.

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need a full Erlang/OTP-18.3.4.7 system in the $PATH.

$ export PATH=$ERL_TOP/ bi n: $PATH # Assum ng bash/sh

For the FOP print formatter, two steps must be taken:
» Adding thelocation of your installation of f op in $FOP_HOVE.

$ export FOP_HOVE=/path/to/fop/dir # Assum ng bash/sh

e Addingthef op script (in $FOP_HQVE) to your $PATH, either by adding $FOP_HOME to $PATH, or by copying
thef op script to adirectory aready in your $PATH.

Build the documentation.

$ nmake docs

Build I ssues

We have sometimes experienced problemswith Oracle's| ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xnx<Installed amount of RAMin MB>n{

More information can be found at
e http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Documentation
The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

e If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al | -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing meke install.

$ make install-docs

e Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE ROOT aswhen invoking make r el ease.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href

1.2 Building and Installing Erlang/OTP

$ make rel ease_docs RELEASE ROOT=<rel ease dir>

Accessing the Documentation
After installation you can access the documentation by

* Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er| . Try viewing at the man page for Mnesia

$ erl -man mesi a

* Browsing the html pages by loading thepage/ usr /1 ocal / 1i b/ erl ang/ doc/ erl ang/i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

How to Install the Pre-formatted Documentation

Pre-formatted html documentation and man pages can be downloaded from
e http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <Rel easeDir>
$ tar -zxf otp_htnl _18.3.4.7.tar.gz

Forerl -man <page> towork the Unix manual pages have to beinstalled in the same way, i.e.

$ cd <Rel easeDir>
$ tar -zxf otp_man_18.3.4.7.tar.gz

Where<Rel easeDi r > is

o <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTP using make i nstal | .

 $DESTDI R<PrefixDir>/1ib/erlangif youhaveinstaled Erlang/OTP using meke i nstal |
DESTDI R=<Tnpl nstal | Di r>.

 RELEASE_ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

1.2.5 Advanced configuration and build of Erlang/OTP

If youwant totailor your Erlang/OTP build and install ation, please read on for detailed information about theindividual
steps.

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

1.2 Building and Installing Erlang/OTP

$ cd lib/stdlib; env ERL_TOP=<Di r> nake

where <Di r > would be what you find ERL_TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done €either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_ TOP/

configure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/nake build procedure. The binary releases for
Windows that we deliver are built using ot p_bui | d.

Configuring

The configure script is created by the GNU autoconf utility, which checks for system specific features and then creates
anumber of makefiles.

The configure script allows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for all
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,lib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis.. / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are;
o --prefix=PATH- Specify installation prefix.
e --{enabl e, di sabl e} -t hr eads - Thread support. Thisis enabled by default if possible.

e --{enabl e, di sabl e} - snp-support - SMP support (enabled by default if a usable POSIX thread library
or native Windows threads is found)

e --{enabl e, di sabl e} -kernel - pol | -Kernel poll support (enabled by default if possible)
« --{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

« --{enabl e, di sabl e}-f p- excepti ons - Floating point exceptions (an optimization for floating point
operations). The default differs depending on operating system and hardware platform. Note that by enabling this
you might get a seemingly working system that sometimes fail on floating point operations.

e --enabl e-darw n-uni ver sal - Build universa binaries on darwin i386.
e« --enabl e-darw n- 64bi t - Build 64-bit binaries on darwin

e --enabl e- n64- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc
e --enabl e- nB82- bui | d - Build 32-bit binaries using the - nB2 flagto (g) cc

e --wth-assuned-cache-1line-si ze=SI| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use thisvalue in order to try to
avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false sharing.

e --{with,wthout}-terntap -termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Javacompiler to use

e --{with,without}-javac - Java compiler (without implies that thej i nt er f ace application won't be
built)

e --{enabl e, di sabl e} -dynani c-ssl -1i b - Dynamic OpenSSL libraries

e --{enabl e, di sabl e}-builtin-zlib -Usethebuilt-in source for zlib.

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt o, ssh, and ssl won't be built)

e --wth-ssl =PATH- Specify location of OpenSSL include and lib

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

1.2 Building and Installing Erlang/OTP

e --wth-ssl-incl =PATH - Location of OpenSSL i ncl ude directory, if different than specified by - -
Wi t h- ssl =PATH

e --wth-ssl-rpat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to a number of standard locations. If no, then no runtime library paths will be used. Anything else should be a
comma separated list of paths.

e --with-1ibatom c_ops=PATH - Use the | i bat om c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try using
thel i bat om c_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops.

e ~--disable-snp-require-native-atom cs - By default confi gur e will fal if an SMP runtime
systemisabout to be built, and no implementation for native atomic memory accesses can befound. If thishappens,
you are encouraged to find a native atomic implementation that can be used, e.g., using | i bat oni ¢_ops, but
by passing - - di sabl e- snp-requi re-nati ve-at oni cs you can build using afallback implementation
based on mutexes or spinlocks. Performance of the SMP runtime system will however suffer immensely without
an implementation for native atomic memory accesses.

e ~--enable-static-{nifs,drivers} - To alow usage of nifs and drivers on OSs that do not support
dynamic linking of libraries it is possible to statically link nifs and drivers with the main Erlang VM binary.
Thisis done by passing a comma separated list to the archives that you want to statically link. e.g. - - enabl e-
static-nifs=/home/ $USER/ nmy_ni f. a. The path has to be absolute and the name of the archive has to
bethe sameasthemodule, i.e. my_ni f inthe example above. Thisisalso truefor drivers, but then it isthe driver
name that has to be the same as the filename. You also have to define STATI C_ERLANG { NI F, DRI VER}
when compiling the .o files for the nif/driver. If your nif/driver depends on some other dynamic library, you now
have to link that to the Erlang VM binary. Thisis easily achieved by passing L1 BS=- | | i bname to configure.

* --without- $app - By default all applicationsin Erlang/OTPwill beincluded in arelease. If thisis not wanted
itis possibleto specify that Erlang/OTP should be compiled without one or more applications, i.e. - - wi t hout -
wx. There is no automatic dependency handling between applications. If you disable an application that another
application depends on, you a so have to disable the dependant application.

e --enabl e-gettineof day-as-os-systemtine - Forceusageof getti neof day() for OS system
time.

e --enabl e-prefer-el apsed-nonot oni c-ti me-during-suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

e --disabl e-prefer-el apsed-nonotoni c-tine-during-suspend - Do not prefer an OS
monatonic time source with elapsed time during suspend.

e --wth-cl ock-resol uti on=hi gh| | ow- Trytofindclock sourcesfor OS systemtime, and OS monotonic

time with higher or lower resolution than chosen by default. Note that both aternatives may have a negative
impact on the performance and scalability compared to the default clock sources chosen.

 --disabl e-saved-conpi |l e-ti me - Disable saving of compile date and time in the emulator binary.

e ~--enabl e-dirty-schedul ers - Enable the experimental dirty schedulers functionality. Note that the
dirty schedulersfunctionality is experimental, and not supported. This functionality will be subject to backward
incompatible changes. Note that you should not enable the dirty scheduler functionality on production systems.
It isonly provided for testing.

If you or your system has special requirements please read the Makef i | e for additional configuration information.
Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-bit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.2 Building and Installing Erlang/OTP

operationsusingthe __at oni ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's__sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APIs.

Native atomic implementation in the order preferred:

e Theimplementation provided by Erlang/OTP.

e TheAPI provided by Windows.

e Theimplementation based onthegcc __at omi ¢_* builtins.

» If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat oni c_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat oni c_ops library isinstalled using the - - wi t h- 1 i bat omi ¢c_ops=PATH
confi gur e switch.

e Asalast resort, the implementation solely based onthegcc __sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to be issued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building

Building Erlang/OTP on a relatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num _j obs> option.

$ export MAKEFLAGS=-j8 # Assumi ng bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing amake cl ean.

Within Git
When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system, because you need to generate the conf i gur e scripts before you can start building.

The conf i gur e scripts are generated by invoking . / ot p_bui | d aut oconf inthe $ERL_TOR directory. The
conf i gur e scripts aso have to be regenerated when aconf i gure. i n or acl ocal . n4 file has been modified.
Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you have to run conf i gur e and build again.

Note:

Running. / ot p_bui | d aut oconf isnot needed when building an unmodified version of the rel eased source.

Other useful information can be found at our GitHub wiki:
* http://wiki.github.com/erlang/otp
OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host conf i g). Otherwise you might experience problems when running distributed systems.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

href
href

1.2 Building and Installing Erlang/OTP

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
flat _namespace -undefined suppress. Youalsoinclude- f no- common in CFLAGS when compiling.
Use. so asthelibrary suffix.

If you have Xcode 4.3, or later, you will also need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

If you want to build the wx application, you will need to get wxWidgets-3.0 (WwxW dget s-3. 0. 0. tar. bz2 from
http://sour cefor ge.net/pr oj ectswxwindows/files/3.0.0/) or get it from github with bug fixes:

$ git clone --branch WK_3_0_BRANCH gi t @i t hub. com wxW dget s/ wxW dgets. gi t

Be aware that the wxWidgets-3.0 is a new release of wxWidgets, it is not as mature as the old releases and the OS
X port still 1ags behind the other ports.

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --wth-cocoa --prefix=/usr/l ocal

or without support for old versions and with static |ibs

$./configure --wth-cocoa --prefix=/usr/local --wth-macosx-version-m n=10.9 --disabl e-shared
$ meke

$ sudo make install

$ export PATH=/usr/ | ocal / bi n: SPATH

Check that you got the correct wx-config

$ which wx-config &% wx-config --version-full

Build Erlang/OTP

$ export PATH=/usr/| ocal / bi n: $PATH
$ cd $ERL_TOP

$./configure

$ neke

$ sudo make install

Pre-built Sour ce Release

Thesourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_bui l d renove_prebuilt fil es fromthe $ERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.2 Building and Installing Erlang/OTP

Warning:
Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping
the build.

Doing . / ot p_bui | d save_boot st r ap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing make cl ean../otp_build save_boot st rap will
be invoked automatically when make is invoked from $ERL_ TOP with either the cl ean target, or the default
target. It is also automatically invoked if . / ot p_bui | d renove_prebuilt _fil es isinvoked.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to $ERL_TOP/ er t s/ el at or .

In this directory execute:

$ nake debug FLAVOR=$FLAVOR

where $FLAVOR is either pl ai n or snp. The flavor options will produce a beam.debug and beam.smp.debug
executable respectively. Thefiles are installed along side with the normal (opt) versionsbeam snp and beam

To start the debug enabled runtime system execute:

$ $ERL_TOP/ bi n/cerl| -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
a developer ensure correctness. Some of these features can be enabled on anormal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.

$ make $TYPE FLAVOR=$FLAVOR

where $TYPE is opt, gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

Installing

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI R variable:

$ make DESTDI R=<tnp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be set to | NSTALL_PREFI X. Note that | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

href

1.2 Building and Installing Erlang/OTP

$./configure --prefix=/opt/local
make
make DESTDI R=/tnp/erlang-build install
cd /tnp/erlang-buil d/ opt/I ocal

gnu-tar is used in this exanple
tar -zcf /honme/ me/ my-erlang-build.tgz *
su -
Password: **xxx
$ cd /opt/local
$ tar -zxf /hone/ e/ ny-erl ang-build.tgz

R R e T

« Ingtal using ther el ease target. Instead of doing make i nst al | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangif youdotheinstall using make i nstal | .All installation paths provided in the
conf i gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want links from a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

./ configure

meke

make RELEASE ROOT=/ hone/ ne/ OTP r el ease
cd / hone/ me/ OTP

.Ilnstall -mniml /hone/ne/ OTP

nkdir -p /home/ me/ bin

cd / hore/ e/ bi n

In -s /home/ me/ OTP/ bin/erl erl

In -s /home/ me/ OTP/ bin/erlc erlc

I'n -s /home/ me/ OTP/ bi n/ escript escript

R R R

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):

$./Install [-cross] [-mnimal|-sasl] <ERL_ROOT>

where:

* -mni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstallation that also starts up the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the

current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl ispassed as argument you will be prompted.

* Testinstall using EXTRA _PREFI X. The content of the EXTRA PREFI X variablewill prefix al installation paths
when doing make i nstal | . Notethat EXTRA_PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA_PREFI X.

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

Symboalic Linksin --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ 1 ocal / bi ntoal public Erlang/OTP executablesin/ usr /1 ocal /1i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x. --prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can be passedtoconf i gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYM_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

Running
Using HiPE
HiPE supports the following system configurations:
e x86: All 32-bit and 64-bit mode processors should work.
* Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.
NPTL glibcis strongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating

stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

e Solaris: Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requires aversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

e FreeBSD: FreeBSD 6.1 and 6.2 in 32-bit and 64-bit modes should work.
e OS X/Darwin: Darwin 9.8.0 in 32-bit mode should work.
e PowerPC: All 32-hit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.
e Linux (Yellow Dog) and OS X 10.4 are supported.
e SPARC: All UltraSPARC processors running 32-bit user code should work.
e Solaris9is supported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.
e Linux (Aurora) is supported.
e ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linuxissupported.
HiPE is automatically enabled on the following systems:

e X86 in 32-bit mode: Linux, Solaris, FreeBSD
e X86 in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, Mac OSX

e SPARC: Linux

e ARM: Linux

On other supported systems, see Advanced Configure on how to enable HiPE.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Mdul e, native).

or

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

1.2 Building and Installing Erlang/OTP

1> c(Mdul e, [native| O herOptions]).

Using the erlc program, write like this

$ erlc +native Mdul e.erl

The native code will be placed into the beam file and automatically loaded when the beam file is |oaded.

To add hipe options, write like this from the Erlang shell:

1> c(Modul e, [native, {hipe, H peOpti ons}| MoreOpti ons]).

Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hi pe: hel p_options().

Running with GS
The gs application requires the GUI toolkit Tcl/Tk to run. At least version 8.4 is required.

1.2.6 Known platform issues

Suselinux 9.1 isshipped with apatched GCC version 3.3.3, havingtherpmnamedgcc- 3. 3. 3- 41. That version
has a serious optimization bug that makes it unusable for building the Erlang emulator. Please upgrade GCC to a
newer version before building on Suse 9.1. Suse Linux Enterprise edition 9 (SLES9) hasgcc- 3. 3. 3-43 and
is not affected.

gcc- 4. 3. 0 has a serious optimizer bug. It produces an Erlang emulator that will crash immediately. The bug
issupposed to befixedingcc- 4. 3. 1.

FreeBSD had abug which caused kqueue/pol | /sel ect tofail todetect thatawri t ev() onapipe hasbeen
made. This bug should have been fixed in FreeBSD 6.3 and FreeBSD 7.0. NetBSD and DragonFlyBSD probably
have or have had the same bug. More information can be found at:

e http://www.freebsd.org/cgi/cvsweb.cgi/sr c/sys’kern/sys pipe.c

* http://lists.freebsd.or g/piper mail/fr eebsd-ar ch/2007-September/006790.html

get cwd() on Solaris9 can causean emulator crash. If you have async-threads enabled you can increase the stack
size of the async-threads as a temporary workaround. See the +a command-line argument in the documentation
of er | (1) . Without async-threads the emulator is not as vulnerable to this bug, but if you hit it without async-
threads the only workaround available is to enable async-threads and increase the stack size of the async-threads.
Oracle has however released patches that fixes the issue:

Problem Description: 6448300 large mnttab can cause stack overrun during Solaris 9 getcwd
More information can be found at:

* https://getupdates.or acle.com/readme/112874-40
» https://getupdates.or acle.com/readme/114432-29

sed on Solaris seem to have some problems. For example on Solaris 8, the BSD sed and XPG4 sed should be
avoided. Make sure/ bi n/ sed or/ usr/ bi n/ sed isused on the Solaris platform.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href

1.2 Building and Installing Erlang/OTP

1.2.7 Daily Build and Test

Solaris 8, 9

e Sparc32

e Sparctd

Solaris 10

e Sparc32

e Sparctd

e x86

SuSE Linux/GNU 9.4, 10.1

e X86

SuSE Linux/GNU 10.0, 10.1, 11.0
e Xx86

e Xx86 64

openSuSE 11.4 (Celadon)

e Xx86 64 (vagrind)
Fedora7

e PowerPC

Fedora 16

* Xx86 64

Gentoo Linux/GNU 1.12.11.1
e x86

Ubuntu Linux/GNU 7.04, 10.04, 10.10, 11.04, 12.04
e X86 64

MontaVista Linux/GNU 4.0.1

 PowerPC

FreeBSD 10.0

e x86

OpenBSD 5.4

e Xx86_64

OS X 10.5.8 (Leopard), 10.7.5 (Lion), 10.9.1 (Mavericks)
e x86

Windows XP SP3, 2003, Vista, 7

e Xx86
Windows 7
* Xx86 64

We aso have the following "Daily Cross Builds":

SUSE Linux/GNU 10.1 x86 -> SuSE Linux/GNU 10.1 x86_64
SUSE Linux/GNU 10.1 x86_64 -> Linux/GNU TILEPro64

and the following "Daily Cross Build Tests":

SUSE Linux/GNU 10.1 x86_64

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

1.3 Cross Compiling Erlang/OTP

1.2.8 Authors

Authors are mostly listed in the application's AUTHORS files, that is $ERL_TOP/ | i b/ */ AUTHORS and
$ERL_TOP/ ert s/ AUTHORS, not in theindividua sourcefiles.

1.2.9 Copyright and License
Copyright Ericsson AB 1998-2015. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. Y ou may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.3 Cross Compiling Erlang/OTP

Table of Contents

* Introduction
e otp_build Versus configure/make
* Cross Configuration
e What can be Cross Compiled?
* Compatibility
» Patches
e Build and Install Procedure
» Building With configure/make Directly
* Building a Bootstrap System
e CrossBuilding the System
e Installing
* Installing Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
» Building and Installing the Documentation
e Testing the cross compiled system
e Currently Used Configuration Variables
e Variablesfor otp_build Only
e Cross Compiler and Other Tools
* Dynamic Erlang Driver Linking
e LargeFile Support
e Other Tools
e Cross System Root Locations
* Optional Feature, and Bug Tests
e Copyright and License

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

1.3.1 Introduction

This document describes how to cross compile Erlang/OTP-18. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $SERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TOP is the
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c- ssl - 1i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. The defaultsused by ot p_bui | d conf i gur e may change at any time without prior notice.

Cross Configuration

The SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are aso listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. 0-ti | epro. conf file and the $ERL_TOP/ xconp/ er | -
xconp- x86_64-saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except thewx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks examplefileishighly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ erl - xconp. conf . t enpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

e $ERL_TOP/ xconp/ erl -xconp-vars. sh

e SERL_TOP/erl-build-tool-vars. sh

« $ERL _TOP/erts/aclocal .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

1.3 Cross Compiling Erlang/OTP

e S$ERL_TOP/ xconp/ README. nd
* $ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

1.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/HOWTO/INSTALL.md before
proceeding.

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly
D

Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

In order to compile Erlang code, asmall Erlang bootstrap system hasto be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System

@

$./configure --enabl e-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
nmake boot st rap; otherwise, the whole system will be built.

Cross Building the System
(©)

$./configure --host=<HOST> --buil d=<BU LD> [her Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ er t s/ aut oconf/ confi g. sub
<HOST>. If conf i g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- OS triplet of the system that you build on. If you execute SERL_TOP/
erts/autoconf/config. guess,itwill in most cases print the triplet you want to use for this.

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.3 Cross Compiling Erlang/OTP

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Note:

You can not pass a configuration file using the - - xconp- conf argument when you invoke conf i gur e
directly. The - - xconp- conf argument can only be passedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. make
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Warning:

Invoking make ERL_XCOMP_FORCE DI FFERENT OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Deter mined by configure

(4)

$ make install DESTDI R=<TEMPORARY_PREFI X>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /| ocal . You typically do not want to install your cross build under / usr/

| ocal onyour build machine. Using DESTDIR will cause the installation pathsto be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When meke install hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
©)

$ make rel ease RELEASE ROOT=<RELEASE DI R>

make rel ease will copy what you have built for the target machine to <RELEASE DI R>. Thel nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /1i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

href

1.3 Cross Compiling Erlang/OTP

before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-mnimal|-sasl] <ERL_ROOT>

where:

 -m ni mal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, andiswhat nake i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_RQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.
Y ou can how either do:

(6)
» Decide where the installation should be located on the target machine, run the | nst al | script on the build

machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DI R>
$./Install -cross [-mnimal|-sasl] <ABSOLUTE_|I NSTALL_DI R_ON TARGET>

or:

()
* Package the ingtallation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nst al | script onyour target machine:

$ cd <ABSOLUTE | NSTALL_DI R_ON_TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE | NSTALL DI R ON TARGET>

Building With the otp_build Script
)

$ cd $ERL_TOP

(9)

$./otp_build configure --xconmp-conf=<FILE> [her Config Args]

aternatively:

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

$./otp_build configure --host=<HOST> --buil d=<BU LD> [& her Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er | _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUI LD> command line arguments.

ot p_bui I d confi gur e will configure both for the boostrap system on the build machine and the crosshost system.
(10)

$./otp_build boot -a

ot p_buil d boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)
$./otp_build rel ease -a <RELEASE DI R>

otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

1.3.3 Building and Installing the Documentation

After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the SERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

1.3.4 Testing the cross compiled system

$ nmake rel ease_tests

or

$./otp_build tests

The tests will be released into SERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto . / ot p_bui | d in (9).

$ cd $ERL_TOP/rel ease/tests/test_server/
$ $ERL_TOP/ bootstrap/bin/erl -eval 'ts:install([{xconp,"<FILE>"}])"' -s ts conpile_testcases -s init stop

Y ou should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_ TOP/
rel ease/ t est s folder to the cross host system.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

1.3 Cross Compiling Erlang/OTP

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _ser ver and issue the following command.

$ erl -s tsinstall -s ts run all _tests -s init stop

The configure should be skipped and all tests should hopefully pass. For more details about how to use tsrun er |
-s ts help -s init stop

1.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needsto
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

Note:

These variables currently have no effect if you configure using the conf i gur e script directly.

e erl _xconp_buil d-Thebuild system used. This value will be passed as- - bui | d=$er| _xconp_bui I d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_buil d. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/ confi g. guess.

e erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconp_host.

« erl_xconp_configure_fl ags - Extraconfigure flags to passto the conf i gur e script.

Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where <HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variablesin this section can also be used when native compiling.
e« CC- Ccompiler.

e CFLAGS - C compiler flags.

e STATI C_CFLAGS - Static C compiler flags.

e CFLAG_RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

* CPP- C pre-processor.

* CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

o CXXFLAGS - C++ compiler flags.

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

e LD-Linker.
e LDFLAGS - Linker flags.
e LI BS-Libraries.

Dynamic Erlang Driver Linking

Note:
Either set all or none of the DED _LD* variables.

 DED_LD- Linker for Dynamically loaded Erlang Drivers.

e« DED _LDFLAGS - Linker flagsto usewith DED LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

LargeFile Support

Note:
Either set all or none of the LFS _* variables.

e LFS_CFLAGS - Largefile support C compiler flags.
e LFS LDFLAGS - Largefile support linker flags.
e LFS_ LI BS- Largefilesupport libraries.

Other Tools

e RANLIB-ranli b archiveindex tool.
* AR-ar archiving tool.

« CETCONF - get conf system configuration inspectiontool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

* erl_xconp_sysr oot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $erl _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set these variabl es.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

1.3 Cross Compiling Erlang/OTP

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
confi gur e issurethat it cannot figure the result out.

The conf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

erl _xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

erl _xconp_doubl e_mi ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian" format. If no, it has"regular" endianness.

erl _xconp_cl ock_gettime_cpu_tine-yes| no.Defaultsto no. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

erl _xconp_get addri nfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both I1Pv4 and IPv6.

erl _xconp_gethrvtine_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i me() implementation and is used with procfsi oct | ().

erl _xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl syn({ RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack thermal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

erl _xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect (). If no and the
target system has not got epol | () or/ dev/ pol | , the kernel-poll feature will be disabled.

erl _xconp_linux_clock _gettine_correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C, _) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

erl _xconp_linux_nptl -yes]| no. Defaults to yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

erl _xconp_Ilinux_usabl e_si gal t st ack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

erl _xconp_l i nux_usabl e_si gusr x - yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically less than
2.2) used these signals and made them unusable by the ERTS.

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

erl _xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | () .

erl _xconp_put env_copy - yes| no. Defaultsto no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

erl _xconp_reliable_fpe-yes| no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

erl _xconp_posi x_menal i gn - yes| no. Defaults to yes if posi x_nemal i gn system cal exists;
otherwise no. If yes, thetarget system must haveaposi x_nenal i gn implementation that acceptslarger than
page size alignment.

erl _xconp_ose_| df | ags_pass1 - Linker flags for the OSE module (pass 1)

erl _xconp_ose_| df | ags_pass?2 - Linker flags for the OSE module (pass 2)

erl _xconp_ose_ OSEROOT - OSE installation root directory

erl _xconp_ose_STRI P - Strip utility shipped with the OSE distribution

erl _xconp_ose_ LM POST_LI NK- OSE postlink tool

erl _xconp_ose_ LM SET_CONF - Setsthe configuration for an OSE load module

erl _xconp_ose_LM ELF_SI ZE - Prints the section size information for an OSE |oad module
erl _xconp_ose_ LM LCF - OSE load module linker configuration file

erl _xconp_ose_BEAM LM CONF - Beam OSE load module configuration file

erl _xconp_ose EPMD LM CONF - EPMD OSE load module configuration file

erl _xconp_ose_RUN ERL_LM CONF - runerllm OSE load module configuration file

1.3.6 Copyright and License
Copyright Ericsson AB 2009-2014. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. Y ou may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.4 How to Build Erlang/OTP on Windows

Table of Contents

Introduction

Short Version

Frequently Asked Questions

Tools you Need and Their Environment
The Shell Environment

Building and Installing

Devel opment

Using GIT

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

1.4 How to Build Erlang/OTP on Windows

e Copyright and License

1.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are till a preferred alternative if one does not have Microsoft’ s development tools and/or don’t want
toinstal Cygwin, MSY S or MSY S2.

Theinstructions apply to versions of Windows supporting the Cygwin emulated gnuish environment or the MSY S or
MSY S2 ditto. We've built on the following platforms: Windows 2012, Windows 7, Windows 8 and Windows 10. It's
probably possible to build on older platforms too, but you might not be able to install the appropriate Microsoft SDK,
Visual Studio or OpenSSL, in which case you will need to go back to earlier compilers etc.

The procedure described uses either Cygwin, MSY S or MSY S2 as a build environment. You run the bash shell in
Cygwin/MSY SIMSY S2 and use the gnu make/configure/autoconf etc to do the build. The emulator C-source code
is, however, mostly compiled with Microsoft Visual C++™, producing a native Windows binary. This is the same
procedure as we use to build the pre-built binaries. Why we use VC++ and not gcc is explained further in the FAQ
section.

If you are not familiar with Cygwin, MSY S, MSY S2 or a Unix environment, you' |l probably need to read up a bit on
how that works. There are plenty of documentation about this online.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are still named win32. Some occurances of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_18. exe.

If you feel comfortable with the environment and build system, and have all the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions to our JIRA
and patches to our git project to let them find their way into the next version of Erlang. If making changes to
the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks, so
that your changes don't break other platforms. That of course goes for C-code too; system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/w n32 and $ERL_TOP/ er t s/ et ¢/ wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ emul at or / beamdirectory is for common code.

We've used this build procedure for a couple of releases, and it hasworked fine for us. Still, there might be all sorts of
troubles on different machinesand with different setups. We'll try to give hintswherever we've encountered difficulties,
but please share your experiences by using the erlang-questions mailing list. We cannot, of course, help everyone
with all their issues, so please try to solve such issues and submit solutions/workarounds.

Lets go then! We'll start with a short version of the setup procedure, followed by some FAQ, and then we'll go into
more details of the setup.

1.4.2 Short Version
Thisisthe short story though, for the experienced and impatient:
e Get andinstal complete Cygwin (latest), complete MinGW with MSY S or complete MSY S2

e Install Visual Studio 12.0 (2013)

e Install Microsofts Windows SDK 8.1

e Getandinstal Sun'sJDK 1.6.0 or later

e Getandinstall NSIS 2.01 or later (up to 2.46 tried and working)

e Get, build and install OpenSSL 0.9.8r or later (up to 1.0.2d tried & working) with static libs.

* GettheErlang sourcedistribution (from http://www.erlang.or g/download.html) and unpack with Cygwin's/
MSYSYMSYS2'st ar .

e Set ERL_TOP to where you unpacked the source distribution

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href

1.4 How to Build Erlang/OTP on Windows

« $ cd $ERL_TOP

e Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still
standing in $ERL_TOP, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_18toot p_w n32_18 onthelast row):

eval "./otp_build env_w n32 x64°
./otp_build autoconf

.lotp_build configure
./otp_build boot -a

.lotp_build rel ease -a
./otp_build installer_w n32

rel ease/ w n32/otp_wi n64_18 /S

PO BB P PH P

Voilal St art - >Prograns->Erl ang OTP 18- >Er| ang starts the Erlang Windows shell.

1.4.3 Frequently Asked Questions

Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. Y ou'll need Microsoft's Visual C++ still. A Bourne-shell script (cc.sh) wrapsthe Visual
C++ compiler and runs it from within the Cygwin environment. All other tools needed to build Erlang are free-
ware/open source, but not the C compiler. The Windows SDK is however enough to build Erlang, you do not
need to buy Visual C++, just download the SDK (SDK version 8.1 == Visual studio 2013).

Q: Why haven't you got rid of VC++ then, you ******?

A: Well, partly becauseit'sagood compiler - really! Actually it's been possiblein late R11-releases to build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

Q: OK, you need V C++, but now you've started to demand aquite recent (and expensive) version of Visua Studio.
Why?

A: Well, it's not expensive, it's free (as in free beer). Just download and install the latest Windows SDK from
Microsoft and all the tools you need are there. The included debugger (WinDhbg) is aso quite usable. That's
what | used when porting Erlang to 64bit Windows. Another reason to use later Microsoft compilers is DLL
compatibility. DLL'susing anew version of the standard library might not load if the VM is compiled with an old
V C++ version. So we should aim to use the latest freely available SDK and compiler.

Q: Can/will | build a Cygwin binary with the procedure you describe?

A: No, the result will be a pure Windows binary, and as far as| know, it's not possible to make a Cygwin binary
yet. That is of course something desirable, but there are still some problems with the dynamic linking (dynamic
Erlang driver loading) as well as the TCP/IP emulation in Cygwin, which, I'm sure of, will improve, but still has
some problems. Fixing those problems might be easy or might be hard. | suggest you try yourself and share your
experience. No one would be happier if asimple ./ confi gure && nake would produce a fully fledged
Cygwin binary.

Q: Hah, | saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the files is compiled using Cygwin's or MinGW's GCC and the resulting object
code is then converted to MS VC++ compatible coff using a small C hack. It's because that particular file,
beam enu. ¢ benefits immensely from being able to use the GCC labels-as-values extension, which boosts
emulator performance by up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled
using GCC. That particular source code does not do anything system specific and actually is adopted to the fact
that GCC is used to compile it on Windows.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

1.4 How to Build Erlang/OTP on Windows

Q: So now there'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen.

Q: So how doesit all work then?

A: Cygwin, MSY S or MSY S2 is the environment, which closely resembles the environment found on any Unix
machine. It's ailmost like you had a virtual Unix machine inside Windows. Configure, given certain parameters,
then creates makefiles that are used by the environment's gnu-make to built the system. Most of the actual
compilers etc are not, however, Cygwin/MSY SMSY S2 tools, so we've written a couple of wrappers (Bourne-
shell scripts), which reside in $ERL_TOP/ et ¢/ wi n32/ cygwi n_t ool s and $ERL_TOP/ et ¢/ wi n32/

neys_t ool s. They al do conversion of parameters and switches common in the Unix environment to fit the
native Windows tools. Most notable is of course the paths, which in Cygwin/MSY SIMSY S2 are Unix-like paths
with "forward slashes' (/) and no drive letters. The Cygwin specific command cygpat h isused for most of the
path conversionsin a Cygwin environment. Other tools are used (when needed) in the corresponding MSY S and
MSY S2 environment. Luckily most compilers accept forward slashes instead of backslashes as path separators,
but one till have to get the drive letters etc right, though. The wrapper scripts are not general in the sense that, for
example, cc.sh would understand and trand ate every possible gcc option and pass correct options to cl.exe. The
principle is that the scripts are powerful enough to alow building of Erlang/OTP, ho more, no less. They might
need extensions to cope with changes during the development of Erlang, and that's one of the reasons we made
them into shell-scripts and not Perl-scripts. We believe they are easier to understand and change that way.

INSERL_TOP, thereisascriptcaledot p_bui | d. That script handlesthe hassle of giving all theright parameters
toconfi gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source
under Cygwin/MSY SIMSY S2.

Q: You use and need Cygwin, but then you haven't taken the time to port Erlang to the Cygwin environment but
instead focus on your commercial release, isthat realy ethical ?

A: No, not really, but see thisas a step in the right direction.
Q: Can | build something that looks exactly as the commercial release?

A: Yes, we use the exact same build procedure.
Q: Which version of Cygwin/MSY S/IMSY S2 and other tools do you use then?

A: For Cygwin, MSY Sand MSY S2 alike, wetry to use the |l atest rel eases available when building. What versions
you use shouldn't really matter. We try to include workarounds for the bugs we've found in different Cygwin/
MSY S/IMSY S2 releases. Please help us add workarounds for new Cygwin/MSY S/IMSY S2-related bugs as soon
as you encounter them. Also please do submit bug reports to the appropriate Cygwin, MSY S and/or MSY S2
developers. The GCC we used for 18 wasversion 4.8.1 (MinGW 32bit) and 4.8.5 (MSY S2 64bit). We used VC++
12.0 (i.e. Visua studio 2013), Sun's JIDK 1.6.0_45 (32bit) and Sun's JDK 1.7.0_1 (64bit), NSIS 2.46, and Win32
OpenSSL 1.0.2d. Please read the next section for details on what you need.

Q: Canyou help me setup X in Cygwin/MSY SIMSY S2?

A: No, unfortunately we haven't got time to help with Cygwin/MSY SIMSY S2 related user problems, please read
related websites, newsgroups and mailing lists.

1.4.4 Tools you Need and Their Environment

Y ou need sometoolsto be ableto build Erlang/OTP on Windows. Most notably you'll need Cygwin, MSY Sor MSY S2,
Visual Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system and
OpenSSL. Well, here's some information about the different tools:

Cygwin, the very latest is usually best. Get all the devel opment tools and of course all the basic ditto. Make sure
to get jar and also make sure not to install a Cygwin'ish Java, since the Cygwin jar command is used but Sun's
Java compiler and virtual machine.

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

If you are going to build a 64bit Windows version, you should make sure to get MinGW's 64bit gcc installed with
Cygwin. It'sin one of the development packages.

URL: http://www.cygwin.com

Get the installer from the website and useiit to install Cygwin. Be sure to have fair privileges. If youreonan NT
domain you should consider running mkpasswd - d and mkgr oup - d after the installation to get the user
databases correct. See their respective manual pages.

When you start your first bash shell, you will get an awful prompt. You might also have a PATH environment
variablethat contains backslashes and such. Edit SHOVE/ . pr of i | e and $HOVE/ . bashr ¢ to set fair prompts
and acorrect PATH. Alsodoanexport SHELL in. profi | e. For some non-obvious reason the environment
variable $SHELL is not exported in bash. Also note that . prof i | e isrun at login time and . bashr ¢ when
sub shells are created. You'll need to explicitly source . bashr ¢ from . profi | e if you want the commands
there to be run at login time (like setting up aliases, shell functions and the like). You can for example do like
thisattheend of . profil e:

ENV=$HOME/ . bashr c
export ENV
. $ENV

Y ou might also want to setup X-windows (XFree86). That might be as easy as running startx from the command
prompt and it might be much harder. Use Google to find help.

If you don't use X-windows, you might want to setup the Windows console window by selecting properties in
the console system menu (upper left corner of the window, the Cygwin icon in the title bar). Especially setting
alarger screen buffer size (lines) is useful asit gets you a scrollbar so you can see whatever error messages that
might appear.

There are afew other shells available, but in all examples below we assume that you use bash.
Alternatively you download MinGW and MSY S. You'll find the latest installer at:

URL: http://sour cefor ge.net/projectsymingw/files/I nstaller /mingw-get-inst/

Make sureto install the basic dev tools, but avoid the MinGW autoconf and install the msys one instead.
To be able to build the 64bit VM, you will also need the 64bit MinGW compiler from:

URL: http://sour cefor ge.net/pr oj ects/mingw-w64/files/latest/download ?sour ce=files

Wevetried up to 1.0, but the latest version should do. Make sure you download the mi ngw w64- bi n_i 686-
nm ngw_<somet hi ng>. zi p, not alinux version. You unzip the package on top of your MinGW installation
(c:\' M nGW and that'siit.

A third aternative isto download and install MSY S2 from:

URL: https.//msys2.github.io/

When you've followed the instructions there, you aso need to install these packages: autoconf, make, perl, and
tar. Y ou do so by running the following in the msys console:

pacman -S nsys/ aut oconf nsys/make nsys/perl nsys/tar

You also need agcc. If you installed the 64 bit MSY S2 you run:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

href
href
href
href

1.4 How to Build Erlang/OTP on Windows

m ngw64/ m ngw we4- x86_64- gcc

And for 32 bit MSY S2:

pacman -S m ngw32/ m ngw w64- i 686- gcc
pacman -S m ngw w64-i 686-editrights

e Visua Studio 2013 (Visua Studio 12.0). Download and run the web installer from:

https://ww. vi sual st udi 0. coml

e Microsofts Windows SDK version 8.1 (corresponding to VC++ 12.0 and Visua Studio 2013). You'll find it here:

URL: https.//msdn.microsoft.com/en-us/windows/desktop/bg162891.aspx

e To help setup the environment, there is a bat file, “°PROGRAMFI LES% M rosoft Vi sual Studio
12. 0\ VC\ vcvarsal | . bat, that set's the appropriate environment for a Windows command prompt.
This is not appropriate for bash, so you'll need to convert it to bash-style environments by editing your
. bash_profil e.Inmy case, where the SDK isinstalled in the default directory and Y°ROGRAMFI LES%is
C:\ Program Fi |l es, the commands for setting up a 32bit build environment (on a 64bit or 32bit machine)
look like this (in Cygwin):

Some common pat hs
C _DRV=/cygdrivel/c
PRG _FLS=$C DRV/ Program Files

nsis

NSI S_BI N=$PRG _FLS/ NSI S

java

JAVA Bl N=$PROGRAMFI LES/ Java/ j dk1. 7. 0_02/ bi n

##
M5 SDK
##

CYGW N=nowi nsyml i nks

VI SUAL_STUDI O ROOT=$PRG FLS/ M crosoft\ Visual\ Studio\ 12.0

W N_VI SUAL_STUDI O ROOT="C: \\ Program Fi | es\\ M crosoft Visual Studio 12.0"
SDK=$PRG _FLS/ W ndows\ Kits/8.1

W N_SDK="C: \\ Program Fi | es\\ Wndows Kits\\8.1"

PATH="$NSI S_BI N: \

$VI SUAL_STUDI O_ROOT/ VC/ bi n: \

$VI SUAL_STUDI O_ROOT/ VC/ vepackages: \

$VI SUAL_STUDI O_ROOT/ Common7/ | DE: \

$VI SUAL_STUDI O_ROOT/ Conmon7/ Tool s: \

$SDK/ bi n/ x86

[usr/| ocal / bi n:/usr/bin:/bin:\

[cygdri vel c/ W NDONS/ syst enB2: / cygdri ve/ c/ W NDOAS: \
/ cygdri vel c/ W NDONS/ syst enB2/ Whem \

$JAVA BI N'

LI BPATH="$W N_VI SUAL_STUDI O ROOT\\ VQ\\ | i b"
LI B="$W N_VI SUAL_STUDI O ROOT\\ VQ\\ | i b\ \ ; $W N_SDK\\ | i b\ \ wi nv6. 3\ \ um \ x86"

| NCLUDE="$W N_VI SUAL_STUDI O ROOT\\ VQ\\'i ncl ude\\ ; $W N_SDK\ \ i ncl ude\ \ shar ed\\ ;

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.4 How to Build Erlang/OTP on Windows

$W N _SDK\\i ncl ude\\ unmy $W N_SDK\\ i ncl ude\\wi nrt\\; $W N _SDK\\i ncl ude\\ um\ gl "

export CYGN N PATH LI BPATH LI B | NCLUDE

If you're using MinGW's MSY S instead, you need to change the C_DRV setting, which would read:

C DRvV=/c

and you also need to change the PATH environment variable to:

M NGW BI N=/ ¢/ M nGW bi n

PATH="$NSI S_BI N: \

$VI SUAL_STUDI O_ROOT/ VC bi n: \

$VI SUAL_STUDI O_ROOT/ VC/ vcpackages: \
$VI SUAL_STUDI O_ROOT/ Common7/ | DE: \

$VI SUAL_STUDI O_ROOT/ Common7/ Tool s: \
$SDK/ bi n/ x86: / usr/ | ocal / bi n: \

$M NGW BI N: \

[bi n:/c/ W ndows/ syst enB2: / c/ W ndows: \
/ ¢/ W ndows/ Syst en82/ Wboem \

$JAVA BI N'

For MSY S2 you use the same C_DRV and PATH asfor MSY' S, only update the M NGW BI N:

M NGW BI N=/ mi ngw32/ bi n

If you are building a 64 bit version of Erlang, you should set up PATHS etc a little differently. We have two
templates to make things work in both Cygwin and MSY'S but needs editing to work with MSY S2 (see the
commentsin the script). The following oneisfor 32 bits:

make_wi npat h()
{
P=$1
if ["$INCYGAAN' = "true"]; then
cygpath -d "$P"
el se
(cd "$P" && /bin/cmd //C "for % in (".") do @cho %fsi")
fi
}

make_upat h()

P=$1
if ["SIN.CYGAN' = "true"]; then
cygpath "$P"
el se
echo "$P" | /bin/sed 's,M\([a-zA-Z]\):\\,/\L\1/,;s,\\,/,¢@'
fi
}

Sonme common pat hs
if [-x /usr/bin/msys-?.0.dll]; then

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

1.4 How to Build Erlang/OTP on Windows

Wthout this the path conversion won't work
COVBPEC=' C:\ W ndows\ Syst enB82\ cnd. exe'
MSYSTEM=M NGWB2 # Commrent out this line if in MSYS2
export MSYSTEM COVSPEC
For MSYS2: Change /mingw bin to the nsys bin dir on the line bel ow
PATH=/ usr /1 ocal / bi n: / mi ngw/ bi n: / bi n: / ¢/ W ndows/ syst enB2: \
/ ¢/ W ndows: / ¢/ W ndows/ Syst enB2/ Whem
C DRV=/c¢c
I N_CYGW N=f al se
el se
PATH=/ | di sk/ overrides:/usr/local/bin:/usr/bin:/bin:\
[usr/ X11R6/ bi n: / cygdri ve/ c/ wi ndows/ syst enB2: \
/ cygdri vel/ ¢/ wi ndows: / cygdri ve/ ¢/ wi ndows/ syst en82/ Whem
C _DRV=/ cygdrivelc
I N_CYGW N=t rue
fi

obe_ot p_gcc_vsn_nmap="
.*=>def aul t
obe_otp_64_gcc_vsn_map="
.*=>def aul t
Program Fil es
PRG FLS=$C DRV/ Programl Fil es

Visual Studio
VI SUAL_STUDI O ROOT=$PRG FLS/ M crosoft\ Visual\ Studio\ 12.0
W N_VI SUAL_STUDI O ROOT="C: \\ Program Fi | es\\ M crosoft Visual Studio 12.0"

SDK
SDK=$PRG FLS/ W ndows\ Kits/8.1
W N_SDK="C:\\ Program Fi | es\\ Wndows Kits\\8.1"

NSI'S
NSI S_BI N=$PROGRAMFI LES/ NSI S

Java
JAVA Bl N=$PROGRAMFI LES/ Java/ j dk1. 7. 0_02/ bi n

The PATH vari abl e shoul d be Cygwi n'i sh
VCPATH=

$VI SUAL_STUDI O_ROOT/ VC/ bi n: \

$VI SUAL_STUDI O _ROOT/ VC vepackages: \

$VI SUAL_STUDI O_ROOT/ Common7/ | DE: \

$VI SUAL_STUDI O_ROOT/ Conmon7/ Tool s: \

$SDK/ bi n/ x86

M crosoft SDK |ibs
LI BPATH=$W N_VI SUAL_STUDI O ROOT\\ VQ\ l'i b

LI B=$W N_VI SUAL_STUDI O ROOT\\ VQ\ i b\ \; $W N_KI TS\\ | i b\ \ wi nv6. 3\ \ um \ x86
| NCLUDE=$W N_VI SUAL_STUDI O_ROOT\\ VQ\\'i ncl ude\\ ; \

$W N_KI TS\\i ncl ude\\ shared\\ ; $W N_KI TS\\i ncl ude\\ um \

$WN_KITS\\i ncl ude\\wi nrt\\; $WN_KI TS\\i ncl ude\\ um \ gl

Put nsis, c conpiler and java in path
export PATH=$VCPATH: $PATH: $JAVA BI N: $NSI S_BI N

Make sure LIB and I NCLUDE is avail able for others
export LIBPATH LI B | NCLUDE

32| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

The first part of the 64 hit template is identical to the 32 bit one, but there are some environment variable
differences:

Program Fi |l es
PRG_FLS64=%C DRV/ Program Files
PRG FLS32=$C DRV/ Program Fil es\ \(x86\)

Visual Studio
VI SUAL_STUDI O_ROOT=$PRG FLS32/ M crosoft\ Visual\ Studio\ 12.0
W N_VI SUAL_STUDI O ROOT="C: \\ Program Fi |l es (x86)\\M crosoft Visual Studio 12.0"

SDK
SDK=$PRG_FLS32/ W ndows\ Kits/8.1
W N_SDK="C:\\ Program Fi | es (x86)\\W ndows Kits\\8.1"

NSI S

NSI S_BI N=$PROGRAMFI LES/ NSI S

Java

JAVA Bl N=$PROGRAMFI LES/ Java/j dk1. 7. 0_02/ bi n

The PATH vari abl e should be Cygwi n'i sh
VCPATH=

$VI SUAL_STUDI O_ROOT/ VC/ bi n/ and64: \

$VI SUAL_STUDI O_ROOT/ VC/ vcpackages: \

$VI SUAL_STUDI O_ROOT/ Common7/ | DE: \

$VI SUAL_STUDI O_ROOT/ Common7/ Tool s: \

$SDK/ bi n/ x86

M crosoft SDK |ibs
LI BPATH=$W N_VI SUAL_STUDI O ROOT\\ VQ\\ | i b\ \ and64

LI B=$W N_VI SUAL_STUDI O_ROOT\\ VQ\\ | i b\ \ and64\\ ; \
$W N _KI TS\\ i b\\'wi nv6. 3\\ um \ x64

| NCLUDE=$W N_VI SUAL_STUDI O ROCOT\\ VQ\\'i ncl ude\\ ; \
$W N_KI TS\ \i ncl ude\\ shared\\; $W N_KI TS\\ i ncl ude\\ um \
$W N _KI TS\\i ncl ude\\wi nrt\\; $W N_KI TS\\i ncl ude\ \ um \ gl

Put nsis, c conpiler and java in path
export PATH=$VCPATH: $PATH: $JAVA BI N: $NSI S _BI N

Make sure LIB and | NCLUDE i s avail able for others
export LIBPATH LI B | NCLUDE

Make sure to set the PATH so that NSIS and Microsoft SDK is found before the MSY S/Cygwin tools and that
Javaislast in the PATH.

Make a simple hello world and try to compile it with the cl command from within bash. If that does not work,
your environment needs fixing. Remember, there should be no backslashes in your path environment variable
in Cygwin bash, but LIB and INCLUDE should contain Windows style paths with semicolon, drive letters and
backslashes.

Sun'sJavaJDK 1.6.0 or later. Our Javacode (jinterface, ic) iswritten for JDK 1.6.0. Get it for Windowsand install
it, the JRE is not enough. If you don't care about Java, you can skip this step. The result will be that jinterface
is not built.

URL: http://java.sun.com
Add javac LAST to your path environment in bash, in my case this means:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

href

1.4 How to Build Erlang/OTP on Windows

" PATH="$PATH: / cygdri ve/ c/ Program Fi | es/ Java/j dk1.7.0_02/ bi n""

No CLASSPATHor anything isneeded. Typej avac inthebash prompt and you should get alist of available Java
options. Make sure, e.g by typingt ype j ava, that you use the Javayou installed. Note however that Cygwin's/
MIinGW'MSY S2's| ar . exe isused. That's why the JDK bin-directory should be added last in the PATH.

* Nullsoft NSISinstaller system. Y ou need this to build the self installing package. It's a free open source installer
that's much nicer to use than the commercial Wise and Install shield installers. This is the installer we use for
commercial releases aswell.

URL: http://nsis.sour cefor ge.net/download

Install the lot, especially the modern user interface components, asit's definitely needed. Put makensi s inyour
path, in my case:

PATH=/ cygdri ve/ c/ Program Fil es/ NSI S: $PATH

Type makensis at the bash prompt and you should get alist of optionsif everything is OK.

e OpenSSL. Thisisif you want the SSL and crypto applications to compile (and run). There are prebuilt binaries,
which you can just download and install, available here:
URL: http://openssl.or g/lcommunity/binaries.html

We would recommend using 1.0.2d.
e Building with wxWidgets. Download wxWidgets-3.0.2 or higher.
Install or unpack it to the pgm folder: Cygwin: DRI VE: / PATH cygw n/ opt/| ocal / pgm MSYS:

DRI VE: / PATH M nGW nsys/ 1. 0/ opt /| ocal / pgmMSYS2: DRI VE: / PATH nsys<32/ 64>/ opt /
| ocal / pgm

If the wxUSE_POSTSCRI PT isn't enabled in <pat h\t o\ pgne\ wxMSW 3. 0. 2\'i ncl ude\ wx\ nsw
\ set up. h, enableit.

build: From a command prompt with the VC tools available (See the instructions for OpenSSL build above for
help on starting the proper command prompt in REL EASE mode):

.\> cd <pat h\to\ pgne\ wxMSW 3. 0. 2\ bui | d\ nsw

C\..
C\...\> nnmake BU LD=rel ease SHARED=0 DI R _SUFFI X_CPU= -f makefile.vc

Or - if building a 64bit version:

C\...\> cd <path\to\pgnr\ wxMsW 3. 0. 2\ bui | d\ nsw
C:\...\> nnmake TARGET_CPU=and64 BUl LD=rel ease SHARED=0 DI R_SUFFI X_CPU= -f makefile.vc

e Get the Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix
platforms. Preferably use tar from within Cygwin, MSYS or MSY S2 to unpack the source tar.gz (t ar zxf
otp_src_18.tar.gz).

Set theenvironment ERL_ TOP to point to theroot directory of the sourcedistribution. Let'ssay | stood in $HOVE/
src and unpacked ot p_src_18. tar. gz, | then add thefollowingto. profi | e:

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

1.4 How to Build Erlang/OTP on Windows

ERL_TOP=$HOWE/ src/otp_src_18
export $ERL_TOP

1.4.5 The Shell Environment

So, if you have followed the instructions above, when you start a bash shell, you should have an INCLUDE
environment with a Windows style path, a LIB environment variable also in Windows style, and finally a PATH that
let's you reach cl, makensis, javac etc from the command prompt (usewhi ch cl etc to verify from bash).

Y ou should also have an ERL_ TOP environment variable that is Cygwin style, and points to a directory containing,
among other files, the script ot p_bui | d.

A final massage of the environment is needed, and that is done by the script $ERL_TOP/ ot p_bui | d. Start bash
and do the following, note the "back-ticks" (*), can be quite hard to get on some keyboards, but pressing the back-
tick key followed by the space bar might do it...

$ cd $ERL_TOP
$ eval "./otp_build env_w n32"

If you're unable to produce back-ticks on your keyboard, you can use the ksh variant:

$ cd $ERL_TOP
$ eval $(./otp_build env_wi n32)

If you are building a 64 bit version, you supply ot p_bui | d with an architecture parameter:

$ cd $ERL_TOP
$ eval “./otp_build env_w n32 x64°

Thisshould do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_w n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path is
cleaned of spacesif possible (using DOS style short namesinstead), the variables OVERRI DE_TARGET, CC, CXX, AR
and RANLI B are set to their respective wrappers and the directories SERL_TOP/ ert s/ et ¢/ wi n32/ <cygwi n/
nsys> t ool s/vcand$ERL_TOP/ erts/etc/w n32/ <cygwi n/ nsys>_t ool areaddedfirstinthe PATH.

Now you can check which erlc you have by writingt ype er | ¢ inyour shell. It should residein SERL_TOP/ ert s/
et c/w n32/ cygwi n_t ool s or$ERL_TOP/ ert s/ et c/w n32/ nsys_t ool s.

1.4.6 Building and Installing
Building is easiest using the ot p_bui | d script:

.lotp_build autoconf # Ignore the warning bl ob about versions of autoconf
./lotp_build configure <optional configure options>

.lotp_build boot -a

./otp_build release -a <installation directory>

./lotp_build installer_w n32 <installation directory> # optional

BB BB

Now you will have a file called ot p_wi n32_18. exe or ot p_w n64_18. exe in the <instal |l ati on
directory>,i.e $ERL_TOP/ r el ease/ wi n32.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

1.4 How to Build Erlang/OTP on Windows

Lets get into more detail:

$./otp_build autoconf - Thisstep rebuildsthe configure scripts to work correctly in your environment.
In an ideal world, this would not be needed, but alas, we have encountered several incompatibilities between
our distributed configure scripts (generated on a Linux platform) and the Cygwin/MSY SIMSY S2 environment
over the years. Running autoconf in Cygwin/MSY SIMSY S2 ensures that the configure scripts are generated in a
compatible way and that they will work well in the next step.

$./otp_build confi gure-Thisrunsthe newly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler becc. sh, which wraps MSVC+
+, so al configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

$./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type $SERL_TOP/ bi n/ er | and you whould have the prompt.

$./otp_build rel ease -a-Buildsacommercial releasetree from the sourcetree. The default isto put it
inSERL_TOP/ r el ease/ wi n32. You can give any directory as parameter (Cygwin style), but it doesn't really
matter if you're going to build a self extracting installer too.

$./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
otp_wi n32_18. exe or ot p_wi n64_18. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to $SERL_TOP/
r el ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _rel ease), youre
expected to givethe same parameter here, (i.e.. /ot p_build i nstall er_wi n32 /tnp/erl _rel ease).
You need to have a full NSIS installation and makensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow
the stepsin the installation wizard. To get all default settings in the installation without any questions asked, you
run the executable with the parameter / S (capital S) likein:

$ cd $ERL_TOP
$ rel ease/wi n32/otp_w n32_18 /S

or

$ cd $ERL_TOP
$ rel ease/ wi n32/otp_w n64_18 /S

and after a while Erlang/OTP-18 will have been installed in C: \ Program Fil es\erl 7. 3. 1. 4\, with
shortcuts in the menu etc.

1.4.7 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you can also run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program $ERL_TOP/
bi n/ erl . exe usableand it also uses all the OTP librariesin the source tree.

If you hack the emulator, you can build the emulator executable by standing in $ERL_TOP/ er t s/ ermul at or and
doasmple

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

$ neke opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running $ERL_TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ ert s/ emul at or)

$ nake TESTROOT=/tnp/erl _rel ease rel ease

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dl | (the actual runtime system) and
erl exec. dl | . Dolikethis

cd $ERL_TOP

rm bi n/ wi n32/ erl exec. dl
cd erts/emul at or

make debug

cd ../etc

make debug

R o T

and sometimes

$ cd $ERL_TOP
$ make | ocal _setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
youdo a

1> erl ang: system i nfo(system ver si on)
in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.

To hack the erlang libraries, you simply do anake opt inthe specific "applications’ directory, like:

$ cd $ERL_TOP/lib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL_TOP/lib/stdlib/src
$ nmake opt

Note that you're expected to have afresh Erlang in your path when doing this, preferably the plain 18 you have built
in the previous steps. You could also add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding specific
libraries. That would give you a good enough Erlang system to compile any OTP erlang code. Setting up the path

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

1.4 How to Build Erlang/OTP on Windows

correctly is alittle bit tricky. You still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s/ vc and
$ERL_TOP/ erts/etc/w n32/ cygw n_t ool s before the actual emulator in the path. A typical setting of the
path for using the bootstrap compiler would be:

$ export PATH=$ERL_TOP/ erts/ et c/wi n32/cygw n_t ool s/ vc\
:$ERL_TOP/ ert s/ et ¢/ wi n32/ cygw n_t ool s: $ERL_TOP/ boot st rap/ bi n: $PATH

That should make it possible to rebuild any library without hassle...

If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emulator:

$ cd $ERL_TOP/lib/stdlib
$ make TESTROOT=/t np/erl ang_rel ease rel ease

Remember that:

* Windows specific C-code goes in the $ERL_TOP/ ert s/ enul at or/ sys/wi n32, $ERL_TOP/ ert s/
ermul ator/drivers/w n32or$ERL_TOP/ ert s/ et c/ w n32.

* Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of

{win32, _} ->
do_wi ndows_speci fic();
Q her ->

do_fall back_or_exit()
end,

That's basically all you need to get going.

1.4.8 Using GIT

Y ou might want to check out versions of the source code from GitHUB. That is possible directly in Cygwin, but not
in MSYS. Thereisaproject MsysGIT:

URL:http://code.google.com/p/msysgit/

that makes a nice Git port. The msys prompt you get from MsysGIT is however not compatible with the full version
from MinGW, so you will need to check out files using MsysGIT's command prompt and then switch to a common
MSY S command prompt for building. Also all test suites cannot be built asMsysGI T/M SY S does not handle symbolic
links.

1.4.9 Copyright and License

Copyright Ericsson AB 2003-2015. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. Y ou may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE-2. 0

38| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.5 Patching OTP Applications

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.5 Patching OTP Applications

1.5.1 Introduction

This document describes the process of patching an existing OTP installation with one or more Erlang/OTP
applications of newer versions than aready installed. The tool ot p_pat ch_appl y is available for this specific
purpose. It resides in the top directory of the Erlang/OTP source tree.

Theot p_pat ch_appl y tool utilizestheruntime_dependenciestagin theapplication resourcefile. Thisinformation
is used to determine if the patch can be installed in the given Erlang/OTP installation directory.

Read more about the version handling introduced in Erlang/OTP release 17, which also describes how to determine
if an installation includes one or more patched applications.

If you want to apply patches of multiple OTP applications that resides in different OTP versions, you have to apply
these patches in multiple steps. It is only possible to apply multiple OTP applications from the same OTP version
at once.

1.5.2 Prerequisites

It's assumed that the reader is familiar with building and installing Erlang/OTP. To be able to patch an application,
the following must exist:

* AnErlang/OTP installation.

e An Erlang/OTP source tree containing the updated applications that you want to patch into the existing Erlang/
OTPinstalation.

1.5.3 Using otp_patch_apply

Warning:
Patching applicationsisaone-way process. Create abackup of your OTPinstallation directory before proceeding.

First of all, build the OTP source tree at $ERL_ TOP containing the updated applications.

Note:
Before applying a patch you need to do afull build of OTP in the source directory.

If you are buildingingi t you first need to generate the conf i gur e scripts:

$./otp_build autoconf

Configure and build all applicationsin OTP:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

1.5 Patching OTP Applications

$ configure

$ nmake

or

$./otp_build configure
$./otp_build boot -a

If you have installed documentation in the OTP installation, a so build the documentation:

$ make docs

After the successful build it's time to patch. The source tree directory, the directory of the instalation and the
applications to patch are given as arguments to ot p_pat ch_appl y. The dependencies of each application are
validated against the applications in the installation and the other applications given as arguments. If a dependency

error is detected, the script will be aborted.
Theot p_pat ch_appl y syntax:

$ otp_patch_apply -s <Dir> -i <Dir>[-] <Dir>] [-c] [-f] [-h] \
[-n] [-v] <Appl>[... <AppN]

-s <Dir>
-i <Dir>
-l <Dir>

-C
-f

-h
-Nn

-V
<AppX>

OTP source directory that contains build results.
OTP installation directory to patch.

Al ternative OTP source library directory path(s)
containing build results of OIP applications.

Mul ti pl e paths shoul d be col on separat ed.

Cl eanup (renove) ol d versions of applications
patched in the installation.

Force patch of application(s) even though
dependencies are not fulfilled (should only be
considered in a test environment).

Print help then exit.

Do not install docunentation.

Print version then exit.

Application to patch.

Envi ronment Vari abl e:

ERL_LI BS

Note:

The complete build environment is required while running ot p_pat ch_appl y.

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

-- Alternative OTP source library directory path(s)

containing build results of OIP applications.
Mul ti pl e paths shoul d be col on separat ed.

1.5 Patching OTP Applications

Note:
All source directoriesidentified by - s and - | should contain build results of OTP applications.

For example, if the user wants to install patched versions of mesi a and ssl built in/ hone/ e/ gi t / ot p into
the OTPinstallation located in/ opt / er | ang/ ny_ot p type

$ otp_patch_apply -s /hone/ne/git/otp -i /opt/erlang/ny_otp \
mmesi a ssl

Note:

If thelist of applications contains core applications, i.eert s, ker nel ,stdli b orsasl ,thel nstal | script
in the patched Erlang/OTP installation must be rerun.

The patched applications are appended to the list of installed applications. Take a look at <l nstal | Di r >/
rel eases/ OTP-REL/i nstal | ed_application_versions.

1.5.4 Sanity check

The application dependencies can be checked using the Erlang shell. Application dependencies are verified among
installed applications by ot p_pat ch_appl y, but these are not necessarily those actualy loaded. By calling
system_ i nformati on: sanity_check() onecan validate dependencies among applications actually loaded.

1> system i nformation: sanity_check().

ok

Please take alook at the reference of sanity _check() for more information.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

2.1 System Principles

2 System Principles

2.1 System Principles
2.1.1 Starting the System

An Erlang runtime system is started with command er | :

% er
Erlang/ OTP 17 [erts-6.0] [hipe] [snp:8:8]

Eshell V6.0 (abort with ~"Q
1>

er | understands a number of command-line arguments, see the erl(1) manual page in ERTS. Some of them are also
described in this chapter.

Application programs can access the values of the command-line arguments by calling the function
i nit:get_argunent (Key) orinit:get_argunents().Seetheinit(3) manual pagein ERTS.
2.1.2 Restarting and Stopping the System

The runtime system is halted by calling hal t / 0, 1. For details, see the erlang(3) manual pagein ERTS.
Themodulei ni t contains functions for restarting, rebooting, and stopping the runtime system:

init:restart()
init:reboot ()
init:stop()
For details, see the init(3) manual pagein ERTS.
The runtime system terminatesif the Erlang shell is terminated.

2.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applications to start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command-line flag - boot . The extension . boot isto be omitted. For
example, using the boot script st art _al | . boot :

% erl -boot start_al

If no boot script is specified, it defaultsto ROOT/ bi n/ st art , see Default Boot Scripts.

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 System Principles

The command-line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

% erl -init_debug

{progress, prel oaded}

{progress, kernel _| oad_conpl et ed}
{progress, nodul es_| oaded}
{start, heart}

{start,error_| ogger}

For a detailed description of the syntax and contents of the boot script, seethescri pt (4) manual pagein SASL.
Default Boot Scripts

Erlang/OTP comes with these boot scripts:

e« start_cl ean. boot - Loadsthe code for and starts the applications Kernel and STDLIB.
e start_sasl. boot - Loadsthe codefor and starts the applications Kernel, STDLIB, and SASL).

e no_dot_erl ang. boot - Loadsthe code for and starts the applications Kernel and STDLIB. Skips
loading thefile. er | ang. Useful for scripts and other tools that are to behave the same irrespective of user
preferences.

Which of start_cl ean and st art _sasl to use as default is decided by the user when installing Erlang/OTP
using | nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, thenst art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st art . boot and placed in directory ROOT/ bi n.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Strategy.

A boot script can be written manually. However, it is recommended to create a boot script by generating it from a
releaseresourcefileName. r el , using thefunctionsyst ool s: make_scri pt/ 1, 2. Thisrequiresthat the source
code is structured as applications according to the OTP design principles. (The program does not have to be started
in terms of OTP applications, but can be plain Erlang).

For moreinformation about . r el files, see OTP Design Principles and the rel(4) manual pagein SASL.

The binary boot script file Narre. boot is generated from the boot script file Nane. scri pt, using the function
syst ool s: scri pt 2boot (Fil e).

2.1.4 Code Loading Strategy

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command-
lineflag - node.

% erl -nmode enbedded

Default modeisi nt er acti ve.
The mode properties are as follows:

* Inembedded mode, al code isloaded during system startup according to the boot script. (Code can also be
loaded later by explicitly ordering the code server to do so.)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

2.2 Error Logging

* Ininteractive mode, the code is dynamically loaded when first referenced. When a call to afunction in amodule

is made, and the module is not loaded, the code server searches the code path and |oads the module into the

system.

Initially, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Nare[- Vsn] . The code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -

Vsn suffix is optiona. If an ebi n directory exists under the Narre[- Vsn] directory, this directory is added to the

code path.

The code path can be extended by using the command-lineflags-pa Directories and-pz Directories.

Theseadd Di r ect ori es to the head or the end of the code path, respectively. Example:

% erl -pa /hone/arne/ mycode

The code server module code contains a number of functions for modifying and checking the search path, see the

code(3) manual pagein Kernel.

2.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

Module .erl Erlang Reference Manual
Includefile .hrl Erlang Reference Manual
Release resource file .rel rel(4) manual pagein SASL
Application resource file . app app(4) manual pagein Kernel
Boot script .script script(4) manual page in SASL
Binary boot script . boot -

Configuration file .config config(4) manual pagein Kernel
Application upgradefile . appup appup(4) manual pagein SASL
Release upgrade file relup relup(4) manual pagein SASL

Table 1.1: File Types

2.2 Error Logging

2.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating because of an uncaught

error exception, is by default written to terminal (tty):

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Error Logging

=ERROR REPORT==== 9- Dec-2003::13: 25: 02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{mf, 1}, {shell, eval | oop, 2}]}

The error information is handled by the error logger, a system process registered aser r or _| ogger . This process
receives all error messages from the Erlang runtime system as well as from the standard behaviours and different
Erlang/OTP applications.

The exit reasons (such asbadar g) used by the runtime system are described in Errors and Error Handling.

For information about the process error | ogger and its user interface (with the same name), see the
error_logger(3) manua page in Kernel. The system can be configured so that error information iswritten to file or to
tty, or both. In addition, user-defined applications can send and format error information using er r or _| ogger .

2.2.2 SASL Error Logging

The standard behaviours (super vi sor, gen_server, and so on) send progress and error information to
error _| ogger . If the SASL application is started, thisinformation is written to tty as well. For more information,
see SASL Error Logging in the SASL User's Guide.

% erl -boot start_sasl
Erl ang (BEAM emul ator version 5.4.13 [hipe] [threads: 0] [kernel-poll]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl _safe_sup}
started: [{pid, <0.33.0>},
{nane, al ar m handl er},
{nfa, {al armhandl er,start_link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl _safe_sup}
started: [{pid, <0.34.0>},

{nane, over| oad},
{nfa, {overload,start _link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl_sup}
started: [{pid, <0.32.0>},
{nane, sasl _saf e_sup},
{nfa, {supervi sor,
start _link,
[{l ocal , sasl _saf e_sup}, sasl, safe]}},
{restart _type, permanent},
{shut down, i nfinity},
{chil d_type, supervisor}]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl_sup}
started: [{pid, <0.35.0>},

{nane, rel ease_handl er},
{nfa,{rel ease_handl er,start _|link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

2.3 Creating and Upgrading a Target System

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
application: sasl
started_at: nonode@ohost
Eshel|l V5.4.13 (abort with ~"Q
1>

2.3 Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install Erlang/OTP somewhere, install the
application-specific code somewhere el se, and then start the Erlang runtime system, making sure the code path includes
the application-specific code.

It is often not desirable to use an Erlang/OTP system as is. A developer can create new Erlang/OTP-compliant
applications for a particular purpose, and several original Erlang/OTP applications can be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed and new applications are included. Documentation and source codeisirrelevant
and is therefore not included in the new system.

This chapter is about creating such a system, which is called atarget system.
The following sections deal with target systems with different requirements of functionality:
* A basictarget systemthat can be started by calling the ordinary er | script.

« A simpletarget system where aso code replacement in runtime can be performed.

* Anembedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

Hereisonly considered the case when Erlang/OTP is running on a UNIX system.

The sas!| application includes the example Erlang module t ar get _syst em er |, which contains functions for
creating and installing atarget system. Thismodule is used in the following examples. The source code of the module
islisted in Listing of target_system.er|

2.3.1 Creating a Target System
It is assumed that you have aworking Erlang/OTP system structured according to the OTP design principles.

Sep 1. Create a. rel file (see the rel(4) manual page in SASL), which specifies the ERTS version and lists all
applicationsthat are to be included in the new basic target system. An exampleisthefollowingmysyst em r el file:

%6 nysystem rel
{rel ease,
{"MYSYSTEM', "FIRST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},

{pea, "1.0"}]}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applicationsthat you have
written (here exemplified by the application Pea (pea)).

Sep 2. Start Erlang/OTP from the directory wherethe mysyst em r el fileresides:

os> erl -pa /hone/user/target_systenl nyapps/ pea-1. 0/ ebin

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

Here also the path to the pea- 1. 0 ebin directory is provided.
Sep 3. Create the target system:

1> target_system create("nysysteni).

Thefunctiont ar get _syst em cr eat e/ 1 performs the following:

Readsthefilenysyst em r el and createsanew filepl ai n. r el that isidentical to the former, except that
it only liststhe Kernel and STDLIB applications.

Fromthefilesmysystem rel andpl ai n. rel createsthefilesnmysyst em scri pt, mysystem boot,
pl ai n.script,andpl ai n. boot throughacall tosyst ool s: make_scri pt/ 2.

Creates the file nysystem tar. gz by acall to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5.10. 4/ bi n/

rel eases/ Fl RST/ start . boot
rel eases/ FI RST/ nysystem rel
rel eases/ mysystemrel

I'i b/ kernel -2.16. 4/
l'ib/stdlib-1.19.4/

l'i b/ sasl -2. 3. 4/

i b/ pea-1. 0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot

The release resource file mysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory to make it possible for ther el ease_handl er to extract this file separately. After
unpacking thetar file, r el ease_handl er would automatically copy thefiletor el eases/ FI RST. However,
sometimes the tar file is unpacked without involving ther el ease_handl er (for example, when unpacking
thefirst target system). The fileistherefore now instead duplicated in the tar file so no manual copying is needed.

Creates the temporary directory t np and extractsthetar filemysyst em t ar . gz into that directory.

Deletesthefileser| andstart fromt np/ ert s-5. 10. 4/ bi n. Thesefiles are created again from source
when installing the release.

Creates the directory t np/ bi n.

Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .

Copiesthefilesepnd, run_erl ,andt o_er| fromthedirectoryt mp/ erts-5. 10. 4/ bi n to the directory
t np/ bi n.

Createsthe directory t np/ | og, which isused if the system is started as embedded with thebi n/ st ar t
script.

Createsthefilet np/ r el eases/ start _er| . dat a with the contents "5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

Recreatesthefilemysyst em t ar . gz from the directories in the directory t np and removest np.

2.3.2 Installing a Target System
Sep 4. Install the created target system in a suitable directory.

2> target_systeminstall ("mysysten, "/usr/local/erl-target").

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

2.3 Creating and Upgrading a Target System

Thefunctiont ar get _system i nst al | / 2 performs the following:

» Extractsthetar filemysyst em t ar . gz into thetarget directory / usr/ 1 ocal / erl -t ar get .

* Inthetarget directory readsthefiler el eases/ start _er| . dat a tofind the Erlang runtime system
version ("5.10.4").

e Substitutes %I NAL_ROOTDI R%and ¥&EMJ%for / usr/ | ocal / er| -t ar get and beam respectively, in
thefileser!| . src,start.src,andstart _erl.src of thetargeterts-5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

* Findly thetargetr el eases/ RELEASESfileis created from datain thefiler el eases/ nysystemrel .

2.3.3 Starting a Target System

Now we have atarget system that can be started in various ways. We start it as a basic target system by invoking:

os> /usr/local/erl-target/bin/erl

Here only the Kernel and STDLIB applications are started, that is, the system is started as an ordinary devel opment
system. Only two files are needed for all thisto work:

* bin/erl (obtainedfromerts-5.10.4/bin/erl.src)
e bin/start.boot (acopy of pl ai n. boot)

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe original nysyst em r el file, useflag - boot asfollows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/rel eases/Fl RST/start

We start a simple target system as above. The only difference isthat also thefiler el eases/ RELEASES is present
for code replacement in runtime to work.

To start an embedded target system, the shell script bi n/ st art isused. The script calsbi n/ run_er | , whichin
turncallsbi n/ start _erl (roughly, start erl| isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. Edit
it to suite your needs. Typicaly it is executed when the UNIX system boots.

run_er!l isawrapper that provides logging of output from the runtime system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er |).

start _erl requires:

e Theroot directory ("/ usr/l ocal /erl-target")

* Thereleasesdirectory ("/ usr/ 1 ocal /erl -target/rel eases”
e Thelocation of thefilestart _erl . data

It performs the following:

* Readsthe runtime system version (" 5. 10. 4") and release version (" FI RST") from thefile
start _erl.data.
e Startsthe runtime system of the version found.

* Providestheflag - boot specifying the boot file of the release version found (" r el eases/ FI RST/
start. boot").

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

start _erl also assumes that there is sys. confi g in the release version directory ("r el eases/ FI RST/
sys. confi g"). That isthetopic of the next section.

Thestart _er| shell script isnormally not to be altered by the user.

2.3.4 System Configuration Parameters

As was mentioned in the previous section, st art _er| requiresasys. confi g in the release version directory
("rel eases/ FI RST/ sys. confi g"). If there is no such file, the system start fails. Such a file must therefore
also be added.

If you have system configuration datathat is neither file-location-dependent nor site-dependent, it can be convenient to
createsys. confi g early, soit becomespart of thetarget systemtar filecreatedby t ar get _system creat e/ 1.
Infact, if youinthe current directory create not only thefilenysyst em rel , butasofilesys. confi g, thelatter
fileistacitly put in the appropriate directory.

2.3.5 Differences From the Install Script

The previous i nst al | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makesthe release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering |ocation-dependent files.

2.3.6 Creating the Next Version
In this exampl e the Pea application has been changed, and so are the applications ERTS, Kernel, STDLIB and SASL.
Sep 1. Create thefile. rel :

%6 nysyst en?. rel
{rel ease,
{"MYSYSTEM', "SECOND'},
{erts, "6.0"},
[{kernel, "3.0"},
{stdlib, "2.0"},
{sasl, "2.4"},
{pea, "2.0"}]1}.
Sep 2. Create the application upgrade file (see the appup(4) manual pagein SASL) for Pea, for example:

%% pea. appup
{"2.0",
"1 | oad_nodul e, pea_l i b}]}],

[({"1.0", [{
[{"21.0",[{| oad_nodul e, pea_lib}]}]}.

Sep 3. From the directory wherethe filemysyst en®. r el resides, start the Erlang/OTP system, giving the path to

the new version of Pea:

os> erl -pa /hone/user/target_systenl nmyapps/ pea-2. 0/ ebin

Sep 4. Create the release upgrade file (see the relup(4) manual pagein SASL):

1> syst ool s: nake_rel up("nysysten2", ["nysysteni'], ["nysysteni],

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

2.3 Creating and Upgrading a Target System

[{path, ["/hone/user/target systenl myapps/ pea-1. 0/ ebi n",
"/nylold/erlang/lib/*/ebin"]}]).

Here" nysyst ent' isthebasereleaseand " mysyst enR" isthe release to upgrade to.

The pat h option is used for pointing out the old version of all applications. (The new versions are already in the code
path - assuming of coursethat the Erlang node on which thisis executed is running the correct version of Erlang/OTP.)

Sep 5. Create the new release:

2> target _system create("mysystenm").

Given that the filer el up generated in Step 4 is now located in the current directory, it is automatically included in
the release package.

2.3.7 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. For more information, see Starting a Target System.

Weadd - heart tobin/start:

#! / bi n/ sh
ROOTDI R=/ usr/ | ocal / erl -target/

if [-z "$RELDIR']
t hen

RELDI R=$ROOTDI R/ r el eases
fi

START_ERL_DATA=${1: - $RELDI R/ st art _er| . dat a}

$ROOTDI R/ bi n/run_erl -daenon /tnp/ $ROOTDI R/ | og "exec $ROOTDI R/ bin/start_erl $ROOTDI R\
$RELDI R $START_ERL_DATA - heart

We use the simplest possible sys. conf i g, whichwestoreinr el eases/ Fl RST:

%6 sys. config
[1.

Finally, to prepare the upgrade, we must put the new release package in the r el eases directory of the first target
system:

0s> cp mysystenR.tar.gz /usr/local/erl-target/rel eases

Assuming that the node has been started as follows:

os> /usr/local/erl-target/bin/start

It can be accessed as follows:

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

os> /usr/local/erl-target/bin/to_erl /tnp/erlang.pipe.1

Logscanbefoundin/ usr/ | ocal / erl -target/| og. Thisdirectory isspecified asan argumenttor un_er | in
the start script listed above.

Sep 1. Unpack the release:

1> {ok, Vsn} = rel ease_handl er: unpack_r el ease(" mysyst en2")

Sep 2. Ingtall the release:

2> rel ease_handl er:install _rel ease(Vsn).

{continue_after_restart,"FIRST",[]}

heart: Tue Apr 1 12:15:10 2014: Erlang has cl osed

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/rel eases/ ne\
[End]

The above return value and output after the call tor el ease_handl er:i nstal | _rel ease/ 1 means that the
rel ease_handl er has restarted the node by using heart . This is aways done when the upgrade involves a
change of the applications ERTS, Kernel, STDLIB, or SASL. For more information, see Upgrade when Erlang/OTP
has Changed.

The node is accessible through a new pipe:

os> /usr/local/erl-target/bin/to_erl /tnp/erlang.pipe.2

Check which releases there are in the system:

1> rel ease_handl er: whi ch_rel eases().

[{" MYSYSTEM', " SECOND" ,
["kernel -3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},

{" MYSYSTEM', " FI RST" ,
["kernel -2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
per manent }]

Our new release, "SECOND", isnow the current release, but we can al so seethat our "FIRST" releaseis still permanent.
Thismeansthat if the node would be restarted now, it would come up running the "FIRST" rel ease again.

Sep 3. Make the new release permanent:

2> rel ease_handl er: nake_per manent (" SECOND")

Check the releases again:

3> rel ease_handl er: whi ch_r el eases() .
[{" MYSYSTEM', " SECOND"
["kernel -3.0","stdlib-2.0","sasl-2.4","pea-2.0"],

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

2.3 Creating and Upgrading a Target System

per manent },

{" MYSYSTEM', " FI RST",
["kernel -2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
ol d}]

We see that the new release version isper manent , so it would be safe to restart the node.

2.3.8 Listing of target_system.erl
This module can also be found in the exanpl es directory of the SASL application.

-modul e(target _system).
-export([create/1l, create/2, install/2]).

%b Not e: Rel Fil eName below is the *stent without trailing .rel,
%6 . script etc.
%86

%% cr eat e(Rel Fi | eNane)

9%

create(Rel Fil eNane) ->
create(Rel Fil eNane, []).

creat e(Rel Fi | eNane, Syst ool sOpts) ->
RelFile = Rel Fil eNane ++ ".rel",
Dir = fil enane: di rnane(Rel Fi | eNang),
Pl ai nRel Fi l eNane = filenane:join(Dir,"plain"),
PlainRel File = PlainRel Fil eNane ++ ".rel",

io:fwite("Reading file: ~tp ...~n", [RelFile]),
{ok, [Rel Spec]} = file:consult(RelFile),
io:fwite("Creating file: ~tp from~tp ...~n",

[PlainRel File, RelFile]),
{rel ease,
{Rel Nane, Rel Vsn},
{erts, ErtsVsn},
AppVsns} = Rel Spec,
Pl ai nRel Spec = {rel ease,
{Rel Nane, Rel Vsn},
{erts, ErtsVsn},

lists:filter(fun({kernel, _}) ->
true;
({stdlib, _}) ->
true;
() ->
fal se

end, AppVsns)
b
{ok, Fd} = file:open(PlainRelFile, [wite]),
io:fwite(Fd, "~p.~n", [Pl ainRel Spec]),
file:close(Fd),

io:fwite("Making \"~ts.script\" and \"~ts. boot\" files ...~n",
[Pl ai nRel Fi | eNane, Pl ai nRel Fi | eNane]),
make_scri pt (Pl ai nRel Fi | eNane, Syst ool sOpt s) ,

io:fwite("Making \"~ts.script\" and \"~ts. boot\" files ...~n",
[Rel Fi | eNarme, Rel Fil eNane]),
make_scri pt (Rel Fi | eNane, Syst ool sOpt s) ,

TarFi |l eNane = Rel Fil eName ++ ".tar.gz",
io:fwite("Creating tar file ~tp ...~n", [TarFileNane]),

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

make_t ar (Rel Fi | eNane, Syst ool sOpt s) ,

TmpDir = filenanme:join(Dir,"tm"),
io:fwite("Creating directory ~tp ...~n",[TnpDir]),

file:make dir(TmpDir),

io:fwite("Extracting ~tp

into directory ~tp ...~n", [TarFileNanme, TnpDir]),

extract_tar(TarFil eName, TrpDir),

TmpBinDir = filenanme:join([TmpDir, "bin"]),
ErtsBinDir = filenane:join([TrpDir, "erts-" ++ ErtsVsn, "bin"]),
io:fwite("Deleting \"erI\" and \"start\" in directory ~tp ...~n",

[ErtsBinDir]),

file:delete(filenane:join([ErtsBinDir, "erl"])),
file:delete(filenane:join([ErtsBinDir, "start"])),

io:fwite("Creating tenporary directory ~tp ...~n", [TnpBinDir]),

file:make_dir(TnpBinDir),

io:fwite("Copying file \"~ts.boot\" to ~tp ...~n",
[Pl ai nRel Fi | eNarme, filenane:join([TmpBinDir, "start.boot"])]),
copy_fil e(Pl ai nRel Fi | eName++".boot", fil enane:join([TnpBinDir, "start.boot"])),

io:fwite("Copying files \"epnd\", \"run_erl\" and \"to_erl\" from\n"
"~tp to ~tp ...~n",
[ErtsBinDir, TnpBinDir]),

copy_file(filenane:join(][

ErtsBinDir, "epmd"]),

filenane:join([TrpBinDir, "epnd"]), [preserve]),

copy_file(filenane:join(][

ErtsBinDir, "run_erl"]),

filenane:join([TmpBinDir, “run_erl"]), [preserve]),

copy_file(filenane:join([

ErtsBinDir, "to_erl"]),

filenane:join([TmpBinDir, "to_erl"]), [preserve]),

%WoThis is needed if 'start' script created from'start.src' shall

%6 be used as it points o
TrnpLogDir = fil enanme:join
io:fwite("Creating tenpo
ok = file:make_dir (TnpLog

ut this directory as log dir for 'run_erl'’
([TnpDir, "log"1),

rary directory ~tp ...~n", [TnpLogDir]),
Dir),

StartErl DataFile = filenane:join([TrpDir, "rel eases", "start_erl.data"]),

io:fwite("Creating ~tp ..

StartErlData = io_lib:fw
wite file(StartErl DataFi

io:fwite("Recreating tar
[Tar Fi | eNane, TnpDir]),

.~n", [StartErlDataFile]),
ite("~s ~s~n", [ErtsVsn, RelVsn]),
le, StartErlData),

file ~tp fromcontents in directory ~tp ...~n",

{ok, Tar} = erl _tar:open(TarFileNanme, [wite, conpressed]),
%6 {ok, Omd} = file:get_cwd(),

Wofile:set_cwd("tnmp"),
ErtsDir = "erts-"++ErtsVs
erl _tar:add(Tar, filenane
erl _tar:add(Tar, filenane
erl _tar:add(Tar, filenane
erl _tar:add(Tar, filenane
erl _tar:add(Tar, filenane
erl _tar:close(Tar),
Wofile:set_cwd(Ond),

n,

cjoin(TnpDir, "bin"), "bin", [1),
cjoin(TnpDir, ErtsDir), ErtsDir, []),
join(TnpDir, "rel eases"), "rel eases", []),
cjoin(TnpDir, "lib"), "lib", [1),
cjoin(TnpDir,"log"), "log", [1),

io:fwite("Renoving directory ~tp ...~n",[TmpDir]),

remove_dir_tree(TnpDir),
ok.

install (Rel Fil eNane, RootDir)
TarFile = Rel Fil eName ++

io:fwite("Extracting ~tp ..

->
".tar.gz",
.~n", [TarFile]),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

2.3 Creating and Upgrading a Target System

extract _tar(TarFile, RootDir),

StartErl DataFile = filenane:join([RootDir, "rel eases", "start_erl.data"]),

{ok, StartErlData} = read_txt file(StartErlDataFile),

[Erl Vsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),

ErtsBinDir = filenane:join([RootDir, "erts-" ++ ErlVsn, "bin"]),

BinDir = filenane:join([RootDir, "bin"]),

io:fwite("Substituting in erl.src, start.src and start_erl.src to "

"formerl, start and start_erl ...\n"),

subst _src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDr,
[{"FINAL_ ROOTDIR', RootDir}, {"EMJ', "beani}],
[preserve]),

%8 Workaround for pre OTP 17.0: start.src and start_erl.src did

%48 not have correct perm ssions, so the above 'preserve' option did not help

ok = file:change_node(fil enane:join(BinDir,"start"), 8#0755),

ok = file:change_node(filenanme:join(BinDr,"start_erl"), 8#0755),

io:fwite("Creating the RELEASES file ...\n"),

create RELEASES(RootDir, filenanme:join([RootDir, "rel eases",

fil enane: basenane(Rel Fi |l eNane)])).

%% LOCALS

%% make_scri pt (Rel Fi | eName, Opt s)
9%
make_scri pt (Rel Fi | eNane, Opts) ->
syst ool s: make_scri pt (Rel Fil eNane, [no_nodul e_tests,
{outdir, fil enane: di rname(Rel Fi | eNane) }

| Opts]).

%% make_t ar (Rel Fi | eNane, Opt s)
9%
make_tar (Rel Fi | eNane, Opts) ->
RootDir = code:root _dir(),
systool s: make_tar(Rel Fil eNanme, [{erts, RootDir},
{outdir, filenane: dirname(Rel Fi |l eNane) }

| Opts]).

%Woextract _tar(TarFile, DestDir)
9o
extract _tar(TarFile, DestDir) ->
erl _tar:extract(TarFile, [{cwd, DestDir}, conpressed]).

create RELEASES(DestDir, Rel Fil eNane) ->
rel ease_handl er: creat e RELEASES(DestDir, Rel FileNane ++ ".rel").

subst _src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->
subst _src_script(Script, SrcDir, DestDr,
Vars, Opts)
end, Scripts).

subst _src_script(Script, SrcDir, DestDir, Vars, Opts) ->
subst _file(filename:join([SrcDir, Script ++ ".src"]),
filenane:join([DestDir, Script]),
Vars, Opts).

subst file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read_txt file(Src),
NConts = subst (Conts, Vars),
wite file(Dest, NConts),
case |ists: menber (preserve, Opts) of
true ->
{ok, Filelnfo} =file:read file_info(Src),
filecwite_file_info(Dest, Filelnfo);
fal se ->

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

ok
end.

%6 subst (Str, Vars)
Wb Vars = [{Var, Val}]
9%bVar = Val = string()
%6 Substitute all occurrences of War% for Val in Str, using the list
%% of variables in Vars.
%o
subst (Str, Vars) ->
subst (Str, Vars, []).

subst ([$% C| Rest], Vars, Result) when $A =< C, C =< $Z ->
subst _var([C Rest], Vars, Result, []);

subst ([$% C| Rest], Vars, Result) when $a =< C, C =< $z ->
subst _var([C Rest], Vars, Result, []);

subst ([$% C| Rest], Vars, Result) when C==$%_ ->
subst _var([C Rest], Vars, Result, []);

subst ([C] Rest], Vars, Result) ->
subst (Rest, Vars, [C] Result]);

subst ([], _Vars, Result) ->
lists:reverse(Result).

subst _var([$% Rest], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),
case |ists: keysearch(Key, 1, Vars) of
{val ue, {Key, Value}} ->
subst (Rest, Vars, lists:reverse(Value, Result));
fal se ->
subst (Rest, Vars, [$% VarAcc ++ [$% Result]])
end;
subst _var([C Rest], Vars, Result, VarAcc) ->
subst _var(Rest, Vars, Result, [C VarAcc]);
subst _var([], Vars, Result, VarAcc) ->
subst ([], Vars, [VarAcc ++ [$% Result]]).

copy_file(Src, Dest) ->
copy_file(Src, Dest, []).

copy_file(Src, Dest, Opts) ->
{ok, _} = file:copy(Src, Dest),
case |ists: menber (preserve, Opts) of
true ->
{ok, Filelnfo} = file:read file_info(Src),
filecwite_file_info(Dest, Filelnfo);
fal se ->
ok
end.

wite fil e(FNane, Conts) ->
Enc = file: native_nane_encoding(),
{ok, Fd} = file:open(FNanme, [wite]),
file:wite(Fd, unicode: characters_to_bi nary(Conts, Enc, Enc)),
file:close(Fd).

read_txt_file(File) ->
{ok, Bin} =file:read_file(File),
{ok, binary_to_list(Bin)}.

remove dir_tree(Dir) ->
renove_al |l _files(".", [Dir]).

renove_al |l _files(Dir, Files) ->

l'ists:foreach(fun(File) ->
FilePath = filename:join([Dir, File]),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

2.4 Upgrade when Erlang/OTP has Changed

case filelib:is_dir(FilePath) of
true ->
{ok, DirFiles} = file:list_dir(FilePath),
renove_al |l _files(FilePath, DirFiles),
file:del _dir(FilePath);
->

file:del ete(FilePath)

end

end, Files).

2.4 Upgrade when Erlang/OTP has Changed

2.4.1 Introduction

As of Erlang/OTP 17, most applications deliver a valid application upgrade file (appup). In earlier releases,
a majority of the applications in Erlang/OTP did not support upgrade. Many of the applications use the
restart_applicati oninstruction. These are applicationsfor whichitisnot crucial to support real soft upgrade,
for example, tools and library applications. Ther est art _appl i cat i on instruction ensures that all modulesin
the application are reloaded and thereby running the new code.

2.4.2 Upgrade of Core Applications

ThecoreapplicationsERTS, Kernel, STDLIB, and SASL never allow real soft upgrade, but requirethe Erlang emul ator
toberestarted. Thisisindicatedtother el ease_handl er by theupgradeinstructionr est art _new_enul at or .
Thisinstruction is always the very first instruction executed, and it restarts the emulator with the new versions of the
above mentioned core applications and the old versions of all other applications. When the node is back up, all other
upgrade instructions are executed, making sure each application is finally running its new version.

It might seem strange to do a two-step upgrade instead of just restarting the emulator with the new version of all
applications. The reason for this design decision is to allow code_change functions to have side effects, for
example, changing data on disk. It also guarantees that the upgrade mechanism for non-core applications does not
differ depending on whether or not core applications are changed at the same time.

If, however, the more brutal variant is preferred, the the rel ease upgrade file can be handwritten using only the single
upgradeinstructionr est art _ermul at or . Thisinstruction, in contrasttor est art _new_emnul at or , causesthe
emulator to restart with the new versions of all applications.

Note: If other instructions are included before r est art _erul at or in the handwritten r el up file, they are
executed in the old emulator. This is a big risk since there is no guarantee that new beam code can be loaded into
the old emulator. Adding instructions after r est art _ernul at or has no effect asther el ease_handl er will
not execute them.

For information about the release upgrade file, see the relup(4) manual page in SASL. For more information about
upgrade instructions, see the appup(4) manual pagein SASL.

2.4.3 Applications that Still do Not Allow Code Upgrade

A few applications, such as HiPE, do not support upgrade. Thisisindicated by an application upgrade file containing
only {Vsn,[],[]}.Any attempt at creating a release upgrade file with such input fails. The only way to force an
upgrade involving applications like thisis to handwrite the file r el up, preferably as described above with only the
restart_emul at or instruction.

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Versions

2.5 Versions

2.5.1 OTP Version

Asof OTPrelease 17, the OTP release number corresponds to the major part of the OTP version. The OTP version as
aconcept was introduced in OTP 17. The version scheme used is described in detail in Version Scheme.

OTP of a specific version is a set of applications of specific versions. The application versions identified by an OTP
version corresponds to application versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can, however, be put together with applications from different OTP versions. Such a combination
of application versions has not been tested by the Erlang/OTP team. It is therefore always preferred to use OTP
applications fromone single OTP version.

Release candidates have an - r c<N> suffix. The suffix - r cO is used during development up to the first release
candidate.

Retrieving Current OTP Version

Inan OTP source code tree, the OTP version can beread from thetext file<OTP sour ce r oot >/ OTP_VERSI ON.
The absolute path to the file can be constructed by caling fil enane:joi n([code:root_dir(),
"OTP_VERSI ON']) .

In an installed OTP development system, the OTP version can be read from the text file <OTP
installation root>/releases/<OIP release nunber>/ OTP_VERSI ON. The absolute path
to the file can by constructed by calling fil enane:join([code:root_dir(), "rel eases”,
erl ang: system.info(otp_release), "OIP_VERSION']).

If the version read from the OTP_VERSI ONfilein adevelopment system hasa* * suffix, the system has been patched
using the ot p_pat ch_appl y toal. In this case, the system consists of application versions from multiple OTP
versions. Theversion preceding the* * suffix correspondsto the OTP version of the base system that has been patched.
Notice that if a development system is updated by other meansthan ot p_pat ch_appl y, the file OTP_VERSI ON
can identify an incorrect OTP version.

No OTP_VERSI ONfileis placed in a target system created by OTP tools. This since one easily can create a target
system where it is hard to even determine the base OTP version. You can, however, place such afile there if you
know the OTP version.

OTP Versions Table

The text file <OTP source root>/otp_versions.table, whichis part of the source code, contains
information about al OTP versions from OTP 17.0 up to the current OTP version. Each line contains information
about application versions that are part of a specific OTP version, and has the following format:

<O pVersi on> : <ChangedAppVer si ons> # <UnchangedAppVer si ons> :

< pVer si on> hasthe format OTP- <VSN>, that is, the same as the git tag used to identify the source.

<ChangedAppVer si ons> and <UnchangedAppVer si ons> are space-separated lists of application versions
and hasthe format <appl i cat i on>- <vsn>.

e <ChangedAppVer si ons> corresponds to changed applications with new version numbersin this OTP
version.

e <UnchangedAppVer si ons> corresponds to unchanged application versionsin this OTP version.

Both of them can be empty, but not at the sametime. If <ChangedAppVer si ons> isempty, no changes have been
made that change the build result of any application. This could, for example, be a pure bug fix of the build system.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

2.5 Versions

The order of lines is undefined. All white-space characters in this file are either space (character 32) or line-break
(character 10).

By using ordinary UNIX toolslike sed and gr ep one can easily find answers to various questions like:
e Which OTPversionsareker nel - 3. 0 part of?

$ grep ' kernel-3\.0 ' otp_versions.table
* Inwhich OTPversionwasker nel - 3. 0 introduced?

$ sed "s/#. *//;] kernel-3\.0 /!d" otp_versions.table

The above commands give a bit more information than the exact answers, but adequate information when manually
searching for answers to these questions.

Warning:
The format of theot p_ver si ons. t abl e might be subject to changes during the OTP 17 release.

2.5.2 Application Version

Asof OTP 17.0 application versions use the same version scheme as the OTP version. Application versions part of a
release candidate will however not have an - r c<N> suffix as the OTP version. Also note that a major increment in
an application version does not necessarily imply a major increment of the OTP version. This depends on whether the
major change in the application is considered as a major change for OTP as awhole or not.

2.5.3 Version Scheme

Note:

The version scheme was changed as of OTP 17.0. Thisimplies that application versions used prior to OTP 17.0
do not adhere to this version scheme. A list of application versions used in OTP 17.0 is included at the end of
this section

In the norma case, a version is constructed as <Maj or >. <M nor >. <Pat ch>, where <Maj or > is the most
significant part.

However, more dot-separated parts than this can exist. The dot-separated parts consist of non-negative
integers. If all parts less significant than <M nor > equals 0, they are omitted. The three norma parts
<Maj or >. <M nor >. <Pat ch> are changed as follows:

e <Mnj or > - Increases when major changes, including incompatibilities, are made.
e <M nor > - Increases when new functionality is added.
e <Pat ch> - Increases when pure bug fixes are made.

When apart in the version number increases, all less significant parts are set to 0.

An application version or an OTP version identifies source code versions. That is, it implies nothing about how the
application or OTP has been built.

Order of Versions

Version numbersin genera are only partialy ordered. However, normal version numbers (with three parts) as of OTP
17.0 have atotal or linear order. This applies both to normal OTP versions and normal application versions.

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Versions

When comparing two version numbers that have an order, one compare each part as ordinary integers from the most
significant part to less significant parts. The order is defined by the first parts of the same significance that differ.
An OTP version with alarger version includes all changes that are part of a smaller OTP version. The same goes for
application versions.

In general, versions can have more than three parts. The versions are then only partialy ordered. Such versions are
only used in exceptional cases. When an extra part (out of the normal three parts) is added to a version number, anew
branch of versionsis made. The new branch hasalinear order against the base version. However, versions on different
branches have no order, and therefore one can only conclude that they all include what is included in their closest
common ancestor. When branching multiple times from the same base version, 0 parts are added between the base
version and the least significant 1 part until a unique version is found. Versions that have an order can be compared
as described in the previous paragraph.

Anexampleof branched versions: Theversion6. 0. 2. 1 isabranched versionfromthebaseversion6. 0. 2. Versions
ontheform 6. 0. 2. <X> can be compared with normal versions smaller than or equal to 6. 0. 2, and other versions
on the form 6. 0. 2. <X>. The version 6. 0. 2. 1 will include al changesin 6. 0. 2. However, 6. 0. 3 will most
likely not include all changesin 6. 0. 2. 1 (note that these versions have no order). A second branched version from
the base version 6. 0. 2 will beversion 6. 0. 2. 0. 1, and athird branched version will be 6. 0. 2. 0. 0. 1.

2.5.4 OTP 17.0 Application Versions

The following list details the application versions that were part of OTP 17.0. If the normal part of an application
version number compares as smaller than the corresponding application versionin thelist, the version number does not
adhere to the version scheme introduced in OTP 17.0 and is to be considered as not having an order against versions
used as of OTP 17.0.

e asnl-3.0

e common_test-1.8

e conpiler-5.0

e cosEvent-2.1.15

e cosEventDonain-1.1.14

e cosFileTransfer-1.1.16

e cosNotification-1.1.21

e cosProperty-1.1.17

e cosTinme-1.1.14

e cosTransactions-1.2.14

e cCcrypto-3.3

 debugger-4.0

e dialyzer-2.7

e dianeter-1.6

e edoc-0.7.13

e eldap-1.0.3

e erl_docgen-0.3.5

e erl_interface-3.7.16

e erts-6.0

e et-1.5
e eunit-2.2.7
e (@¢s-1.5.16

e hipe-3.10.3

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

2.5 Versions

e ic-4.3.5

e inets-5.10

e jinterface-1.5.9
e kernel-3.0

e megaco-3.17.1

e mesia-4.12

e oObserver-2.0

e odbc-2.10.20

e orber-3.6.27

e 0S_non-2.2.15

« o0se-1.0

e otp mbs-1.0.9

e parsetools-2.0.11
e percept-0.8.9

* public_key-0.22

e reltool-0.6.5

e runtinme_tools-1.8.14
e sasl-2.4

e snnp-4.25.1

e ssh-3.0.1

e ssl-5.3.4

e stdlib-2.0

e syntax_tools-1.6.14
e test_server-3.7

e tools-2.6.14

e typer-0.9.6

e webtool-0.8.10

e wx-1.2

e xnerl-1.3.7

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

3 Embedded Systems User's Guide

This section describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Note:
Thisis asupplementary section. Y ou aso need to read Section 1 Installation Guide.

Thereis also target architecture-specific information in the top-level README file of the Erlang distribution.

3.1 Embedded Solaris

This section describes the operating system-specific parts of OTP that relate to Solaris.

3.1.1 Memory Use

Solaris takes about 17 MB of RAM on a system with 64 MB of total RAM. This leaves about 47 MB for the
applications. If the system uses swapping, these figures cannot be improved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceisof limited resourcein the system, it becomes
necessary to kill off unnecessary daemon processes.

3.1.2 Disk Space Use

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
MB of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved cannot be justified.

3.1.3 Installing an Embedded System
This section is about installing an embedded system. The following topics are considered:

* Creating user and installation directory

e Instaling an embedded system

» Configuring automatic start at boot

* Making a hardware watchdog available

e Changing permission for reboot

* Setting TERM environment variable

e Adding patches

e Installing module os_sup in application os_mon

Several of the procedures in this section require expert knowledge of the Solaris operating system. For most of them
super user privilege is needed.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

3.1 Embedded Solaris

Creating User and Installation Directory

It is recommended that the embedded environment is run by an ordinary user, that is, a user who does not have super
user privileges.

In this section, it is assumed that the usernameisot puser and that the home directory of that user is:

/ export/ hone/ ot puser

It is also assumed that in the home directory of ot puser , thereisadirectory named ot p, the full path of whichis:

[expor t/ hone/ ot puser/ ot p

This directory isthe installation directory of the embedded environment.

Installing an Embedded System

The procedure for installing an embedded system isthe same asfor an ordinary system (see I nstallation Guide), except
for the following:

» The (compressed) tape archive file isto be extracted in the installation directory defined above.
* Itisnot needed to link the start script to a standard directory like/ usr /| ocal / bi n.
Configuring Automatic Start at Boot

A true embedded system must start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications start automatically if the script file shown below is added to directory
/et c/rc3. d. Thefile must be owned and readable by r oot . Its name cannot be arbitrarily assigned; the following
name is recommended:

S750t p. system

For more details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

#! / bi n/ sh

#

File nanme: S75o0tp.system

Purpose: Automatically starts Erlang and applications when the
system starts

Aut hor: janne@rl ang. eri csson. se

Resides in: /etc/rc3.d

#

if [! -d /usr/bin]

t hen # /usr not nounted
exit

fi

killproc() { # kill the named process(es)
pid="/usr/bin/ps -e |
[usr/bin/grep -w $1 |
/usr/bin/sed -e 's/* *[[' -e 's/ .*[['"

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

["$pid" !="" 1 & kill $pid
}

Start/stop processes required for Erlang

case "$1" in
"start')
Start the Erlang enul ator
#
su - otpuser -c "/export/hone/otpuser/otp/bin/start" &

'stop')
ki |l proc beam

*)
echo "Usage: $0 { start | stop }"

esac
File/ export/ home/ ot puser/ ot p/ bi n/ st art referred to in the above script is precisely the st art script

described in Starting Erlang. The script variable OTP_ROOT in that st art script corresponds to the following
example path used in this section:

/ expor t / hone/ ot puser/ ot p

Thest art scriptisto be edited accordingly.

Useof theki | | pr oc procedure in the above script can be combined withacall toer| _cal | , for example:

$SOVE_PATH erl _call -n Node init stop

To take Erlang down gracefully, seetheer| _cal | (1) manual pageiner| _i nt er f ace for details on the use of
erl| _cal I . However, that requires that Erlang runs as a distributed node, which is not always the case.

Theki | | proc procedureis not to be removed. The purpose is here to move from run level 3 (multi-user mode with
networking resources) to run level 2 (multi-user mode without such resources), in which Erlang is not to run.

Making Hardware Watchdog Available

For Solarisrunning on VME boards from Force Computers, the onboard hardware watchdog can be activated, provided
aVME busdriver is added to the operating system (see also Installation Problems).

Seealsotheheart (3) manual pageinker nel .

Changing Permissions for Reboot

If the HEART _COMVAND environment variableisto be setinthest art script in Starting Erlang, and if thevalueis
to be set to the path of the Solarisr eboot command, that is:

HEART _COMMAND=/ usr / sbi n/ r eboot

then the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows:

chown 0 /usr/sbin/reboot

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

3.1 Embedded Solaris

chnod 4755 /usr/ sbin/reboot

Seealsotheheart (3) manual pageinker nel .

Setting TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript, the TERMenvironment
variable must be set. The following isaminimal setting:

TERM=sun

Thisisto be added tothe st ar t script.

Adding Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version-specific patch with number
103640-02 must be added to the operating system. Other patches might be needed, see the release README file
<ERL_| NSTALL_DI R>/ README.

Installing Module os_sup in Application os_mon
The following four installation procedures require super user privilege:

Installation
» Makea copy of the Solaris standard configuration file for sysl ogd:

e Make acopy of the Solaris standard configuration file for sysl ogd. Thisfileis usually named
sysl og. conf and foundindirectory / et c.

» Thefilename of the copy must besysl og. conf . ORI G Thedirectory location is optional; usualy itis/
et c. A simple way to do thisisto issue the following command:

cp /etc/syslog.conf /etc/syslog.conf.OR G

* Make an Erlang-specific configuration file for sysl ogd:
* Make an edited copy of the backup copy previously made.
» Thefilename must besysl og. conf . OTP. The path must be the same as the backup copy.

e Theformat of the configuration fileisfound inthesysl og. conf (5) manual page, by issuing the
command nan sysl og. conf.

* Usualy alineisadded that is to state:
» Which types of information that is to be supervised by Erlang
* Thename of thefile (actually a named pipe) that is to receive the information

» If, for example, only information originating from the UNIX kernel isto be supervised, the lineisto begin
with ker n. LEVEL. For the possible values of LEVEL, seesysl og. conf (5).

e After at least one tab-character, the line added is to contain the full name of the named pipe where
sysl ogd writesitsinformation. The path must be the same as for thefilessysl og. conf . ORI Gand
sysl og. conf . OTP. Thefilename must be sysl og. ot p.

» If thedirectory for thefilessysl og. conf. ORI Gand sysl og. conf. OTPis/ et c, thelinein
sysl og. conf . OTPisasfollows:

kern. LEVEL [etc/ sysl og. otp

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

Check the file privileges of the configuration files:
e Theconfiguration filesisto haver w-r - - r - - file privileges and be owned by root.
e A simpleway to do thisisto issue these commands:

chnod 644 /etc/syslog. conf
chnod 644 /etc/syslog.conf. ORI G
chnod 644 /etc/syslog.conf.OTP

* Noticethat if thefilessysl og. conf . ORI Gandsysl og. conf. OTP arenot in directory / et c, the
file path in the second and third command must be modified.

Modify file privileges and ownership of the nod_sysl og utility:
« Thefile privileges and ownership of the nod_sysl og utility must be modified.

e The full name of the binary executable file is derived from the position of application os_non in the file
system by adding / pri v/ bi n/ nod_sysl og. The generic full name of the binary executable fileisthus:

<OTP_ROOT>/ | i b/ os_non- <REV>/ pri v/ bi n/ nod_sysl og

Example: If the pathto ot p- r oot is/ usr/ ot p, then the path to theos__non applicationis/ usr/ ot p/
i b/ os_non-1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/ os_non-1.0/priv/bin/nmod_sysl og.

» Thebinary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the
set ui d bit of the user must be set.

e A simpleway to do thisisto issue the following commands:

cd <OTP_ROOT>/1i b/ os_non- <REV>/ pri v/ bi n/ mod_sysl og
chnod 4755 nod_sysl og
chown root nod_sysl og

Testing the Application Configuration File

The following procedure does not require root privilege:

Ensure that the configuration parameters for the os_sup moduleinthe os_rmon application are correct.
Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of theos_non application in the file system by adding / ebi n/ os_non. app.

The generic full name of thefileisthus:

<OTP_ROOT>/ | i b/ os_non- <REV>/ ebi n/ os_non. app

Example: If the path to ot p-r oot is/ usr/ ot p, then the path to the os_non application is/ usr/ ot p/
lib/os _non-1.0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/
I i b/ os_non-1. 0/ ebi n/ os_non. app.

Ensure that the following configuration parameters have correct values:

Parameter Function Sandard value

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

3.1 Embedded Solaris

t r ue for thefirst instance on the
hardware; f al se for the other
instances

Specifiesif os_sup isto be started

start_os_sup of not

The directory for (1) back-up copy
0S_Sup_own and (2) Erlang-specific configuration | "/ et c"
filefor sysl ogd

The full name for the Solaris

os_sup_sysl ogconf standard configuration file for "/etc/sysl og.conf"
sysl ogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang |std_error

runtime system

Table 1.1: Configuration Parameters

If thevalueslistedinos_non. app do not suit your needs, do not edit that file. Instead overridethe valuesin asystem
configuration file, the full pathname of which is given on the command linetoer | .

Example: Contents of an application configuration file:

[{os_non, [{start_os_sup, true}, {os_sup_own, "/etc"},
{os_sup_sysl ogconf, "/etc/syslog.conf"}, {os_sup_ errortag, std_error}]}].

Related Documents

Seethe os_non(3) application, theappl i cati on(3) manual pageinker nel ,andtheer!| (1) manual page
inerts.

Installation Problems

The hardware watchdog timer, which is controlled by the hear t port program, requires package FORCEv e, which
contains the VME bus driver, to be installed. However, this driver can clash with the Sun ncp driver and cause the
system to refuse to boot. To cure this problem, the following lines areto be added to / et ¢/ syst em

e exclude: drv/ntp
e exclude: drv/ntpzsa
e« exclude: drv/ntpp

Warning:

It is recommended to add these lines to avoid a clash. The clash can make it impossible to boot the system.

3.1.4 Starting Erlang

This section describes how an embedded system is started. Four programs are involved and they normally residein the
directory <ERL_| NSTALL_DI R>/ bi n. Theonly exceptionisthest art program, which can be located anywhere,
and is also the only program that must be modified by the user.

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

In an embedded system, thereis usually no interactive shell. However, an operator can attach to the Erlang system by
commandt o_er | . The operator is then connected to the Erlang shell and can give ordinary Erlang commands. All
interaction with the system through this shell islogged in a specia directory.

Basically, the procedure is as follows:

e Thestart programis called when the machineis started.
e ltcalsrun_erl ,which setsup things so the operator can attach to the system.

e ltcdlsstart_erl,whichcalsthecorrect version of er | exec (whichislocated in
<ERL_| NSTALL_DI R>/ ert s- EVsn/ bi n) with the correct boot and confi g files.

3.1.5 Programs

start

This program is called when the machineis started. It can be modified or rewritten to suit a special system. By default,
it must be called st art and residein <ERL_I NSTALL_DI R>/ bi n. Another start program can be used, by using
configuration parameter st art _pr g in application sasl .

The start program must call r un_er | as shown below. It must also take an optional parameter, which defaults to
<ERL_I NSTALL_DI R>/rel eases/start _erl . data.

This program is to set static parameters and environment variables such as - snanme Nane and HEART _COVIVAND
to reboot the machine.

The<RELDI R> directory iswhere new rel ease packets are installed, and where the rel ease handler keeps information
about releases. For more information, seether el ease_handl er (3) manual pageinsasl .

The following script illustrates the default behaviour of the program:

#! / bi n/ sh

Usage: start [DataFile]
#

ROOTDI R=/ usr/ | ocal / ot p

if [-z "$RELDIR"]
t hen

RELDI R=$ROOTDI R/ r el eases
fi

START_ERL_DATA=${1: - $RELDI R/ st art _er| . dat a}

$ROOTDI R/ bi n/run_erl /tnp/ $ROOTDI R/ | og "exec $ROOTDI R/ bin/start_erl \
$ROOTDI R $RELDI R $START_ERL_DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and where the environment
variables HEART _COVIMAND and TERMhave been added to the previous script:

#!/ bi n/ sh

Usage: start [DataFile]

#

HEART _COWMMAND=/ usr / shi n/ r eboot
TERMESUN

export HEART_COMVAND TERM
ROOTDI R=/ usr/ | ocal / ot p

if [-z "$RELDIR']

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

3.1 Embedded Solaris

t hen
RELDI R=$ROOTDI R/ r el eases
fi

START ERL_DATA=${1:-$RELDI R/start_erl . dat a}

$ROOTDI R/ bi n/run_erl /tnp/ $ROOTDI R/ | og "exec $ROOTDI R/ bin/start_erl \
$ROOTDI R $RELDI R $START_ERL_DATA -heart -snane cpl" > /dev/null 2>&1 &

If adiskless and/or read-only client node is about to start, filest art _er| . dat a islocated in the client directory
at the master node. Thus, the START _ERL_DATA lineisto look like:

CLI ENTDI R=$ROOTDI R/ cl i ent s/ cl i ent nane
START_ERL_DATA=${1: - $CLI ENTDI R/ bi n/ start _er| . dat a}

run_erl

This program is used to start the emulator, but you will not be connected to the shell. t o_er | is used to connect
to the Erlang shell.

Usage: run_erl pipe_dir/ log_dir "exec command [paraneters ...]"

Here:

e pipe_dir/ istobe/tnp/ (to_erl usesthisname by default).
* | og_dir iswherethelog files are written.

e command [par anet er s] isexecuted.

* Everything writtento st di n and st dout isloggedinl og_di r.

Log filesare written in| og_di r . Each log file has a name of the form er | ang. | og. N, where N is a generation
number, ranging from 1 to 5. Each log file holds up to 100 kB text. Astime goes by, the following log files are found
inthelog file directory:

erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.

erl ang. | og. 2

erlang.log.2, erlang.log.3

erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.4, erlang.log.5, erlang.log.1

ONEFEF

The most recent log file is the rightmost in each row. That is, the most recent file is the one with the highest number,
or if there are already four files, the one before the skip.

When alog fileis opened (for appending or created), atime stamp iswritten to thefile. If nothing has been written to
thelog files for 15 minutes, arecord isinserted that says that we are still alive.

to_erl

This program is used to attach to arunning Erlang runtime system, started withr un_er | .

Usage: to_erl [pipe_name | pipe_dir]

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.2 Windows NT

Here pi pe_nane defaultsto/ t np/ er | ang. pi pe. N.
To disconnect from the shell without exiting the Erlang system, typeCt r | - D.

start_erl

This program starts the Erlang emulator with parameters - boot and - conf i g set. It reads data about where these
filesarelocated fromafilenamedst art _er| . dat a, whichislocated in <RELDI R>. Each new release introduces
anew datafile. Thisfileis automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program:

#! / bi n/ sh

This programis called by run_erl. It starts

the Erlang emul ator and sets -boot and -config paraneters.
It should only be used at an enbedded target system

Usage: start_erl RootDir RelDir DataFile [ErlFlags ...]

H o oH H O HH®

ROOTDI R=$1
shi ft

RELDI R=$1
shi ft

Dat aFi | e=$1
shi ft

ERTS VSN="awk '{print $1}' $DataFile
VSN="awk ' {print $2}' $DataFile

Bl NDI R=$ROOTDI R/ er t s- $ERTS_VSN bi n
EMJ=beam

PROGNAME="echo $0 | sed "'s/.*\///'"
export EMJ

export ROOTDI R

export BIND R

export PROGNAVE

export RELDI R

exec $BI NDI R/ erl exec -boot $RELDI R/ $VSN start -config $RELDI R/ $VSN sys $*

If adiskless and/or read-only client node with the sas| configuration parameter st at i ¢_enul at or settot rue
is about to start, the - boot and - conf i g flags must be changed.

Assuch aclient cannot read anew st art _er | . dat a file (the file cannot be changed dynamically). The boot and
config files are aways fetched from the same place (but with new contents if a new release has been installed).

Ther el ease_handl er copiesthesefilestothebi n directory in the client directory at the master nodes whenever
anew release is made permanent.

Assuming the same CLI ENTDI R as above, the last lineisto look like:

exec $BINDI R/ erl exec -boot $CLIENTDI R/ bin/start \
-confi g $CLI ENTDI R/ bi n/ sys $*

3.2 Windows NT

This section describes the operating system-specific parts of OTP that relate to Windows NT.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

3.2 Windows NT

A normal installation of Windows NT 4.0, with Service Pack 4 or later, is required for an embedded Windows NT
running OTP.

3.2.1 Memory Use

RAM memory of 96 MB is recommended to run OTP on Windows NT. A system with less than 64 MB of RAM is
not recommended.

3.2.2 Disk Space Use

A minimum Windows NT installation with networking needs 250 MB, and an extra 130 MB for the swap file.

3.2.3 Installing an Embedded System

Normal Windows NT installation is performed. No additional application programs are needed, such as Internet
Explorer or web server. Networking with TCP/IP isrequired.

Service Pack 4 or later must be installed.
Hardware Watchdog

For Windows NT running on standard PCs with ISA and/or PCI bus, an extension card with a hardware watchdog
can beinstalled.

For moreinformation, seethe hear t (3) manual pagein ker nel .

3.2.4 Starting Erlang

On an embedded system, theer | sr v moduleisto be used to install the Erlang process as a Windows system service.
This service can start after Windows NT has booted.

For moreinformation, seetheer | srv manua pageinerts.

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Introduction

4 Getting Started With Erlang

4.1 Introduction

This section is a quick start tutorial to get you started with Erlang. Everything in this section is true, but only part of
thetruth. For example, only the simplest form of the syntax is shown, not all esoteric forms. Also, partsthat are greatly
simplified are indicated with *manual*. This means that a lot more information on the subject is to be found in the
Erlang book or in Erlang Reference Manual.

4.1.1 Prerequisites
The reader of this section is assumed to be familiar with the following:

e Computersin general
e Basicson how computers are programmed

4.1.2 Omitted Topics

The following topics are not treated in this section:

* References.

e Local error handling (catch/throw).

e Singledirection links (monitor).

* Handling of binary data (binaries/ bit syntax).
e List comprehensions.

e How to communicate with the outside world and software written in other languages (ports); thisis described in
Interoperability Tutorial.

» Erlang libraries (for example, file handling).

e OTPand (in consequence) the Mnesia database.
* Hashtablesfor Erlang terms (ETS).

e Changing code in running systems.

4.2 Sequential Programming

4.2.1 The Erlang Shell

Most operating systems have acommand interpreter or shell, UNIX and Linux have many, Windows hasthe command
prompt. Erlang hasits own shell wherebits of Erlang code can bewritten directly, and be eval uated to see what happens
(see the shell(3) manual pagein STDLIB).

Start the Erlang shell (in Linux or UNIX) by starting a shell or command interpreter in your operating system and
typing er | . You will see something like this.

% er |
Erl ang R15B (erts-5.9.1) [source] [snp:8:8] [rq:8] [async-threads: 0] [hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with "G

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

4.2 Sequential Programming

1>

Type "2 + 5." in the shell and then press Enter (carriage return). Notice that you tell the shell you are done entering

caode by finishing with afull stop "." and a carriage return.

1> 2 + 5.
7
2>

As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and that it correctly saysthat 2 + 5is 7.
If you make writing mistakes in the shell, you can delete with the backspace key, as in most shells. There are many
more editing commands in the shell (seetty - A command line interface in ERTS User's Guide).

(Notice that many line numbers given by the shell in the following examples are out of sequence. Thisis because this
tutorial was written and code-tested in separate sessions).

Here is abit more complex calculation:

2> (42 + 77) * 66 / 3.
2618.0

Notice the use of brackets, the multiplication operator "*", and the division operator "/", asin normal arithmetic (see
Expressions).

Press Control-C to shut down the Erlang system and the Erlang shell.
The following output is shown:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (I)oaded
(v)ersion (k)ill (D)yb-tables (d)istribution

a

%

Type"a" to leave the Erlang system.
Another way to shut down the Erlang system is by enteringhal t () :

3> hal t ().
%

4.2.2 Modules and Functions

A programming language is not much use if you only can run code from the shell. So hereis asmall Erlang program.
Enteritinto afilenamedt ut . er| using a suitable text editor. The filenamet ut . er | isimportant, and also that
it is in the same directory as the one where you started er |). If you are lucky your editor has an Erlang mode that
makes it easier for you to enter and format your code nicely (see The Erlang mode for Emacsin Tools User's Guide),
but you can manage perfectly well without. Here is the code to enter:

-nmodul e(tut).
-export ([double/1]).

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

doubl e(X) ->
2 * X

It is not hard to guess that this program doubles the value of numbers. The first two lines of the code are described
later. Let us compile the program. This can be done in an Erlang shell as follows, where ¢ means compile:

3> c(tut).
{ok, tut}

The { ok, t ut } means that the compilation is OK. If it says "error" it means that there is some mistake in the text
that you entered. Additional error messages gives an idea to what is wrong so you can modify the text and then try
to compile the program again.

Now run the program:

4> tut: doubl e(10).
20

As expected, double of 10is 20.

Now let us get back to thefirst two lines of the code. Erlang programs are written in files. Each file contains an Erlang
module. Thefirst line of code in the module is the module name (see Modules):

-nmodul e(tut).

Thus, themoduleiscalled tut. Noticethefull stop"." at the end of theline. Thefileswhich are used to storethe module
must have the same name as the module but with the extension ".erl". In this case the filenameist ut . er | . When
using a function in another module, the syntax modul e_nane: f uncti on_nane(ar gunent s) isused. So the
following means call function doubl e in modulet ut with argument "10".

4> tut: doubl e(10).

The second line says that the module t ut contains a function called doubl e, which takes one argument (X in our
example):

-export ([doubl e/1]).

The second line also says that this function can be called from outside the modulet ut . More about thislater. Again,
noticethe"." at the end of theline.

Now for a more complicated example, the factorial of a number. For example, the factorial of 4is4* 3* 2* 1,
which equals 24.

Enter the following codein afilenamedt ut 1. er | :

-nmodul e(tutl).
-export([fac/1]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

4.2 Sequential Programming

fac(1) ->
1;
fac(N ->

N * fac(N - 1).

So thisisamodule, called t ut 1 that contains afunction called f ac>, which takes one argument, N.
Thefirst part saysthat the factorial of 1is1.:

fac(1) ->
1;

Notice that this part ends with asemicolon ";" that indicates that there is more of the function f ac> to come.

The second part says that the factorial of N is N multiplied by the factorial of N - 1:

fac(N ->
N * fac(N - 1).

Notice that this part endswith a"." saying that there are no more parts of this function.
Compilethefile:

5> c(tutl).
{ok, tut1}

And now calculate the factorial of 4.

6> tutl:fac(4).
24

Here the function f ac> in modulet ut 1 is called with argument 4.
A function can have many arguments. Let us expand the modulet ut 1 with the function to multiply two numbers:

-nmodul e(tutl).
-export([fac/1, mult/2]).

fac(1) ->
i
fac(N) ->

N * fac(N - 1).
mult(X, Y) ->
X * Y.

Notice that it is also required to expand the - expor t line with the information that there is another function mul t
with two arguments.

Compile:

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

7> c(tutl).
{ok, tut 1}

Try out the new function mul t :

8> tutl:mult(3,4).
12

In this example the numbers areintegers and the argumentsin the functionsin the code N, X, and Y are called variables.
Variables must start with a capital letter (see Variables). Examples of variables are Nunrber , ShoeSi ze, and Age.

4.2.3 Atoms

Atomisanother datatypein Erlang. Atomsstart with asmall letter (see Atom), for example, char | es,cent i neter,
and i nch. Atoms are simply names, nothing else. They are not like variables, which can have avalue.

Enter the next program in afile named t ut 2. er |). It can be useful for converting from inches to centimeters and
conversaly:

- modul e(tut2).
-export([convert/2]).

convert(M inch) ->
M/ 2.54;

convert (N, centineter) ->
N * 2.54.

Compile:

9> c(tut2).
{ ok, tut2}

Test:

10> tut 2: convert (3, inch).
1.1811023622047243

11> tut 2: convert (7, centineter).
17.78

Notice the introduction of decimals (floating point numbers) without any explanation. Hopefully you can cope with
that.

Let us see what happensif something other than cent i met er ori nch isenteredintheconvert function:

12> tut2: convert (3, mles).
** exception error: no function clause matching tut2:convert(3,mles) (tut2.erl, line 4)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

4.2 Sequential Programming

The two parts of the conver t function are called its clauses. As shown, mi | es isnot part of either of the clauses.
The Erlang system cannot match either of the clauses so an error messagef unct i on_cl ause isreturned. The shell
formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the shell
command v/ 1:

13> v(12).
{"EXIT ,{function_cl ause, [{tut2, convert,
[3,mles],
[{file,"tut2.erl"},{line, 4}]1},
{erl _eval ,do_apply,5,[{file,"erl _eval.erl"},{line, 482}]},
{shell,exprs,7,[{file,"shell.erl"},{line, 666}]},
{shell,eval _exprs,7,[{file,"shell.erl"}, {line, 621}]},
{shell,eval _| oop, 3,[{file,"shell.erl"},{line, 606}]}]}}
4.2.4 Tuples

Now thet ut 2 program is hardly good programming style. Consider:

tut2: convert (3, inch).

Does this mean that 3 isin inches? Or does it mean that 3 isin centimeters and is to be converted to inches? Erlang
has away to group things together to make things more understandable. These are called tuples and are surrounded

by curly brackets, "{" and "} ".

So, {i nch, 3} denotes 3 inchesand { centi met er, 5} denotes 5 centimeters. Now let us write a new program
that converts centimeters to inches and conversely. Enter the following codein afilecalledt ut 3. er |):

- modul e(tut3).
-export([convert_length/1]).

convert_| ength({centineter, X}) ->
{inch, X/ 2.54};

convert _length({inch, Y}) ->
{centineter, Y * 2.54}.

Compile and test:

14> c(tut3).

{ ok, tut3}

15> tut 3: convert _| ength({inch, 5}).

{centineter, 12. 7}

16> tut 3: convert_| ength(tut3: convert_I| ength({inch, 5})).
{inch, 5.0}

Notice on line 16 that 5 inches is converted to centimeters and back again and reassuringly get back to the
origina value. That is, the argument to a function can be the result of another function. Consider how line 16
(above) works. The argument given to the function {i nch, 5} is first matched against the first head clause of
convert | ength,thatis convert | ength({centimeter, X}).Itcanbeseenthat {centineter, X}
does not match {i nch, 5} (the head is the hit before the "->"). This having failed, let us try the head of the next
clausethatis, convert | engt h({i nch, Y}) . Thismatches, and Y getsthe value5.

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

Tuples can have more than two parts, in fact as many parts as you want, and contain any valid Erlang term. For
example, to represent the temperature of various cities of the world:

{nmoscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of items in them. Each item in a tuple is called an element. In the tuple { roscow,
{c,-10}}, element lisnoscowand element 2is{ ¢, - 10} . Here ¢ represents Celsiusand f Fahrenheit.

4.2.5 Lists

Whereas tuples group things together, it is also needed to represent lists of things. Lists in Erlang are surrounded by
square brackets, "[" and "]". For example, alist of the temperatures of various cities in the world can be:

[{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}]

Notice that this list was so long that it did not fit on one line. This does not matter, Erlang allows line breaks at all
"sensible places' but not, for example, in the middle of atoms, integers, and others.

A useful way of looking at parts of lists, isby using "|". Thisis best explained by an example using the shell:

17> [First | TheRest] = [1, 2, 3,4, 5].
[1,2,3,4,5]

18> First.

1

19> TheRest .

[2,3,4,5]

To separate the first elements of the list from the rest of the list, | isused. Fi r st has got value 1 and TheRest
has got the value [2,3,4,5].

Another example:

20> [El, E2 | R =[1,23,4,5,6,7].
[1,2, 8,4,56,7]

21> EL.

1

22> E2.

2

23> R

[3,4,5,6, 7]

Hereyou seethe use of | to get the first two elements from the list. If you try to get more elements from the list than
there are elementsin the list, an error is returned. Notice also the special case of thelist with no elements, []:

24> [A B| Q =[1, 2].
[1,2]

25> A

1

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

4.2 Sequential Programming

26> B.
2
27> C.
[]

In the previous examples, new variable names are used, instead of reusing the old ones: Fi r st , TheRest , E1, E2,
R, A, B, and C. Thereason for thisisthat a variable can only be given avalue oncein its context (scope). More about
thislater.

The following example shows how to find the length of alist. Enter the following codein afilenamedt ut 4. er |):

-nmodul e(tut4).
-export([list_length/1]).
list_length([]) ->

0;

list_length([First | Rest]) ->
1 + list_length(Rest).

Compile and test:

28> c(tut4).

{ok, tut4}

29> tut4d:list_length([1,2,3,4,5,6,7]).
7

Explanation:

list_length([]) ->
0;

The length of an empty list is obviously O.

list_length([First | Rest]) ->
1 + list_length(Rest).

Thelength of alist with the first element Fi r st and the remaining elements Rest is1 + the length of Rest .

(Advanced readers only: Thisisnot tail recursive, there is a better way to write this function.)

In genera, tuples are used where "records’ or "structs' are used in other languages. Also, lists are used when
representing things with varying sizes, that is, where linked lists are used in other languages.

Erlang does not have a string data type. Instead, strings can be represented by lists of Unicode characters. Thisimplies
for example that thelist [97, 98, 99] isequivalent to "abc". The Erlang shell is"clever" and guesses what list you
mean and outputsit in what it thinks is the most appropriate form, for example:

30> [97, 98, 99] .
R

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

4.2.6 Maps

Maps are a set of key to value associations. These associations are encapsulated with "#{" and "}". To create an
association from "key" to value 42;

> #{ "key" => 42 }.
#{"key" => 42}

Let usjump straight into the deep end with an example using some interesting features.

Thefollowing example shows how to cal culate al phablending using mapsto reference color and a phachannels. Enter
thecodeinafilenamedcol or. erl):

- modul e(col or) .
-export ([new 4, blend/2]).
-define(is_channel (V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
new R G B, A) when ?is_channel (R), ?is_channel (G,
?i s_channel (B), ?is_channel (A ->

#{red => R green => G blue => B, al pha => A}.

bl end(Src, Dst) ->
bl end(Src, Dst, al pha(Src, Dst)).

bl end(Src, Dst, Al pha) when Alpha > 0.0 ->

Dst #{
red =red(Src,Dst) / Al pha,
green := green(Src,Dst) / Al pha,
bl ue = blue(Src,Dst) / Al pha,
al pha : = Al pha

}s

bl end(_, Dst,) ->

Dst #{
red = 0.0,
green := 0.0,
blue := 0.0,
alpha := 0.0

}.

al pha(#{al pha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

bl ue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

Compile and test:

> c(color).

{ ok, col or}

> Cl = color:new(0.3,0.4,0.5,1.0).

#{al pha => 1.0,blue => 0.5,green => 0.4,red => 0. 3}
> C2 = color:new(1.0,0.8,0.1,0.3).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

4.2 Sequential Programming

#{al pha => 0.3,blue => 0.1,green => 0.8,red => 1.0}

> col or: bl end(C1, C2).

#{al pha => 1.0, blue => 0.5,green => 0.4,red => 0. 3}

> col or: bl end(C2, Cl1).

#{al pha => 1.0, blue => 0.38,green => 0.52,red => 0.51}

This example warrants some explanation:

-define(is_channel (V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

Firstamacroi s_channel isdefined to help with the guard tests. Thisis only here for convenience and to reduce
syntax cluttering. For more information about macros, see The Preprocessor.

new(R G B, A) when ?is_channel (R), ?is_channel (G,
?i s_channel (B), ?is_channel (A) ->
#{red => R green => G blue => B, al pha => A}.

The function new 4 creates a new map term and lets the keysr ed, gr een, bl ue, and al pha be associated with
an initial value. In this case, only float values between and including 0.0 and 1.0 are allowed, as ensured by the ?
i s_channel / 1 macro for each argument. Only the => operator is allowed when creating a new map.

By calling bl end/ 2 on any color term created by new 4, the resulting color can be calculated as determined by
the two map terms.

Thefirst thing bl end/ 2 doesisto calculate the resulting alpha channel:

al pha(#{al pha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

The value associated with key al pha isfetched for both arguments using the : = operator. The other keysin the map
areignored, only the key al pha isrequired and checked for.

Thisisaso the case for functionsr ed/ 2, bl ue/ 2, and gr een/ 2.

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

The difference here is that a check is made for two keys in each map argument. The other keys are ignored.

Finally, let usreturn the resulting color in bl end/ 3:

bl end(Src, Dst, Al pha) when Alpha > 0.0 ->

Dst #{
red =red(Src,Dst) / Al pha,
green := green(Src,Dst) / Al pha,
blue := blue(Src,Dst) / Al pha,
al pha : = Al pha

}s

The Dst map is updated with new channel values. The syntax for updating an existing key with a new value is with
the : = operator.

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

4.2.7 Standard Modules and Manual Pages

Erlang has many standard modules to help you do things. For example, the module i o contains many functions that
help in doing formatted input/output. To look up information about standard modules, the command er | - man can
be used at the operating shell or command prompt (the same place as you started er |). Try the operating system
shell command:

%erl -man io
ERLANG MODULE DEFI NI TI ON io(3)

MODULE
io - Standard I/ O Server |nterface Functions

DESCRI PTI ON
This nodul e provides an interface to standard Erlang |O
servers. The output functions all return ok if they are suc-

If this does not work on your system, the documentation isincluded asHTML in the Erlang/OTPrelease. Y ou can also
read the documentation asHTML or download it as PDF from either of the sites www.erlang.se (commercial Erlang)
or www.erlang.org (open source). For example, for Erlang/OTP release R9B:

http://ww. erl ang. or g/ doc/ r 9b/ doc/ i ndex. ht

4.2.8 Writing Output to a Terminal

Itisniceto beableto do formatted output in exampl es, so the next example showsasimpleway tousethei o: f or mat
function. Like al other exported functions, you can test thei o: f or mat function in the shell:

31> io:format("hello world~n", []).

hello world

ok

32> io:format("this outputs one Erlang term ~w-n", [hello]).

this outputs one Erlang term hello

ok

33> io:format("this outputs two Erlang terns: ~w-w-n", [hello, world]).
this outputs two Erlang terns: helloworld

ok

34> jo:format ("this outputs two Erlang terns: ~w ~w-n", [hello, world]).
this outputs two Erlang terns: hello world

ok

The function f or mat / 2 (that is, f or mat with two arguments) takes two lists. The first one is nearly aways alist
written between " ". Thislist is printed out as it is, except that each ~w is replaced by a term taken in order from the
second list. Each ~n isreplaced by anew line. Thei o: f or mat / 2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it isa
deliberate policy. Erlang has sophisticated mechanisms to handle errors which are shown later. As an exercise, try to
makei o: f or mat crash, it should not be difficult. But notice that although i o: f or mat crashes, the Erlang shell
itself does not crash.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

4.2 Sequential Programming

4.2.9 A Larger Example

Now for a larger example to consolidate what you have learnt so far. Assume that you have a list of temperature
readings from a number of citiesin the world. Some of them arein Celsius and some in Fahrenheit (asin the previous
list). First let us convert them all to Celsius, then let us print the data neatly.

%6 This nodule is in file tut5.erl

-nmodul e(tuth).
-export([format _tenps/1]).

%WoOnly this function is exported

format _temps([])-> % No output for an enpty |ist
ok;

format _temps([City | Rest]) ->
print_tenp(convert _to_celsius(Gty)),
format _tenps(Rest).

convert_to_cel sius({Nane, {c, Tenp}}) -> % No conversi on needed
{Nane, {c, Tenp}};

convert_to_cel sius({Nane, {f, Tenp}}) -> % Do the conversion
{Nanme, {c, (Tenp - 32) * 5/ 9}}.

print_tenmp({Nanme, {c, Tenp}}) ->
io:format ("~-15w ~w c~n", [Nanme, Tenp]).

35> c(tuth).

{ ok, tut 5}

36> tut5: format _tenps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢
ok

Before looking at how this program works, notice that afew comments are added to the code. A comment starts with
a %-character and goes on to the end of the line. Notice also that the- export ([f or mat _t enps/ 1]). lineonly
includes the function f or mat _t enps/ 1. The other functions are local functions, that is, they are not visible from
outside the module t ut 5.

Notice also that when testing the program from the shell, the input is spread over two lines as the line was too long.

When f or mat _t enps iscaledthefirsttime, G t y getsthevaue{ noscow, { ¢, - 10} } and Rest istherest of
thelist. Sothefunction pri nt _tenp(convert to_cel si us({noscow, {c,-10}})) iscaled.

Here is a function call as convert to_cel si us({nmoscow, {c, -10}}) as the argument to the function
print _t enp. When function calls are nested like this, they execute (evaluate) from the inside out. That is, first
convert to_cel sius({noscow,{c,-10}}) is evauated, which gives the value { roscow, {c, - 10} }
as the temperature is aready in Celsius. Then pri nt _t enp({noscow, {c, - 10} }) isevauated. The function
convert _to_cel si us worksinasimilar way totheconvert _I engt h function in the previous example.

print_tenpsmply calsi o: f or mat inasimilar way to what has been described above. Notice that ~-15w says
to print the "term" with afield length (width) of 15 and left justify it. (see the io(3)) manual page in STDLIB.

Now f ormat _t enps(Rest) is caled with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Y es, thisis recursion, but do not let that worry you.) So the same

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

format _t enps function is called again, thistime Ci t y gets the value { cape_t own, {f, 70} } and the same
procedure is repeated as before. This is done until the list becomes empty, that is [], which causes the first clause
format _tenps([]) tomatch. Thissimply returns (resultsin) the atom ok, so the program ends.

4.2.10 Matching, Guards, and Scope of Variables

It can be useful to find the maximum and minimum temperature in lists like this. Before extending the program to do
this, let uslook at functions for finding the maximum value of the elementsin alist:

-nmodul e(tut6).
-export([list_max/1]).

l'ist_max([Head| Rest]) ->
i st_max(Rest, Head).

list_max([], Res) ->
Res;

i st_max([Head| Rest], Result_so _far) when Head > Result_so far ->
i st_max(Rest, Head);

l'ist_max([Head| Rest], Result_so far) ->
list_max(Rest, Result_so _far).

37> c(tuth).

{ ok, tut 6}

38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
7

First notice that two functions have the sasme name, | i st _nax. However, each of these takes a different number of
arguments (parameters). In Erlang these are regarded as completely different functions. Where you need to distinguish
between these functions, you write Name/Arity, where Name is the function name and Arity is the number of
arguments, inthiscasel i st _nmax/ 1 andli st_max/ 2.

In this example you walk through a list "carrying" a value, in thiscase Resul t _so_far.list_max/ 1 simply
assumes that the max value of the list is the head of the list and calls| i st _max/ 2 with the rest of the list and the
value of the head of the list. In the above thiswould bel i st _max([2, 3,4,5,7, 4, 3,2,1],1).If you tried
tousel i st _max/ 1 with an empty list or tried to use it with something that is not alist at all, you would cause an
error. Notice that the Erlang philosophy is not to handle errors of this type in the function they occur, but to do so
elsewhere. More about this later.

In i st_max/2, you wak down the list and use Head instead of Result_so_far when Head >
Resul t _so_far.when isaspecia word used before the -> in the function to say that you only use this part of
the function if the test that follows istrue. A test of thistypeis called guard. If the guard is false (that is, the guard
fails), the next part of the function istried. In this case, if Head is not greater than Resul t _so_f ar, then it must
be smaller or equal to it. This means that a guard on the next part of the function is not needed.

Some useful operatorsin guards are:

* <lessthan

e > greater than

e ==equd

e >=greater or equal
 =<lessorequd

e /=not equa

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

4.2 Sequential Programming

(see Guard Sequences).

To change the above program to one that works out the minimum value of the element in alist, you only need to write

<instead of >. (But it would be wise to change the name of the functiontol i st _ni n.)

Earlier it was mentioned that a variable can only be given a value once in its scope. In the above you see that
Resul t _so_far isgiven severa vaues. Thisis OK since every time you call | i st _nmax/ 2 you create a new

scope and one can regard Resul t _so_f ar asadifferent variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if you writeM = 5, a
variable called Mis created with the value 5. If, in the same scope, you then write M = 6, an error isreturned. Try

this out in the shell:

39> M= 5
5
40> M= 6

** exception error: no match of right hand side val ue 6
41> M= M + 1.

** exception error: no match of right hand side val ue 6
42> N =M+ 1.

6

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.

43> {X, Y} = {paris, {f, 28}}.
{paris, {f, 28}}

44> X.

paris

45> Y.

{f, 28}

Here X getsthevalue pari s and Y{f, 28} .

If you try to do the same again with another city, an error isreturned:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side val ue {london, {f, 36}}

Variables can also be used to improve the readability of programs. For example, in function | i st _nax/ 2 above,

you can write:

list_max([Head| Rest], Result_so far) when Head > Result_so far ->
New result_far = Head,
list_max(Rest, New result far);

Thisis possibly alittle clearer.

4.2.11 More About Lists
Remember that the | operator can be used to get the head of alist:

47> [ML| T1] = [paris, |ondon, rone].

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

[paris, | ondon, rone]
48> M.

paris

49> T1.

[1 ondon, r one]

The | operator can also be used to add ahead to alist:

50> L1 = [nadrid | T1].
[madri d, | ondon, r one]
51> L1.

[madri d, | ondon, r one]

Now an example of thiswhen working with lists - reversing the order of alist:

- modul e(tut8).
-export([reverse/1]).

reverse(List) ->
reverse(List, []).

reverse([Head | Rest], Reversed_List) ->
reverse(Rest, [Head | Reversed_List]);
reverse([], Reversed_List) ->
Reversed_Li st .

52> c(tut8).

{ ok, tut 8}

53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Rever sed_Li st isbuilt. It starts as [], then successively the heads are taken off of the list to be
reversed and added to the the Rever sed_Li st , asshown in the following:

reverse([1]2,3], []) =>
reverse([2,3], [1][]11])

reverse([2]| 3], [1]) =>
reverse([3], [2|[1])

reverse([3|[]], [2,1]) =>
reverse([], [3|[2,1]])

reverse([], [3,2,1]) =>
[3,2,1]

Themodulel i st s contains many functionsfor manipulating lists, for example, for reversing them. So beforewriting
a list-manipulating function it is a good idea to check if one not aready is written for you (see the lists(3) manual
pagein STDLIB).

Now let us get back to the cities and temperatures, but take a more structured approach thistime. First let us convert
thewholelist to Celsius as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

4.2 Sequential Programming

-modul e(tut?7).
-export([format _tenps/1]).

format _tenps(List_of cities) ->
convert _list _to c(List_of cities).

convert |ist_to c([{Narme, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5/ 9}},
[Converted City | convert list_to c(Rest)];

convert list to c([City | Rest]) ->
[Cty | convert list to c(Rest)];

convert _list_to c([]) ->

(1.

Test the function:

54> c(tut7).

{ok, tut7}.

55> tut7: format _tenps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{noscow, {c, -10}},

{cape_town, {c,21.11111111111111}},

{stockhol m {c, -4}},

{paris,{c,-2.2222222222222223}},

{l ondon, {c, 2. 2222222222222223} }]

Explanation:

format _tenmps(List_of _cities) ->
convert _list_to_c(List_of_cities).

Heref ormat _tenps/ 1 callsconvert list to c/1.convert |ist _to_c/1 takes off the head of the
Li st _of cities, convertsit to Celsius if needed. The | operator is used to add the (maybe) converted to the
converted rest of the list:

[Converted City | convert list _to c(Rest)];

or:

[City | convert_list to c(Rest)];

Thisis done until the end of thelist isreached, that is, thelist is empty:
convert_list_to_c([]) ->
[1.

Now when the list is converted, afunction to print it is added:

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

-nmodul e(tut?7).
-export([format _tenps/1]).

format _tenps(List_of cities) ->
Converted_List = convert list_to c(List_of cities),
print_tenp(Converted_ List).

convert |ist_to c([{Name, {f, F}} | Rest]) ->
Converted _City = {Name, {c, (F -32)* 5/ 9}},
[Converted City | convert list to c(Rest)];

convert list _to c([City | Rest]) ->
[Cty | convert list to c(Rest)];

convert _list_to c([]) ->

[1.

print_tenp([{Name, {c, Tenp}} | Rest]) ->
io:format("~-15w ~w c~n", [Nane, Tenp]),
print_tenp(Rest);

print_tenp([]) ->
ok.

56> c(tut7).

{ok, tut7}

57> tut7: format _tenps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 c

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢
ok

Now afunction hasto be added to find the cities with the maximum and minimum temperatures. Thefollowing program
isnot the most efficient way of doing this asyou walk through thelist of citiesfour times. But it is better to first strive
for clarity and correctness and to make programs efficient only if needed.

-nmodul e(tut?).
-export([format_tenps/1]).

format _tenps(List_of _cities) ->
Converted_List = convert_list_to c(List_of_cities),
print_tenp(Converted_List),
{Max_city, Mn_city} = find_nax_and_m n(Converted_List),
print_max_and_m n(Max_city, Mn_city).

convert_list_to_c([{Name, {f, Tenmp}} | Rest]) ->
Converted_City = {Nane, {c, (Tenp -32)* 5/ 9}},
[Converted City | convert list_to c(Rest)];

convert_list_to c([Cty | Rest]) ->
[City | convert_list _to c(Rest)];

convert _list_to c([]) ->

(1.

print_tenp([{Nanme, {c, Tenp}} | Rest]) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

4.2 Sequential Programming

io:format("~-15w ~w c~n", [Nanme, Tenp]),
print_tenp(Rest);

print_tenp([]) ->
ok.

find_max_and_mn([Cty | Rest]) ->
find_max_and_mn(Rest, City, Cty).

find_max_and_m n([{Nane, {c, Tenp}} | Rest],
{Max_Nane, {c, Max_Tenp}},
{M n_Nane, {c, Mn_Tenp}}) ->
if
Tenp > Max_Tenp ->

Max_City = {Name, {c, Tenp}}; % Change
true ->
Max_City = {Max_Nanme, {c, Max_Tenp}} % Unchanged
end,
if
Tenp < M n_Tenp ->
Mn Gty = {Name, {c, Tenp}}; % Change
true ->
Mn Cty = {Mn_Nanme, {c, Mn_Tenp}} % Unchanged
end,

find_max_and_m n(Rest, Max_City, Mn _Cty);

find_max_and_mn([], Max_Cty, Mn_City) ->
{Max_City, Mn_City}.

print_max_and_m n({Max_nane, {c, Max_tenmp}}, {Mn_name, {c, Mn_tenp}}) ->
io:format ("Max tenperature was ~w ¢ in ~w-n", [Max_tenp, Mix_nane]),
io:format ("M n tenperature was ~w ¢ in ~wn", [Mn_tenp, Mn_nane]).

58> c(tut7).

{ok, tut7}

59> tut7: format _tenps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢

Max tenperature was 21.11111111111111 c in cape_t own
Mn tenperature was -10 ¢ in nobscow
ok

4.2.12 If and Case

The function f i nd_rmax_and_mi n works out the maximum and minimum temperature. A new construct, i f , is
introduced here. If works as follows:

Condition 1 ->
Action 1;
Condition 2 ->
Action 2;
Condition 3 ->
Action 3;
Condition 4 ->
Action 4

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

end

Notice that there is no ";" before end. Conditions do the same as guards, that is, tests that succeed or fail. Erlang
starts at the top and tests until it finds a condition that succeeds. Then it evaluates (performs) the action following
the condition and ignores all other conditions and actions before the end. If no condition matches, a run-time failure
occurs. A condition that always succeeds isthe atom t r ue. Thisis often used last in ani f , meaning, do the action
following thet r ue if all other conditions have failed.

Thefollowing is a short program to show the workings of i f .

-nmodul e(tut9).
-export([test_if/2]).

test _if(A B) ->
if
A == ==
io:format ("A == 5~n", []),
a_equal s_5;
B == ==
io:format ("B == 6~n", []),
b_equal s_6;
A==2, B == -> % hat is A equals 2 and B equals 3
io:format ("A == 2, B == 3~n", []),
a_equal s_2 b _equal s_3;
A == B == -> % hat is A equals 1 or B equals 7
io:format("A==1; B==7~-n", []),
a_equals_1 or_b_equals_ 7
end.

Testing this program gives:

60> c(tut9).

{ ok, tut 9}

61> tut9:test _if(5,33).

A==5

a_equal s_5

62> tut9:test _if(33,6).

B==26

b_equal s_6

63> tut9:test_if(2, 3).

A == 2’ B == 3

a_equal s_2_b_equal s_3

64> tut9:test _if(1l, 33).

A==1 ; B==7

a_equals_1 or_b_equal s_7

65> tut9:test _if(33, 7).

A==1 ; B==7

a_equals_1 or_b_equals_7

66> tut9:test_if (33, 33).

** exception error: no true branch found when evaluating an if expression
in function tut9:test_if/2 (tut9.erl, line 5)

Notice that t ut 9: test i f (33, 33) does not cause any condition to succeed. This leads to the run time error
i f_cl ause, here nicely formatted by the shell. See Guard Sequences for details of the many guard tests available.

case isanother construct in Erlang. Recall that theconvert _| engt h function was written as:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

4.2 Sequential Programming

convert _|ength({centineter, X}) ->
{inch, X/ 2.54};

convert_l ength({inch, Y}) ->
{centineter, Y * 2.54}.

The same program can also be written as:

- modul e(tut 10).
-export([convert_l ength/1]).

convert_| engt h(Length) ->
case Length of
{centineter, X} ->
{inch, X/ 2.54};
{inch, Y} ->
{centineter, Y * 2.54}
end.

67> c(tutl0).

{ ok, tut 10}

68> tut10: convert_l ength({inch, 6}).
{centineter, 15. 24}

69> tut10: convert_l ength({centinmeter, 2.5}).
{inch, 0.984251968503937}

Both case and i f have return values, that is, in the above example case returned either {i nch, X/ 2. 54} or
{centineter, Y*2. 54} . The behaviour of case can aso be modified by using guards. The following example
clarifies this. It tells us the length of a month, given the year. The year must be known, since February has 29 days

inaleap year.

-modul e(tut 11).
-export ([nonth_length/2]).

mont h_| engt h(Year, Month) ->
%6 All years divisible by 400 are | eap
%% Years divisible by 100 are not |eap (except the 400 rul e above)
%6 Years divisible by 4 are | eap (except the 100 rul e above)
Leap = if
trunc(Year / 400) * 400 == Year ->
| eap;
trunc(Year / 100) * 100 == Year ->
not _I| eap;
trunc(Year / 4) * 4 == Year ->
| eap;
true ->
not _| eap
end,
case Month of
sep -> 30;
apr -> 30;
jun -> 30;
nov -> 30;
feb when Leap == leap -> 29;
feb -> 28;
jan -> 31;
mar -> 31;
may -> 31,

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

jul -> 31;

aug -> 31;

oct -> 31;

dec -> 31
end.

70> c(tut1l).

{ok, tut11}

71> tut11: nont h_| engt h(2004, feb).
29

72> tut11: nont h_| engt h(2003, feb).
28

73> tut11l: nont h_| engt h(1947, aug).
31

4.2.13 Built-In Functions (BIFs)

BIFs are functions that for some reason are built-in to the Erlang virtual machine. BIFs often implement functionality
that isimpossible or istoo inefficient to implement in Erlang. Some BIFs can be called using the function name only
but they are by default belonging to theer | ang module. For example, the call tothe BIFt r unc below isequivalent
toacaltoerl ang: trunc.

As shown, first it is checked if ayear isleap. If ayear is divisible by 400, it is aleap year. To determine this, first
divide the year by 400 and use the BIF t r unc (more about this later) to cut off any decimals. Then multiply by 400
again and see if the same value isreturned again. For example, year 2004:

2004 / 400 = 5.01
trunc(5.01) =5
5 * 400 = 2000

2000 is not the same as 2004, so 2004 is not divisible by 400. Y ear 2000:

2000 / 400 = 5.0
trunc(5.0) =5
5 * 400 = 2000

That is, aleap year. The next two t r unc-tests evaluate if the year is divisible by 100 or 4 in the sasme way. The first
i f returns| eap or not _| eap, which lands up in the variable Leap. Thisvariable is used in the guard for f eb in
the following case that tells us how long the monthis.

This example showed the use of t r unc. It is easier to use the Erlang operator r emthat gives the remainder after
division, for example:

74> 2004 rem 400
4

So instead of writing:

trunc(Year / 400) * 400 == Year ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 91

4.2 Sequential Programming

| eap;

it can be written:

Year rem 400 == 0 ->
| eap;

There are many other BIFssuch ast r unc. Only afew BIFs can be used in guards, and you cannot use functions you
have defined yourself in guards. (see Guard Sequences) (For advanced readers: This is to ensure that guards do not
have side effects.) Let us play with afew of these functionsin the shell:

75> trunc(5.6).

5

76> round(5. 6) .

6

77> length([a, b,c,d]).

4

78> float(5).

5.0

79> is_aton(hello).

true

80> is_aton("hello").

fal se

81> is_tuple({paris, {c, 30}}).
true

82> is_tuple([paris, {c, 30}]).
fal se

All of these can be used in guards. Now for some BIFs that cannot be used in guards:

83> atomto_list(hello).

"hel | 0"

84> |ist_to_aton("goodbye").
goodbye

85> integer to_ list(22).
woon

These three BIFs do conversions that would be difficult (or impossible) to do in Erlang.

4.2.14 Higher-Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher-order functions. Here is an example using
the shell:

86> Xf = fun(X) -> X * 2 end
#Fun<er| _eval . 5. 123085357>
87> Xf(5).

10

Here is defined a function that doubles the value of a number and assigned this function to a variable. Thus Xf (5)
returns value 10. Two useful functions when working with listsaref or each and map, which are defined asfollows:

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);
foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->

[Fun(First) | map(Fun, Rest)];
map(Fun, []) ->

[1.

These two functions are provided in the standard module | i st s. f or each takes alist and applies a fun to every
element in the list. map creates a new list by applying afun to every element in alist. Going back to the shell, map
isused and afun to add 3 to every element of alist:

88> Add_3 = fun(X) -> X + 3 end.
#Fun<er| _eval . 5. 123085357>

89> |lists:map(Add_3, [1,2,3]).
[4,5, 6]

Let us (again) print the temperaturesin alist of cities:

90> Print_City = fun({Gty, {X Tenp}}) -> io:format("~- 15w ~w ~w-n",
[Cty, X, Tenp]) end.

#Fun<er| _eval . 5. 123085357>

91> lists:foreach(Print_City, [{mobscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow c -10
cape_t own f 70
st ockhol m c -4
paris f 28
| ondon f 36
ok

L et usnow defineafun that can be used to go through alist of citiesand temperatures and transform them all to Celsius.

-nmodul e(tut13).
-export([convert_list_to_c/1]).

convert_to_c({Nane, {f, Tenp}}) ->

{Nanme, {c, trunc((Tenp - 32) * 5/ 9)}};
convert_to_c({Nane, {c, Tenp}}) ->

{Name, {c, Tenp}}.

convert _list_to_c(List) ->
lists:map(fun convert_to_c/1, List).

92> tutl13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{noscow, {c, -10}},

{cape_town, {c, 21}},

{stockhol m{c, -4}},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

4.2 Sequential Programming

{paris,{c,-2}},
{l ondon, {c, 2} }]

Theconvert _to_c functionisthe same as before, but here it is used as afun:

l'ists: map(fun convert_to_c/1, List)

When a function defined elsewhere is used as a fun, it can be referred to as Functi on/ Ari ty (remember that
Arity = number of arguments). So in the map-call | i sts: map(fun convert_to_c/1, List) iswritten.
Asshown, convert |ist _to_c becomesmuch shorter and easier to understand.

The standard modulel i st s aso containsafunctionsort (Fun, Li st) whereFun isafun with two arguments.
Thisfun returnst r ue if the first argument is less than the second argument, or else f al se. Sorting is added to the
convert list _to_c:

-modul e(tut 13).
-export([convert list_to_c/1]).

convert_to_c({Nane, {f, Tenp}}) ->

{Name, {c, trunc((Tenp - 32) * 5/ 9)}};
convert_to_c({Nane, {c, Tenp}}) ->

{Name, {c, Tenp}}.

convert _list_to_c(List) ->
New | ist = lists:map(fun convert_to_c/1, List),
lists:sort(fun({_, {c, Tenpl}}, {_, {c, Tenp2}}) ->
Tenpl < Tenp2 end, New_ |ist).

93> c(tut13).

{ok, tut 13}

94> tut13:convert _list_to_c([{nmscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{rmoscow, {c, -10}},

{stockhol m{c, -4}},

{paris,{c,-2}},

{l ondon, {c, 2}},

{cape_town, {c, 21}}]

Insort thefunisused:

fun({_, {c, Tenpl}}, {_, {c, Tenp2}}) -> Tenpl < Tenp2 end,

Here the concept of an anonymous variable" " isintroduced. Thisissimply shorthand for avariable that getsavalue,

but the value is ignored. This can be used anywhere suitable, not just in funs. Tenpl < Tenp2 returnstr ue if
Tenpl islessthan Tenp2.

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

4.3 Concurrent Programming

4.3.1 Processes

One of themain reasonsfor using Erlang instead of other functional languagesis Erlang's ability to handle concurrency
and distributed programming. By concurrency is meant programs that can handle several threads of execution at the
same time. For example, modern operating systems allow you to use a word processor, a spreadsheet, a mail client,
and aprint job all running at the same time. Each processor (CPU) in the system is probably only handling one thread
(or job) at atime, but it swaps between the jobs at such arate that it gives theillusion of running them all at the same
time. It iseasy to create parallel threads of execution in an Erlang program and to allow these threads to communicate
with each other. In Erlang, each thread of execution is called a process.

(Aside: the term "process’ is usually used when the threads of execution share no data with each other and the term
"thread" when they share datain some way. Threads of execution in Erlang share no data, that is why they are called
processes).

The Erlang BIF spawn is used to create a new process. spawn(Modul e, Exported_Function, List of
Ar gunent s) . Consider the following module:

- modul e(tut 14)
-export([start/0, say_sonething/2]).

say_sonet hi ng(What, 0) ->
done

say_sonet hi ng(What, Tines) ->
io:format ("~p~n", [Wat]),
say_sonet hi ng(What, Tines - 1).

start() ->
spawn(tut 14, say_sonething, [hello, 3]),
spawn(tut 14, say_sonet hi ng, [goodbye, 3]).

5> c(tutl4).

{ ok, tut 14}

6> tut 14: say_sonet hi ng(hel l o, 3).
hel |l o

hel |l o

hel |l o

done

Asshown, thefunctionsay_somnet hi ng writesitsfirst argument the number of times specified by second argument.
The function st ar t starts two Erlang processes, one that writes "hello" three times and one that writes "goodbye"
three times. Both processes use the function say_sonet hi ng. Notice that a function used in this way by spawn,
to start a process, must be exported from the module (that is, in the - expor t at the start of the module).

9> tutld:start()
hel | o

goodbye

<0. 63. 0>

hel | o

goodbye

hel | o

goodbye

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

4.3 Concurrent Programming

Noticethat it did not write"hello" three timesand then "goodbye" threetimes. Instead, thefirst processwrotea"hello”,
the second a "goodbye", the first another "hello" and so forth. But where did the <0.63.0> come from? The return
value of afunction isthe return value of the last "thing" in the function. The last thing in the function st ar t is

spawn(tut 14, say_sonet hi ng, [goodbye, 3]).

spawn returns a process identifier, or pid, which uniquely identifies the process. So <0.63.0> isthe pid of the spawn
function call above. The next example shows how to use pids.

Notice aso that ~p is used instead of ~w ini o: f or mat . To quote the manual: "~p Writes the data with standard
syntax in the same way as ~w, but breaks terms whose printed representation is longer than one line into many lines
and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings'.

4.3.2 Message Passing

In the following example two processes are created and they send messages to each other a number of times.

- modul e(tut 15).
-export([start/0, ping/2, pong/0]).

pi ng(0, Pong_PID) ->
Pong_PID ! finished
io:format ("ping finished~n", []);

pi ng(N, Pong_PID) ->
Pong_PID ! {ping, self()}
recei ve
pong - >
io:format ("Ping received pong~n", [])
end
ping(N - 1, Pong_PID).

pong() ->
recei ve
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID ->
io:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start() ->
Pong_PI D = spawn(tut 15, pong, []

)
spawn(tut 15, ping, [3, Pong_PID]).

1> c(tut15).

{ ok, tut 15}

2> tutl5: start().
<0. 36. 0>

Pong recei ved pi ng
Pi ng recei ved pong
Pong recei ved pi ng
Pi ng recei ved pong
Pong recei ved pi ng

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

Pi ng recei ved pong
ping finished
Pong fi ni shed

Thefunction st art first creates a process, let us call it "pong":

Pong_PI D = spawn(tut 15, pong, [])

This process executes t ut 15: pong() . Pong_PI D is the process identity of the "pong" process. The function
st art now creates another process "ping":

spawn(tut 15, ping, [3, Pong_PID]),

This process executes:

tut 15: pi ng(3, Pong_PI D)

<0.36.0> isthereturn value from the st ar t function.

The process "pong" now does:

receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping PID! pong
pong()
end

Ther ecei ve construct is used to allow processes to wait for messages from other processes. It has the following
format:

receive
patternl ->
actionsl
pattern2 ->
actions2

patternN
actionsN
end

Noticethereisno";" beforethe end.

M essages between Erlang processes are simply valid Erlang terms. That is, they can be lists, tuples, integers, atoms,
pids, and so on.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
gueue. When a process executes ar ecei ve, the first message in the queue is matched against the first pattern in

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 97

4.3 Concurrent Programming

ther ecei ve. If this matches, the message is removed from the queue and the actions corresponding to the pattern
are executed.

However, if the first pattern does not match, the second pattern istested. If this matches, the messageisremoved from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match, the
third is tried and so on until there are no more patterns to test. If there are no more patterns to test, the first message
is kept in the queue and the second message is tried instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match, the third message is tried, and so on, until the end of the queue
is reached. If the end of the queue is reached, the process blocks (stops execution) and waits until a new message is
received and this procedure is repeated.

The Erlang implementation is "clever" and minimizes the number of times each message is tested against the patterns
ineachr ecei ve.

Now back to the ping pong example.

"Pong" iswaiting for messages. If theatom f i ni shed isreceived, "pong" writes"Pong finished" to the output and,
asit has nothing more to do, terminates. If it receives a message with the format:

{pi ng, Ping_PID}

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":

Ping_PID ! pong

Notice how the operator "!" is used to send messages. The syntax of "!" is:

Pid ! Message

That is, Message (any Erlang term) is sent to the process with identity Pi d.

After sending the message pong to the process "ping", "pong" calls the pong function again, which causesiit to get
back to ther ecei ve again and wait for another message.

Now let uslook at the process "ping". Recall that it was started by executing:

tut 15: pi ng(3, Pong_PI D)

Looking at the function pi ng/ 2, the second clause of pi ng/ 2 is executed since the value of the first argument is 3
(not 0) (first clause head is pi ng(0, Pong_PI D), second clause head is pi ng(N, Pong_PI D), so N becomes 3).

The second clause sends a message to "pong":

Pong_PID ! {ping, self()},

sel f () returns the pid of the process that executes sel f (), in this case the pid of "ping". (Recall the code for
"pong", thislands up in the variable Pi ng_PI Dinther ecei ve previously explained.)

"Ping" now waits for areply from "pong":

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

receive
pong ->
io:format ("Ping recei ved pong~n", [])
end,

It writes "Ping received pong" when thisreply arrives, after which "ping" callsthe pi ng function again.

pi ng(N - 1, Pong_PI D)

N 1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of pi ng/ 2
is executed:

pi ng(0, Pong_PID) ->
Pong_PID ! finished
io:format ("ping finished~n", []);

Theatomfi ni shed issent to "pong" (causing it to terminate as described above) and "ping finished" is written to
the output. "Ping" then terminates as it has nothing left to do.

4.3.3 Registered Process Names

In the above example, "pong" wasfirst created to be able to give the identity of "pong" when "ping" was started. That
is, in some way "ping" must be able to know the identity of "pong" to be able to send a message to it. Sometimes
processes which need to know each other's identities are started independently of each other. Erlang thus provides a
mechanism for processes to be given names so that these names can be used as identitiesinstead of pids. Thisisdone
by using ther egi st er BIF:

regi ster(sone_atom Pid)

Let us now rewrite the ping pong example using this and give the name pong to the "pong" process.

- modul e(tut 16)
-export([start/0, ping/1l, pong/0]).

ping(0) ->
pong ! finished
io:format ("ping finished~n", []);

pi ng(N) ->
pong ! {ping, self()},
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end
ping(N - 1).

pong() S
receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping PID} ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 99

4.3 Concurrent Programming

i o:format ("Pong received ping~n", []),
Ping_PID ! pong

pong()
end

start() ->
regi ster(pong, spawn(tut16, pong, [])),
spawn(tut 16, ping, [3]).

2> c(tutl6).

{ok, tutl6}

3> tutl6:start().
<0. 38. 0>

Pong recei ved ping
Pi ng recei ved pong
Pong recei ved ping
Pi ng recei ved pong
Pong recei ved ping
Pi ng recei ved pong
ping finished

Pong fi ni shed

Herethest ar t / O function,

regi ster(pong, spawn(tutl6, pong, []))

both spawns the "pong" process and givesit the name pong. In the "ping" process, messages can be sent to pong by:

pong ! {ping, self()},
pi ng/ 2 now becomes pi ng/ 1 astheargument Pong_PI Dis not needed.

4.3.4 Distributed Programming

Let us rewrite the ping pong program with "ping" and "pong" on different computers. First a few things are needed
to set up to get this to work. The distributed Erlang implementation provides a basic security mechanism to prevent
unauthorized access to an Erlang system on another computer. Erlang systems which talk to each other must have
the same magic cookie. The easiest way to achieve thisis by having afile caled . er | ang. cooki e in your home
directory on all machines on which you are going to run Erlang systems communicating with each other:

* On Windows systems the home directory is the directory pointed out by the environment variable $HOME -
you may need to set this.

e OnLinux or UNIX you can safely ignore this and smply create afilecalled . er | ang. cooki e inthe
directory you get to after executing the command cd without any argument.

The. er | ang. cooki e fileisto contain aline with the same atom. For example, on Linux or UNIX, in the OS shell:

$ cd

$ cat > .erlang. cookie
this_is_very_ secret

$ chnod 400 . erl ang. cooki e

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

Thechnod above makesthe. er | ang. cooki e file accessible only by the owner of thefile. Thisisarequirement.

When you start an Erlang system that is going to talk to other Erlang systems, you must give it a name, for example:

$ erl -sname ny_nane

We will see more details of this later. If you want to experiment with distributed Erlang, but you only have one
computer to work on, you can start two separate Erlang systems on the same computer but give them different names.
Each Erlang system running on a computer is called an Erlang node.

(Note: er|l - sname assumes that al nodes are in the same IP domain and we can use only the first component of
the IP address, if we want to use nodes in different domains we use - nane instead, but then all 1P address must be
giveninfull.)

Here isthe ping pong example modified to run on two separate nodes:

-modul e(tut 17).
-export([start_ping/1, start_pong/0, ping/2, pong/0]).

pi ng(0, Pong_Node) ->
{pong, Pong_Node} ! fi nished,
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
recei ve
pong - >
io:format ("Ping received pong~n", [])
end,
ping(N - 1, Pong_Node).

pong() ->
recei ve
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,
pong()
end.

start_pong() ->
regi ster(pong, spawn(tutl1l?7, pong, [])).

start_pi ng(Pong_Node) ->
spawn(tut 17, ping, [3, Pong_Node]).

Let us assume there are two computers called gollum and kosken. First a node is started on kosken, called ping, and
then a node on gollum, called pong.

On kosken (on a Linux/UNIX system):

kosken> erl| -sname ping
Erl ang (BEAM emul ator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ~"Q

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

4.3 Concurrent Programming

(pi ng@osken) 1>

On gollum:

gol lum> erl -snanme pong
Erl ang (BEAM enul ator version 5.2.3.7 [hipe] [threads: 0]

Eshell V5.2.3.7 (abort with *"G
(pong@ol | um 1>

Now the "pong" process on gollum is started:

(pong@ol | um) 1> tut17: start_pong() .
true

And the "ping" process on kosken is started (from the code above you can see that a parameter of thest art _pi ng
function is the node name of the Erlang system where "pong" is running):

(pi ng@osken) 1> tut17:start_pi ng(pong@ol | un.
<0. 37. 0>

Pi ng recei ved pong

Pi ng recei ved pong

Pi ng recei ved pong

ping finished

As shown, the ping pong program has run. On the "pong" side:

(pong@ol | um 2>
Pong recei ved ping
Pong recei ved ping
Pong recei ved ping
Pong fi ni shed
(pong@ol | um 2>

Looking at thet ut 17 code, you see that the pong function itself is unchanged, the following lines work in the same
way irrespective of on which node the "ping" processis executes:

{ping, Ping_PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong

Thus, Erlang pids contain information about where the process executes. So if you know the pid of a process, the "!"
operator can be used to send it a message disregarding if the processis on the same node or on a different node.

A differenceis how messages are sent to aregistered process on another node:

{pong, Pong_Node} ! {ping, self()},

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

Atuple{regi st ered_name, node_nane} isusedinstead of just ther egi st er ed_nane.

In the previous example, "ping" and "pong" were started from the shells of two separate Erlang nodes. spawn can
also be used to start processes in other nodes.

The next example is the ping pong program, yet again, but thistime "ping" is started in another node:

-nmodul e(tut18).
-export([start/1, ping/2, pong/0])

pi ng(0, Pong_Node) ->
{pong, Pong_Node} ! fi ni shed,
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive
pong ->
io:format ("Ping received pong~n", [])
end
pi ng(N - 1, Pong_Node)

pong() ->
receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID} ->
io:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start (Pi ng_Node) ->
regi ster(pong, spawn(tutl18, pong, []))
spawn(Pi ng_Node, tut18, ping, [3, node()])

Assuming an Erlang system called ping (but not the "ping" process) has already been started on kosken, then on gollum
thisis done:

(pong@ol | un) 1> tut 18: st art (pi ng@osken).
<3934. 39. 0>

Pong recei ved pi ng

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

Pong fi ni shed

ping finished

Noticethat al the output is received on gollum. Thisis because the I/O system finds out where the processis spawned
from and sends all output there.

4.3.5 A Larger Example

Now for a larger example with a simple "messenger”. The messenger is a program that allows users to log in on
different nodes and send simple messages to each other.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

4.3 Concurrent Programming

Before starting, notice the following:

» Thisexample only shows the message passing logic - no attempt has been made to provide a nice graphical user
interface, although this can also be donein Erlang.

e Thissort of problem can be solved easier by use of thefacilitiesin OTP, which also provide methods for updating
code on the fly and so on (see OTP Design Principles).

» Thefirst program contains some inadequacies regarding handling of nodes which disappear. These are corrected
in alater version of the program.

The messenger is set up by allowing "clients" to connect to a central server and say who and where they are. That is,
auser does not need to know the name of the Erlang node where another user islocated to send a message.

Filemessenger. erl :

%6 Message passing utility.
%86 User interface:
%806 | ogon(Nane)

9% One user at a time can log in fromeach Erlang node in the
%80 system nessenger: and choose a suitable Nane. If the Nane
%80 is already | ogged in at another node or if someone else is
%86 already | ogged in at the sane node, login will be rejected
%80 with a suitable error nessage.

%986 | ogof f ()
%80 Logs of f anybody at that node
%86 message(ToNane, Message)

%80 sends Message to ToNane. Error nessages if the user of this
9% function is not logged on or if ToName is not | ogged on at
%80 any node.

%886

%806 One node in the network of Erlang nodes runs a server which maintains

%80 dat a about the | ogged on users. The server is registered as "messenger"
%86 Each node where there is a user logged on runs a client process registered
%86 as "nmess_client"

%886

%806 Prot ocol between the client processes and the server

%886

%®0 To server: {dientPid, |ogon, UserNane}

%®0 Repl y {messenger, stop, user_exists_at_other_node} stops the client
%®0 Repl y { messenger, |ogged_on} |ogon was successful

%886

%®80 To server: {dientPid, |ogoff}

%80 Repl y: {nmessenger, |ogged off}

%886

%B80 To server: {dientPid, |ogoff}

%B806 Repl y: no reply

%886

%®860 To server: {dientPid, nessage_to, ToNane, Message} send a nessage
%80 Repl y: {nmessenger, stop, you_are_not_| ogged_on} stops the client
%m®0 Repl y: {messenger, receiver_not_found} no user with this nane | ogged on
%m®0 Repl y: {nmessenger, sent} Message has been sent (but no guarantee)
%886

%80 To client: {nessage_from Nanme, Message},

%886

%®% Prot ocol between the "commands" and the client

%886

%B06 St art ed: nmessenger: client(Server _Node, Nane)

%86 To client: |ogoff

%®0 To client: {nessage_to, ToNane, Message}

%886

% @06 Confi guration: change the server_node() function to return the

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

%@ name of the node where the nessenger server runs

- modul e(messenger) .
-export([start_server/0, server/1, logon/1l, |ogoff/0, nessage/2, client/2]).

%80 Change the function below to return the name of the node where the
%86 nessenger server runs
server_node() ->

messenger @i | | .

%Bo This is the server process for the "nmessenger"
9%Bbthe user list has the format [{CientPidl, Namel},{CdientPid22, Nanme2},...]
server (User _List) ->
receive
{From |ogon, Nane} ->
New User List = server_l ogon(From Nane, User List),
server (New _User_List);
{From |ogoff} ->
New User List = server_logoff(From User List),
server (New _User_List);
{From nessage_to, To, Message} ->
server_transfer(From To, Message, User_List),
io:format("list is now ~p~n", [User_List]),
server (User _List)
end.

%86 Start the server
start_server() ->

regi ster (nmessenger, spawn(nessenger, server, [[]])).

%®806 Server adds a new user to the user list
server _| ogon(From Nane, User List) ->

%6 check if | ogged on anywhere el se

case |ists: keymenber (Nanme, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, % eject |ogon
User _List;
fal se ->
From! {messenger, |ogged_on},
[{From Nane} | User_List] %dd user to the |ist
end.

%80 Server del etes a user fromthe user |ist
server_| ogof f (From User_List) ->
lists: keydel ete(From 1, User_List).

%B0 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%% check that the user is |ogged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From! {messenger, stop, you_are_not_| ogged_on};
{val ue, {From Nane}} ->
server_transfer(From Nanme, To, Message, User_List)
end.
%801 f the user exists, send the nessage
server_transfer(From Nanme, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |ists: keysearch(To, 2, User_List) of
fal se ->
From ! {messenger, receiver_not_found};
{val ue, {ToPid, To}} ->
ToPid ! {nessage_from Nanme, Message},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

4.3 Concurrent Programming

From ! {nessenger, sent}
end.

%86 User Commands
| ogon(Nane) ->
case whereis(nmess_client) of
undefined ->
regi ster(mess_client,
spawn(messenger, client, [server_node(), Nane]));
_ -> already_| ogged_on
end.

| ogoff() ->
nmess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(nmess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client ! {message_to, ToNane, Message},
ok
end.

%m®0 The client process which runs on each server node
client(Server_Node, Nane) ->
{nmessenger, Server_Node} ! {self(), |ogon, Nane},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive
| ogoff ->
{nmessenger, Server_Node} ! {self(), logoff},
exit(normal);
{nmessage_to, ToNane, Message} ->
{nmessenger, Server_Node} ! {self(), message_to, ToNane, Message},
await_result();
{nessage_from FromNane, Message} ->
io:format ("Message from ~p: ~p~n", [FronmNane, Message])
end,
client(Server_Node).

%WBowait for a response fromthe server
await_result() ->
receive
{nessenger, stop, Wiy} -> % Stop the client
io:format ("~p~n", [Wy]),
exit(normal);
{nmessenger, What} -> % Nornal response
io:format ("~p~n", [Wat])
end.

To use this program, you need to:

e Configuretheser ver _node() function.
» Copy the compiled code (messenger . bean) to the directory on each computer where you start Erlang.

In the following example using this program, nodes are started on four different computers. If you do not have that
many machines available on your network, you can start several nodes on the same machine.

Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, c3@gollum.

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

First the server at messenger@super is started up:

(messenger @uper) 1> nmessenger: start_server().
true

Now Peter logs on at c1@hbilbo:

(c1@il bo) 1> nmessenger: | ogon(peter).
true
| ogged_on

James logs on at c2@kosken:

(c2@osken) 1> nessenger: | ogon(j anes)
true
| ogged_on

And Fred logs on at c3@gollum:

(c3@ol | um 1> nmessenger: | ogon(fred).
true
| ogged_on

Now Peter sends Fred a message:

(cl1@il bo) 2> nmessenger: nessage(fred, "hello").
ok
sent

Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"

(c3@ol | um) 2> nessenger: nessage(peter, "go away, |'m busy")
ok

sent

(c3@ol | um) 3> nmessenger: | ogoff ()

| ogof f

James now tries to send a message to Fred:

(c2@osken) 2> nmessenger: nessage(fred, "peter doesn't |ike you").
ok
recei ver_not _f ound

But thisfails as Fred has already logged off.
First let uslook at some of the new concepts that have been introduced.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

4.3 Concurrent Programming

There are two versions of the ser ver _t r ansf er function: one with four arguments (ser ver _transfer/ 4)
and onewith five (ser ver _tr ansf er/5). These are regarded by Erlang as two separate functions.

Notice how to write the ser ver function so that it calls itself, through ser ver (User _Li st), and thus creates
aloop. The Erlang compiler is "clever" and optimizes the code so that this really is a sort of loop and not a proper
function call. But this only works if there is no code after the call. Otherwise, the compiler expects the call to return
and make a proper function call. This would result in the process getting bigger and bigger for every loop.

Functionsinthel i st s moduleareused. Thisisavery useful module and astudy of the manual page isrecommended
(erl -man lists).lists: keymenber (Key, Position, Li sts) looks through alist of tuples and looks
at Posi ti onineachtupleto seeif itisthe same asKey. Thefirst element is position 1. If it finds a tuple where the
element at Posi ti on isthesameasKey, it returnst r ue, otherwisef al se.

3> |ists: keymenber(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}])
true

4> |ists: keymenber (p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}])
fal se

lists: keydel et e worksin the same way but deletes the first tuple found (if any) and returns the remaining list:

5> |ists: keydelete(a, 2, [{x,y,z},{b,b,b}, {b,a,c},{q,r,s}]).
[{x,y,z},{b, b, b}, {q,r,s}]

lists: keysearchislikel i sts: keynmenber, butitreturns{val ue, Tupl e_Found} ortheatomf al se.
There are many very useful functionsinthel i st s module.

An Erlang process (conceptually) runs until it doesar ecei ve and there is no message which it wants to receivein
the message queue. "conceptually" is used here because the Erlang system shares the CPU time between the active
processes in the system.

A process terminates when there is nothing more for it to do, that is, the last function it calls ssimply returns and does
not call another function. Another way for a process to terminate isfor it to call exi t/ 1. Theargumenttoexi t/ 1
has a special meaning, which is discussed later. In thisexample, exi t (nor mal) isdone, which has the same effect
as a process running out of functionsto call.

The BIF wher ei s(Regi st er edNane) checks if a registered process of name Regi st er edNane exists. If it
exists, the pid of that processis returned. If it does not exist, the atom undef i ned is returned.

Y ou should by now be able to understand most of the code in the messenger-module. Let us study one case in detail:
amessage is sent from one user to another.

Thefirst user "sends" the message in the example above by:

messenger : nessage(fred, "hello")

After testing that the client process exists:

wher ei s(nmess_cl i ent)

And amessageissenttonmess_cl i ent:

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

mess_client ! {nmessage to, fred, "hello"}

The client sends the message to the server by:

{messenger, nessenger @uper} ! {self(), nessage_to, fred, "hello"},

And waits for areply from the server.

The server receives this message and calls:

server_transfer(From fred, "hello", User_List),

This checks that the pid Fr omisinthe User _Li st :

l'i sts: keysearch(From 1, User_List)

If keysear ch returnsthe atom f al se, some error has occurred and the server sends back the message:

From ! {nmessenger, stop, you_are_not_| ogged_on}

Thisisreceived by the client, whichinturn doesexi t (nor mal) andterminates. If keysear ch returns{ val ue,
{From Nane}} itiscertain that the user islogged on and that his name (peter) isin variable Nane.

Let usnow call:

server_transfer(From peter, fred, "hello", User_List)

Notice that asthisisser ver _t ransf er/ 5, it isnot the same as the previous function ser ver _t ransf er/ 4.
Another keysear ch isdoneon User _Li st to find the pid of the client corresponding to fred:

lists: keysearch(fred, 2, User_List)

This time argument 2 is used, which is the second element in the tuple. If this returns the atom f al se, fred is not
logged on and the following message is sent:

From ! {messenger, receiver_not_found};

Thisisreceived by the client.
If keysear ch returns:

{value, {ToPid, fred}}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 109

4.4 Robustness

The following message is sent to fred's client:

ToPid ! {nessage_from peter, "hello"},

The following message is sent to peter's client:

From ! {nessenger, sent}

Fred's client receives the message and printsiit:

{message_from peter, "hello"} ->
i o:format ("Message from ~p: ~p~n", [peter, "hello"])

Peter's client receives the messageintheawai t _r esul t function.

4.4 Robustness

Several things are wrong with the messenger example in A Larger Example. For example, if a node where a user is
logged on goes down without doing alogoff, the user remainsin the server's User _Li st , but the client disappears.
This makesit impossible for the user to log on again as the server thinks the user already is logged on.

Or what happensif the server goesdown in the middle of sending amessage, leaving the sending client hanging forever
intheawai t _resul t function?

4.4.1 Time-outs

Before improving the messenger program, let us look at some general principles, using the ping pong program as an
example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom f i ni shed asa
message to "pong" so that "pong” can aso finish. Another way to let "pong” finish is to make "pong" exit if it does
not receive a message from ping within a certain time. This can be done by adding a time-out to pong as shown in
the following example:

- modul e(tut 19).
-export([start_ping/1, start_pong/0, ping/2, pong/0]).

pi ng(0, Pong_Node) ->
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
recei ve
pong - >
io:format ("Ping recei ved pong~n", [])
end,
ping(N - 1, Pong_Node).

pong() ->
recei ve
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

pong()
after 5000 ->

io:format ("Pong tined out~n", [])
end

start_pong() ->
regi ster(pong, spawn(tutl19, pong, [])).

start_pi ng(Pong_Node) ->
spawn(tut 19, ping, [3, Pong_Node]).

After this is compiled and the file t ut 19. beamis copied to the necessary directories, the following is seen on
(pong@kosken):

(pong@osken) 1> tut19: start_pong()
true

Pong recei ved ping

Pong recei ved ping

Pong recei ved ping

Pong tined out

And the following is seen on (ping@gollum):

(pi ng@ol | um) 1> tut 19: start_pi ng(pong@osken) .
<0. 36. 0>

Pi ng recei ved pong

Pi ng recei ved pong

Pi ng recei ved pong

ping finished

Thetime-out isset in:

pong() S
receive
{ping, Ping PID} ->

i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()

after 5000 ->
io:format ("Pong tined out~n", [])

end

Thetime-out (af t er 5000) isstarted whenr ecei ve isentered. Thetime-out iscanceled if { pi ng, Pi ng_PI D}
is received. If {pi ng, Pi ng_PI D} is not received, the actions following the time-out are done after 5000
milliseconds. af t er must belastinther ecei ve, that is, preceded by all other message reception specificationsin
ther ecei ve. Itisalso possible to call afunction that returned an integer for the time-out:

after pong_tinmeout() ->

In general, there are better ways than using time-outs to supervise parts of adistributed Erlang system. Time-outs are
usualy appropriate to supervise external events, for example, if you have expected a message from some external

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 111

4.4 Robustness

system within a specified time. For example, atime-out can be used to log a user out of the messenger system if they
have not accessed it for, say, ten minutes.

4.4.2 Error Handling

Before going into details of the supervision and error handling in an Erlang system, let us see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executesexi t (nor mal) or simply runs out of things to do has anormal exit.

A process which encounters aruntime error (for example, divide by zero, bad match, trying to call afunction that does
not exist and so on) exits with an error, that is, has an abnormal exit. A process which executes exit(Reason) where
Reason isany Erlang term except the atom nor nal , also has an abnormal exit.

An Erlang process can set up linksto other Erlang processes. If aprocess callslink(Other_Pid) it setsup abidirectional
link between itself and the process called & her _Pi d. When a process terminates, it sends something called asignal
to al the processesit has links to.

The signal carries information about the pid it was sent from and the exit reason.
The default behaviour of aprocess that receives anormal exit is to ignore the signal.
The default behaviour in the two other cases (that is, abnormal exit) aboveisto:

e Bypass al messagesto the receiving process.
* Kill the receiving process.
» Propagate the same error signa to the links of the killed process.

In thisway you can connect all processesin atransaction together using links. If one of the processes exits abnormally,
all the processes in the transaction are killed. Asit is often wanted to create a process and link to it at the same time,
thereis a specia BIF, spawn_link that does the same as spawn, but also creates alink to the spawned process.

Now an example of the ping pong example using links to terminate "pong":

- modul e(t ut 20) .
-export([start/1, ping/2, pong/0]).

pi ng(N, Pong_Pid) ->
I'i nk(Pong_Pi d),
pi ng1l(N, Pong_Pid).

pi ngl(0, _) ->
exit(ping);

pi ngl(N, Pong_Pid) ->
Pong_Pid ! {ping, self()}
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end
pi ngl(N - 1, Pong_Pid).

pong() ->
recei ve
{ping, Ping_PID} ->
io:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start (Pi ng_Node) ->

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

PongPI D = spawn(tut 20, pong,
spawn(Pi ng_Node, tut20, ping,

(1),
[3, PongPI D).

(s1@ill)3> tut20:start(s2@osken).
Pong recei ved ping

<3820. 41. 0>
Pi ng received
Pong recei ved
Pi ng received
Pong recei ved
Pi ng received

pong
pi ng
pong
pi ng
pong

Thisis a dlight modi