| v

ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 7.3.1.4
December 1, 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 1, 2017

1.1 Communication in Erlang

1 ERTS User's Guide

The Erlang Runtime System Application ERTS.

1.1 Communication in Erlang

Communication in Erlang is conceptually performed using asynchronous signaling. All different executing entities
such as processes, and ports communicate via asynchronous signals. The most commonly used signal is a message.
Other common signals are exit, link, unlink, monitor, demonitor signals.

1.1.1 Passing of Signals

The amount of timethat passes between asignal being sent and the arrival of the signal at the destination is unspecified
but positive. If the receiver has terminated, the signal will not arrive, but it is possible that it triggers another signal.
For example, alink signal sent to a non-existing process will trigger an exit signal which will be sent back to where
the link signal originated from. When communicating over the distribution, signals may be lost if the distribution
channel goes down.

The only signal ordering guarantee given is the following. If an entity sends multiple signals to the same destination
entity, the order will be preserved. That is, if A sends asigna S1 to B, and later sends the signal S2 to B, Sl is
guaranteed not to arrive after S2.

1.1.2 Synchronous Communication

Some communication issynchronous. If broken down into pieces, asynchronous communi cation operation, consists of
two asynchronous signals. Onerequest signal and onereply signal. An example of such a synchronous communication
isacal toprocess_i nf o/ 2 whenthefirst argument isnot sel f () . The caller will send an asynchronous signal
requesting information, and will then wait for the reply signal containing the requested information. When the request
signal reaches its destination the destination process replies with the requested information.

1.1.3 Implementation

The implementation of different asynchronous signals in the VM may vary over time, but the behaviour will always
respect this concept of asynchronous signals being passed between entities as described above.

By inspecting the implementation you might notice that some specific signal actually gives a stricter guarantee than
described above. It is of vital importance that such knowledge about the implementation is not used by Erlang code,
since the implementation might change at any time without prior notice.

Some example of major implementation changes:

e Asof ERTSversion 5.5.2 exit signals to processes are truly asynchronously delivered.
e Asof ERTSversion 5.10 all signals from processes to ports are truly asynchronously delivered.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.2 Time and Time Correction in Erlang

1.2 Time and Time Correction in Erlang

1.2.1 New Extended Time Functionality

Note:

Asof OTP 18 (ERTS version 7.0) the time functionality of Erlang has been extended. This includes a new API
for time and time warp modes that alter the system behavior when system time changes.

The default time warp mode has the same behavior as before, and the old API still works. Thus, you are not
required to change anything unlessyou want to. However, you are strongly encouraged to use the new API instead
of the old API based on er | ang: now 0. er | ang: now O is deprecated, as it is and will be a scalability
bottleneck.

By using the new API, you automatically get scalability and performance improvements. This also enables you
to use the multi-time warp mode that improves accuracy and precision of time measurements.

1.2.2 Terminology

To make it easier to understand this section, some terms are defined. Thisis a mix of our own terminology (Erlang/
OS system time, Erlang/OS monotonic time, time warp) and globally accepted terminology.

Monotonically Increasing

In a monatonically increasing sequence of values, all values that have a predecessor are either larger than or equal
to its predecessor.

Strictly Monotonically Increasing

In a strictly monotonically increasing sequence of values, all values that have a predecessor are larger than its
predecessor.

UuTl
Universal Time. UT1 is based on the rotation of the earth and conceptually means solar time at 0° longitude.

uTC

Coordinated Universal Time. UTC amost aligns with UT1. However, UTC uses the Sl definition of a second, which
has not exactly the same length as the second used by UT1. This means that UTC slowly drifts from UT1. To keep
UTC relatively in sync with UT1, leap seconds are inserted, and potentially also deleted. That is, an UTC day can be
86400, 86401, or 86399 seconds long.

POSIX Time

Time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01. A day in POSI X timeis defined to be exactly
86400 seconds long. Strangely enough Epoch is defined to be atimein UTC, and UTC has another definition of how
long aday is. Quoting the Open Group " POSI X time is therefore not necessarily UTC, despite its appearance” .
The effect of thisis that when an UTC leap second is inserted, POSIX time either stops for a second, or repeats the
last second. If an UTC leap second would be deleted (which has not happened yet), POSIX time would make a one
second leap forward.

Time Resolution
The shortest time interval that can be distinguished when reading time values.

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href
href
href

1.2 Time and Time Correction in Erlang

Time Precision

The shortest time interval that can be distinguished repeatedly and reliably when reading time values. Precision is
limited by the resolution, but resolution and precision can differ significantly.

Time Accuracy

The correctness of time values.

Time Warp

A timewarp is aleap forwards or backwardsin time. That is, the difference of time values taken before and after the
time warp does not correspond to the actual elapsed time.

OS System Time

The operating systems view of POS X time. To retrieve it, call os: system ti me() . This may or may not be an
accurate view of POSIX time. This time may typically be adjusted both backwards and forwards without limitation.
That is, time warps may be observed.

To get information about the Erlang runtime system's source of OS system time, call
erl ang: system.info(os_systemtinme_source).
OS Monotonic Time

A monotonically increasing time provided by the operating system. Thistime does not leap and has arelatively steady
frequency although not completely correct. However, it is not uncommon that OS monotonic time stopsiif the system
is suspended. This time typically increases since some unspecified point in time that is not connected to OS system
time. This type of timeis not necessarily provided by all operating systems.

To get information about the Erlang runtime system's source of OS monotonic time, call
erl ang: system.info(os_nonotonic_tinme_source).

Erlang System Time

The Erlang runtime systems view of POSI X time. To retrieveit, call er | ang: system time().

This time may or may not be an accurate view of POSIX time, and may or may not align with OS system time. The
runtime system works towards aligning the two system times. Depending on the time warp mode used, this can be
achieved by letting Erlang system time perform atime warp.

Erlang Monotonic Time

A monotonically increasing time provided by the Erlang runtime system. Erlang monotonic time increases since some
unspecified point intime. To retrieveit, call er | ang: nonot oni c_ti ne().

The accuracy and precision of Erlang monotonic time heavily depends on the following:

* Accuracy and precision of OSmonotonic time
e Accuracy and precision of OSsystemtime
e timewarp mode used

On a system without OS monotonic time, Erlang monotonic time guarantees monotonicity, but cannot give other
guarantees. The frequency adjustments made to Erlang monotonic time depend on the time warp mode used.

Internally in the runtime system, Erlang monatonic time is the "time engine" that is used for more or less everything
that has anything to do with time. All timers, regardless of itisareceive ... after timer, BIF timer, or a
timerinthet i mer module, aretriggered relative Erlang monotonic time. Even Erlang systemtimeis based on Erlang
monotonic time. By adding current Erlang monotonic timewith current time offset, you get current Erlang systemtime.

Toretrieve current time offset, call er | ang: ti me_of f set/ 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

1.2 Time and Time Correction in Erlang

1.2.3 Introduction

Timeis vital to an Erlang program and, more importantly, correct timeis vital to an Erlang program. As Erlang isa
language with soft real -time properties and we can expresstimein our programs, the Virtual Machine and the language
must be careful about what is considered a correct time and in how time functions behave.

When Erlang was designed, it was assumed that the wall clock time in the system showed a monotonic time moving
forward at exactly the same pace as the definition of time. Thismore or less meant that an atomic clock (or better time
source) was expected to be attached to your hardware and that the hardware was then expected to be locked away from
any human tinkering forever. While this can be a compelling thought, it is simply never the case.

A "normal" modern computer cannot keep time, not on itself and not unless you have a chip-level atomic clock wired
to it. Time, as perceived by your computer, must normally be corrected. Hence the Network Time Protocol (NTP)
protocol, together with the nt pd process, does its best to keep your computer time in sync with the correct time.
Between NTP corrections, usually aless potent time-keeper than an atomic clock is used.

However, NTP is not fail-safe. The NTP server can be unavailable, nt p. conf can be wrongly configured, or
your computer may sometimes be disconnected from Internet. Furthermore, you can have a user (or even system
administrator) who thinks the correct way to handle Daylight Saving Time isto adjust the clock one hour two times a
year (which is the incorrect way to do it). To complicate things further, this user fetched your software from Internet
and has not considered what the correct time is as perceived by a computer. The user does not care about keeping the
wall clock in sync with the correct time. The user expects your program to have unlimited knowledge about the time.

Most programmers al so expect timeto bereliable, at least until they realizethat thewall clock time on their workstation
is off by aminute. Then they set it to the correct time, but most probably not in a smooth way.

The number of problems that arise when you always expect the wall clock time on the system to be correct can be
immense. Erlang therefore introduced the "corrected estimate of time", or the "time correction”, many years ago.
The time correction relies on the fact that most operating systems have some kind of monotonic clock, either areal-
time extension or some built-in "tick counter" that is independent of the wall clock settings. This counter can have
microsecond resolution or much less, but it has a drift that cannot be ignored.

1.2.4 Time Correction

If time correction is enabled, the Erlang runtime system makes use of both OS system time and OS monotonic time,
to adjust the frequency of the Erlang monotonic clock. Time correction ensures that Erlang monotonic time does not
warp and that the frequency isrelatively accurate. The type of frequency adjustments depends on the time warp mode
used. Section Time Warp Modes provides more details.

By default time correction is enabled if support for it exists on the specific platform. Support for it
includes both OS monotonic time, provided by the OS, and an implementation in the Erlang runtime
system using OS monotonic time. To check if your system has support for OS monotonic time, call
erl ang: system.i nfo(os_nonotonic_tinme_source). To check if time correction is enabled on your
system, call er |l ang: system i nfo(time_correction).

To enable or disable time correction, pass command-lineargument +c [true| fal se] toerl .

If time correction is disabled, Erlang monotonic time may warp forwards or stop, or even freeze for extended periods
of time. There are then no guarantees that the frequency of the Erlang monotonic clock is accurate or stable.

You typically never want to disable time correction. Previously a performance penalty was associated with time
correction, but nowadays it is usually the other way around. If time correction is disabled, you probably get bad
scalability, bad performance, and bad time measurements.

1.2.5 Time Warp Safe Code

Time warp safe code can handle atime warp of Erlang systemtime.

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

er | ang: now 0 behavesbad when Erlang system timewarps. When Erlang system time doesatimewarp backwards,
the values returned from er | ang: now O freeze (if you disregard the microsecond increments made because of the
actual call) until OS system time reaches the point of the last value returned by er | ang: now 0. This freeze can
continue for along time. It can take years, decades, and even longer until the freeze stops.

All usesof er | ang: now’ 0 are not necessarily time warp unsafe. If you do not useit to get time, it istime warp safe.
However, all usesof er | ang: now' 0 are suboptimal from a performance and scalability perspective. So you really
want to replace the use of it with other functionality. For examples of how to replace the use of er | ang: now 0,
see Section How to Work with the New API.

1.2.6 Time Warp Modes

Current Erlang systemtime is determined by adding current Erlang monotonic time with current time offset. Thetime
offset is managed differently depending on which time warp mode you use.

To set the time warp mode, pass command-line argument +C [no_ti me_war p| si ngl e_ti ne_war p|
multi _time_warp] toerl.

No Time Warp Mode

The time offset is determined at runtime system start and does not change later. Thisis the default behavior, but not
becauseit isthe best mode (whichitisnot). Itisdefault only becausethisishow theruntime system behaved until ERTS
7.0. Ensurethat your Erlang code that may execute during atime warp is time warp safe before enabling other modes.

Asthetime offset is not allowed to change, time correction must adjust the frequency of the Erlang monotonic clock
to align Erlang system time with OS system time smoothly. A significant downside of this approach is that we on
purpose will use a faulty frequency on the Erlang monotonic clock if adjustments are needed. This error can be as
large as 1%. This error will show up in al time measurementsin the runtime system.

If time correction is not enabled, Erlang monotonic time freezes when OS system time leaps backwards. The freeze of
monatonic time continues until OS system time catches up. The freeze can continue for along time. When OS system
time leaps forwards, Erlang monotonic time also leaps forward.

Single Time Warp Mode
This mode is more or less a backwards compatibility mode as of its introduction.

On an embedded system it is not uncommon that the system has no power supply, not even a battery, when it is shut
off. The system clock on such a system is typically way off when the system boots. If no time warp mode is used,
and the Erlang runtime system is started before OS system time has been corrected, Erlang system time can be wrong
for along time, centuries or even longer.

If you need to use Erlang code that is not time warp safe, and you need to start the Erlang runtime system before OS
system time has been corrected, you may want to use the single time warp mode.

Note:

There are limitations to when you can execute time warp unsafe code using thismode. If it is possible to use time
warp safe code only, it is much better to use the multi-time warp mode instead.

Using the single time warp mode, the time offset is handled in two phases:
Preliminary Phase

This phase starts when the runtime system starts. A preliminary time offset based on current OS system time is
determined. This offset is from now on to be fixed during the whole preliminary phase.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.2 Time and Time Correction in Erlang

If time correction is enabled, adjustmentsto the Erlang monotonic clock are made to keep its frequency as correct
as possible. However, no adjustments are made trying to align Erlang system time and OS system time. That
is, during the preliminary phase Erlang system time and OS system time can diverge from each other, and no
attempt is made to prevent this.

If time correction is disabled, changes in OS system time affects the monotonic clock the same way as when the
no time warp mode is used.

Final Phase

Thisphase beginswhentheuser finalizesthetimeoffset by callinger | ang: system fl ag(ti ne_of f set,
finalize).Thefinaization can only be performed once.

During finalization, the time offset is adjusted and fixated so that current Erlang system time aligns with current
OS system time. As the time offset can change during the finalization, Erlang system time can do atime warp at
this point. The time offset is from now on fixed until the runtime system terminates. If time correction has been
enabled, the time correction from now on also makes adjustments to align Erlang system time with OS system
time. When the system isin the final phase, it behaves exactly asin the no time warp mode.

In order for thisto work properly, the user must ensure that the foll owing two requirements are satisfied:
Forward Time Warp

The time warp made when finalizing the time offset can only be done forwards without encountering problems.
Thisimplies that the user must ensure that OS system time is set to atime earlier or equal to actual POSIX time
before starting the Erlang runtime system.

If you are not surethat OS system timeis correct, set it to atimethat is guaranteed to be earlier than actual POSIX
time before starting the Erlang runtime system, just to be safe.

Finalize Correct OS System Time
OS system time must be correct when the user finalizes the time offset.
If these requirements are not fulfilled, the system may behave very bad.

Assuming that these requirements are fulfilled, time correction is enabled, and that OS system time is adjusted using
atime adjustment protocol such as NTP, only small adjustments of Erlang monotonic time are needed to keep system
times aligned after finalization. Aslong as the system is not suspended, the largest adjustments needed are for inserted
(or deleted) leap seconds.

Warning:
To use this mode, ensure that all Erlang code that will execute in both phases are time war p safe.
Code executing only in the final phase does not have to be able to cope with the time warp.

Multi-Time Warp Mode

Multi-time warp mode in combination with time correction is the preferred configuration. This as the Erlang runtime
system have better performance, scale better, and behave better on aimost all platforms. In addition, the accuracy and
precision of time measurements are better. Only Erlang runtime systems executing on ancient platforms benefit from
another configuration.

Thetime offset may change at any time without limitations. That is, Erlang system time may perform time warps both
forwards and backwards at any time. Aswe align Erlang system time with OS system time by changing the time offset,
we can enable a time correction that tries to adjust the frequency of the Erlang monotonic clock to be as correct as
possible. This makes time measurements using Erlang monotonic time more accurate and precise.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

If time correction is disabled, Erlang monotonic time leaps forward if OS system time leaps forward. If OS system
time leaps backwards, Erlang monotonic time stops briefly, but it does not freeze for extended periods of time. This
asthe time offset is changed to align Erlang system time with OS system time.

Warning:

To use this mode, ensure that al Erlang code that will execute on the runtime system is time warp safe.

1.2.7 New Time API

Theoldtime APl isbasedoner | ang: now 0. er | ang: now 0 wasintended to be used for many unrelated things.
Thistied these unrelated operations together and caused issues with performance, scalability, accuracy, and precision
for operations that did not need to have such issues. To improve this, the new API spreads different functionality over
multiple functions.

To be backwards compatible, er | ang: now 0 remains asis, but you are strongly discouraged from using it. Many
use cases of er | ang: now 0 prevents you from using the new multi-time warp mode, which is an important part of
this new time functionality improvement.

Some of the new BIFson some systems, perhaps surprisingly, return negative integer values on anewly started runtime
system. Thisis not a bug, but a memory use optimization.

The new API consists of the following new BIFs:

e erlang:convert_time_unit/3
 erlang:nonotonic_tine/0

e erlang:nonotonic_tine/l

* erlang:systemtinme/0

e erlang:systemtine/l

e erlang:tinme_offset/0

e erlang:time_offset/1

e erlang:tinestanp/0

* erlang:unique_integer/0

e erlang:unique_integer/1

e o0s:systemtine/0

e o0s:systemtine/l

The new API also consists of extensions of the following existing BIFs:

* erlang:nonitor(tinme_offset, clock_service)

« erlang:systemflag(tinme_offset, finalize)

« erlang: system.info(os_nonotonic_tinme_source)
e erlang:systeminfo(os_systemtinme_source)

e erlang:systeminfo(tinme_offset)

« erlang:systeminfo(time_warp_node)

e erlang:systeminfo(time_correction)

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.2 Time and Time Correction in Erlang

New Erlang Monotonic Time

Erlang monotonic time as such is new as of ERTS 7.0. It isintroduced to detach time measurements, such as elapsed
time from calendar time. In many use cases there is a need to measure elapsed time or specify a time relative to
another point in time without the need to know the involved timesin UTC or any other globally defined time scale.
By introducing a time scale with a local definition of where it starts, time that do not concern calendar time can be
managed on that time scale. Erlang monotonic time uses such atime scale with alocally defined start.

Theintroduction of Erlang monotonic time allows usto adjust the two Erlang times (Erlang monotonic time and Erlang
system time) separately. By doing this, the accuracy of elapsed time does not have to suffer just because the system
time happened to be wrong at some point in time. Separate adjustments of thetwo timesare only performed in thetime
warp modes, and only fully separated in the multi-time warp mode. All other modes than the multi-time warp mode
are for backwards compatibility reasons. When using these modes, the accuracy of Erlang monotonic time suffer, as
the adjustments of Erlang monotonic time in these modes are more or less tied to Erlang system time.

The adjustment of system time could have been made smother than using a time warp approach, but we think that
would be abad choice. Aswe can express and measure time that is not connected to calendar time by the use of Erlang
monotonic time, it is better to expose the change in Erlang system time immediately. This as the Erlang applications
executing on the system can react on the change in system time as soon as possible. Thisis also more or less exactly
how most operating systems handl e this (OS monotonic time and OS system time). By adjusting system time smoothly,
we would just hide the fact that system time changed and make it harder for the Erlang applications to react to the
change in a sensible way.

To beableto react to achangein Erlang system time, you must be able to detect that it happened. The changein Erlang
system time occurs when current time offset is changed. We have therefore introduced the possibility to monitor the
timeoffsetusinger | ang: nonitor (ti me_of fset, clock_servi ce).A processmonitoring the time offset
is sent a message on the following format when the time offset is changed:

{' CHANGE', MonitorReference, time_offset, clock_service, NewTli meCffset}

Unique Values

Besidesreportingtime, er | ang: now' 0 also produces unique and strictly monotonically increasing values. To detach
this functionality from time measurements, we have introduced er | ang: uni que_i nt eger ().

How to Work with the New API

Previoudly er | ang: now O was the only option for doing many things. This section deals with some things that
erl ang: now 0 can be used for, and how you are to these using the new API.

Retrieve Erlang System Time

Don't:

Useer | ang: now O to retrieve current Erlang system time.

Do:

Useer | ang: system ti ne/ 1 toretrieve current Erlang system time on the time unit of your choice.
If you want the same format asreturned by er | ang: now/ 0, useer | ang: t i nest anp/ 0.

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

Measure Elapsed Time

Don't:
Take timestampswith er | ang: now/ 0 and calculate the differencein timewith t i mer : now_di f f/ 2.

Do:

Take timestamps with er | ang: nonot oni c_ti ne/ 0 and caculate the time difference using ordinary
subtraction. The result will bein nat i ve time unit. If you want to convert the result to another time unit, you
canuseer | ang: convert _tine_unit/3.

An easier way to do thisisto use er | ang: nonot oni ¢_t i me/ 1 with the desired time unit. However, you
can then lose accuracy and precision.
Determine Order of Events

Don't:

Determine the order of events by saving atimestamp with er | ang: now' 0 when the event occurs.

Do:

Determine the order of events by saving the integer returned by
erl ang: uni que_i nt eger ([nonot oni c]) when the event occurs. These integers will be strictly
monotonically ordered on current runtime system instance corresponding to creation time.

Determine Order of Events with Time of the Event

Don't:

Determine the order of events by saving atimestamp with er | ang: now' 0 when the event occurs.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.2 Time and Time Correction in Erlang

Do:

Determinethe order of events by saving atuple contai ning monotonic time and astrictly monotonically increasing
integer asfollows:

Time = erl ang: nonotoni c_tine(),
UM = erl ang: uni que_i nt eger ([nonot oni c]),
Event Tag = {Time, UM}

Thesetupleswill be strictly monotonically ordered on current runtime system instance according to creation time.
It is important that the monaotonic time is in the first element (the most significant element when comparing 2-
tuples). Using the monotonic time in the tuples, you can calculate time between events.

If you are interested in Erlang system time at the time when the event occurred, you can also save the time offset
before or after saving theeventsusing er | ang: ti me_of f set / 0. Erlang monotonic time added with thetime
offset corresponds to Erlang system time.

If you are executing in a mode where time offset can change, and you want to get the actual Erlang system time
when the event occurred, you can save the time offset as athird element in the tuple (the least significant element
when comparing 3-tuples).

Create a Uniqgue Name

Don't:

Use the values returned from er | ang: now/ 0 to create a name unique on the current runtime system instance.

Do:

Use the vaue returned from erl ang: unique_integer/0 to create a hame unique on
the current runtime system instance. If you only want positive integers, you can use
erl| ang: uni que_i nt eger ([positive]).

Seed Random Number Generation with a Unique Value

Don't:

Seed random number generation using er | ang: now() .

Do:

Seed random number generation using a combination of erlang: nonotonic_tinme(),
erlang:ti me_of fset(),erl ang: uni que_i nt eger (), and other functionality.

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

To sum up this section: Do not useer | ang: now 0.

1.2.8 Support of Both New and Old OTP Releases

It can be required that your code must run on avariety of OTP installations of different OTP releases. If so, you cannot
usethe new API out of the box, asit will not be available on old pre OTP 18 releases. The solution isnot to avoid using
the new API, as your code then would not benefit from the scalability and accuracy improvements made. Instead, use
the new APl when available, and fall back oner | ang: now 0 when the new API isunavailable.

Fortunately most of the new API can easily be implemented using existing primitives, except for:

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

e erlang: system.info(os_nonotonic_tinme_source)

e erlang:systeminfo(os_systemtine_source))

By wrapping the APl with functions that fall back on er| ang: now 0 when the new API is unavailable, and

using these wrappers instead of using the API directly, the problem is solved. These wrappers can, for example, be
implemented asin $ERL _TOP/ertsexample/time_compat.erl.

1.3 Match specifications in Erlang

A "match specification” (match_spec) isan Erlang term describing a small "program” that will try to match something
(either the parameters to a function as used in the er | ang: trace_patt ern/ 2 BIF, or the objects in an ETS
table.). The match_spec in many waysworks like asmall function in Erlang, but isinterpreted/compiled by the Erlang
runtime system to something much more efficient than calling an Erlang function. The match_specisalso very limited
compared to the expressiveness of real Erlang functions.

Match specificationsaregiventotheBIFer | ang: tr ace_pat t er n/ 2 to execute matching of function arguments
as well as to define some actions to be taken when the match succeeds (the Mat chBody part). Match specifications
can also be used in ETS, to specify objects to be returned from an et s: sel ect/ 2 call (or other select calls). The
semantics and restrictions differ slightly when using match specifications for tracing and in ETS, the differences are
defined in a separate paragraph below.

The most notable difference between a match_spec and an Erlang fun is of course the syntax. Match specifications
are Erlang terms, not Erlang code. A match_spec also has a somewhat strange concept of exceptions. An exception
(e.g., badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, will generate immediate failure,
while an exception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.3.1 Grammar

A match_spec used in tracing can be described in thisinformal grammar:

* MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

e MatchHead ::= MatchVariable|' ' |[MatchHeadPart, ...]

e MatchHeadPart ::= term() | MatchVariable|' '

« MatchVariable ::= '$<number>'

* MatchConditions ::= [MatchCondition, ...] | []

e MatchCondition ::={ GuardFunction} | { GuardFunction, ConditionExpression, ... }

 BoolFunction::=is_atom|is_float |is_integer |is_list|is_nunber |is_pid]|is_port |
is_ referencelis_tuple|is_map|is_binary|is_function]|is_record]|is_seq_trace|
"and' |'or' |'not' |'xor' |andal so|orel se

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

href

1.3 Match specifications in Erlang

ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) | $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ...}} |[] | [ConditionExpression, ...] |#{} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::=term() (not list or tuple or map)

Constant ::={const , term()}

GuardFunction ::= BoolFunction | abs | el enent |hd || engt h [node [round |size|t] |trunc|' +
["-"|"*" ["div' |"rem |'"band" |'bor' |"bxor' ["bnot' |'"bsl" |"bsr' |'>" |'>=" |'<" |
=< == == == = | sel fo|get _tew

MatchBody ::=[ActionTerm]

ActionTerm ::= ConditionExpression | ActionCall

ActionCall ::= { ActionFunction} | { ActionFunction, ActionTerm, ...}

ActionFunction ::=set _seq_t oken |get _seq_t oken |nmessage |[return_trace |
exception_trace |process_dunp |enabl e_trace |di sable_trace|trace |display |
caller |set_tcw]|silent

A match_spec used in ets can be described in thisinformal grammar:

MatchExpression ::= [MatchFunction, ...]

MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

MatchHead ::= MatchVariable|' _' |{ MatchHeadPart, ... }

MatchHeadPart ::=term() | MatchVariable|" _'

MatchVariable ::= '$<number>'

MatchConditions ::= [MatchCondition, ...] | []

MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }
BoolFunction::=is_atom|is_float |is_integer |[is_|list|is_nunber |[is pid]|is_port |
is_reference|is_tuplel|is_map|is_binary]|is_function]|is_record|is_seq_trace|
"and' |'or' |'not' |'xor' |andal so|orel se

ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ...}} |[] |[ConditionExpression, ...] | #{} | #{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::= term() (not list or tuple or map)
Constant ::={const , term()}

GuardFunction ::= BoolFunction | abs | el enent |hd || engt h [node [round |size |t] |trunc|' +
["-"|"*" |'div' |"rem |'band' |'bor' |'bxor' |"bnot' |"bsl' |"bsr' |'>" |'">="|'"<" |

=< P =rE == == = | sel f |get _teow
MatchBody ::= [ConditionExpression, ...]

1.3.2 Function descriptions

Functions allowed in all types of match specifications

The different functions allowed in mat ch_spec work like this:

is atom, is float, is_integer, is list,is_ number, is pid, is port,is reference, is tuple, is map, is binary, is function:
Like the corresponding guard testsin Erlang, returnt r ue or f al se.

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

is record: Takes an additional parameter, which SHALL be the result of record_info(size,
<record_type>),likein{is_record, '$1', rectype, record_info(size, rectype)}.

'not': Negates its single argument (anything other than f al se givesf al se).

‘and’: Returnst r ue if al its arguments (variable length argument list) evaluate to t r ue, else f al se. Evaluation
order is undefined.

'or'; Returnstrue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is
undefined.

andalso: Like' and' , but quits evaluating its arguments as soon as one argument evaluates to something else than
true. Arguments are evaluated left to right.

orelse: Like' or ', but quits evaluating as soon as one of its arguments evaluatesto t r ue. Arguments are eval uated
left to right.

'xor': Only two arguments, of which one has to be true and the other false to return t r ue; otherwise' xor' returns
false.

abs, element, hd, length, node, round, size, tl, trunc, '+', '-', *', 'div, 'rem’, 'band', 'bor’, 'bxor', 'bnot', 'bsl’, 'bsr’,
S>>t et =, =t =)= Y= sdft Work as the corresponding Erlang bif's (or operators). In case of
bad arguments, the result depends on the context. In the Mat chCondi t i ons part of the expression, the test fails
immediately (like in an Erlang guard), but in the Mat chBody, exceptions are implicitly caught and the call results
intheatom' EXI T' .

Functions allowed only for tracing
is seq trace: Returnst r ue if asequential trace token is set for the current process, otherwisef al se.

set_seq token: Workslikeseq_trace: set _t oken/ 2, butreturnst r ue onsuccessand' EXI T' on error or bad
argument. Only allowed in the Mat chBody part and only allowed when tracing.

get_seq token: Works just like seq_t race: get _t oken/ 0, and is only allowed in the Mat chBody part when
tracing.

message: Sets an additional message appended to the trace message sent. One can only set one additional message
in the body; subsequent calls will replace the appended message. As aspecia case, { message, fal se} disables
sending of trace messages (‘call’ and 'return_to’) for this function call, just like if the match_spec had not matched,
which can be useful if only the side effects of the Mat chBody are desired. Another special case is { nressage,
t rue} which sets the default behavior, as if the function had no match_spec, trace message is sent with no extra
information (if no other callsto message are placed before{ message, true},itisinfacta"noop").

Takes one argument, the message. Returnst r ue and can only be used in the Mat chBody part and when tracing.

return_trace: Causes ar et ur n_f r omtrace message to be sent upon return from the current function. Takes no
arguments, returnst r ue and can only beused inthe Mat chBody part when tracing. If the processtraceflagsi | ent
isactivether et ur n_f r omtrace message is inhibited.

NOTE! If the traced function is tail recursive, this match spec function destroys that property. Hence, if a match
spec executing this function is used on a perpetual server process, it may only be active for a limited time, or the
emulator will eventually use all memory in the host machine and crash. If this match_spec function is inhibited using
thesi | ent process trace flag tail recursiveness till remains.

exception_trace: Same asreturn_trace, plus; if the traced function exits due to an exception, anexcepti on_from
trace message is generated, whether the exception is caught or not.

process_dump: Returns some textual information about the current process as a binary. Takes no arguments and is
only allowed in the Mat chBody part when tracing.

enable_trace: With one parameter this function turns on tracing like the Erlang cal er | ang: t race(sel f (),
true, [P2]),whereP2 isthe parameter to enabl e_t r ace. With two parameters, the first parameter should

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.3 Match specifications in Erlang

be either a process identifier or the registered name of a process. In this case tracing is turned on for the designated
processin the ssmeway asinthe Erlang call er | ang: trace(P1, true, [P2]),wherePlisthefirst and P2
is the second argument. The process P1 gets its trace messages sent to the same tracer as the process executing the
statement uses. P1 can not beone of theatomsal | , newor exi st i ng (unless, of course, they are registered names).
P2 cannotbecpu_ti mestanmp nor{tracer, _}.Returnstr ue and may only be used in the Mat chBody part
when tracing.

disable trace: With one parameter this function disables tracing like the Erlang call er | ang: t race(sel f (),

fal se, [P2]),whereP2 istheparametertodi sabl e_t r ace. Withtwo parametersit workslike the Erlang call
erlang:trace(Pl, false, [P2]),wherePl can be either aprocessidentifier or a registered name and is
given asthefirst argument to the match_spec function. P2 cannot becpu_t i mest anp nor{tracer, _}.Returns
t r ue and may only be used in the Mat chBody part when tracing.

trace: With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively all changes are applied
atomically. The trace flags are the sasme as for er | ang: t race/ 3 not including cpu_t i mest anp but including
{tracer, _}.If atracer isspecified in both lists, thetracer in the enablelist takes precedence. If no tracer is specified
the same tracer asthe process executing the match spec is used. With three parametersto thisfunction thefirst iseither
aprocessidentifier or the registered name of a process to set trace flags on, the second isthe disable list, and the third
istheenablelist. Returnst r ue if any trace property was changed for the trace target processor f al se if not. It may
only be used in the Mat chBody part when tracing.

caller: Returns the calling function as a tuple {Module, Function, Arity} or the atom undef i ned if the calling
function cannot be determined. May only be used in the Mat chBody part when tracing.

Notethat if a"technically built in function" (i.e. afunction not written in Erlang) istraced, thecal | er functionwill
sometimes return the atom undef i ned. The caling Erlang function is not available during such calls.

display: For debugging purposes only; displaysthe single argument as an Erlang term on stdout, which is seldom what
iswanted. Returnst r ue and may only be used in the Mat chBody part when tracing.

get_tcw: Takes no argument and returns the value of the node's trace control word. The same is done by
erl ang: system.info(trace_control _word).

The trace control word is a 32-bit unsigned integer intended for generic trace control. The trace control word can be
tested and set both from within trace match specifications and with BIFs. This call is only allowed when tracing.

set tcw: Takes one unsigned integer argument, sets the value of the node's trace control
word to the value of the argument and returns the previous value. The same is done by
erl ang: system fl ag(trace_control _word, Value). It is only alowed to use set_t cw in the
Mat chBody part when tracing.

silent: Takes one argument. If the argument ist r ue, the call trace message mode for the current process is set to
silent for this call and all subsequent, i.e call trace messages are inhibited even if { message, true} iscaledin
the Mat chBody part for atraced function.

This mode can aso be activated with the si | ent flagtoer | ang: trace/ 3.

If the argument isf al se, the call trace message mode for the current process is set to norma (non-silent) for this
call and all subsequent.

If the argument isneither t r ue nor f al se, the call trace message mode is unaffected.

Notethat all "function calls* haveto betuples, even if they take no arguments. Thevalueof sel f istheatom() sel f,
but the value of { sel f } isthe pid() of the current process.

1.3.3 Variables and literals

Variablestaketheform' $<nunber >' where<numnber > isan integer between 0 (zero) and 100000000 (1e+8), the
behavior if the number is outside these limitsis undefined. In the Mat chHead part, the specia variable' ' matches

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

anything, and never gets bound (like _ in Erlang). In the Mat chCondi ti on/ Mat chBody parts, no unbound
variablesareallowed, why' ' isinterpreted asitself (an atom). Variables can only be bound inthe Mat chHead part.
Inthe Mat chBody and Mat chCondi t i on parts, only variables bound previously may be used. As a specia case,
inthe Mat chCondi t i on/ Mat chBody parts, the variable' $ ' expands to the whole expression which matched
the Mat chHead (i.e., the whole parameter list to the possibly traced function or the whole matching object in the ets
table) andthevariable' $$' expandstoalist of thevaluesof al boundvariablesinorder (i.e.[' $1', "' $2', ...]).

In the Mat chHead part, al literas (except the variables noted above) are interpreted as is. In the
Mat chCondi ti on/ Mat chBody parts, however, the interpretation is in some ways different. Literals in the
Mat chCondi ti on/ Mat chBody can either be written asis, which works for al literals except tuples, or by using
the special form { const, T}, where T isany Erlang term. For tuple literals in the match_spec, one can aso use
double tuple parentheses, i.e., construct them as a tuple of arity one containing a single tuple, which is the one to be
constructed. The "double tuple parenthesis’ syntax is useful to construct tuples from already bound variables, like in
{{"$1', [a,b,'$2']}}. Some examples may be needed:

Expression Variable bindings Result

{{'$1,$2}} '$1'=a,'$2'=b {ab}

{congt, {'$1', '$2'}} doesn't matter {'$1', '$2}

a doesn't matter a

3L $1'=]] (]

[$1] S =] (1]

[{{a}}] doesn't matter [{a}]

42 doesn't matter 42

"hello" doesn't matter "hello”

$1 doesn't matter 419) (the ASCII value for the character

Table 3.1: Literals in the MatchCondition/MatchBody parts of a match_spec

1.3.4 Execution of the match

The execution of the match expression, when the runtime system decides whether a trace message should be sent,
goes asfollows:

For each tuplein the Mat chExpr essi on list and while no match has succeeded:
e Match the Mat chHead part against the arguments to the function, binding the' $<nunber >' variables
(much likein et s: mat ch/ 2). If the Mat chHead cannot match the arguments, the match fails.

e Evauate each Mat chCondi ti on (whereonly ' $<nunber >' variables previously bound in the
Mat chHead can occur) and expect it to return the atom t r ue. As soon as a condition does not evaluate to
t r ue, thematch fails. If any BIF call generates an exception, aso fail.

« « [fthematch_spec isexecuting when tracing:
Evaluate each Act i onTer min the same way asthe Mat chCondi t i ons, but completely ignore the
return values. Regardless of what happens in this part, the match has succeeded.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.3 Match specifications in Erlang

» |If the match_spec is executed when selecting objects from an ETStable:
Evaluate the expressionsin order and return the value of the last expression (typically thereisonly one
expression in this context)

1.3.5 Differences between match specifications in ETS and tracing

ETS match specifications are there to produce a return value. Usually the Mat chBody contains one single
Condi ti onExpr essi on which defines the return value without having any side effects. Calls with side effects
are not allowed in the ETS context.

When tracing there is no return value to produce, the match specification either matches or doesn't. The effect when
the expression matches is a trace message rather then a returned term. The Act i onTer nis are executed as in an
imperative language, i.e. for their side effects. Functions with side effects are also alowed when tracing.

In ETS the match head isat upl e() (or asingle match variable) whileitisalist (or a single match variable) when
tracing.

1.3.6 Examples

Match an argument list of three where the first and third arguments are equal:

»
=

s,

—_—r—
—_—— -
—- -
fa—

Match an argument list of three where the second argument is a number greater than three:

v,],
{ ">, "s1', 3},
]

Match an argument list of three, where thethird argument isatuple containing argument one and two or alist beginning
with argument oneandtwo (i.e.[a, b,[a, b,c]] or[a, b, {a, b}]):

[{[%1, "$2', "$3'],

[{orel se,
==, 83, {{%1,$2' 1)),
{'and’
{'==", "$1', {hd, '$3'}},
. {"==, "$2", {hd, {tl, "$3'}}}}}],

The above problem may aso be solved like this:

[{[s1", "$2', {"$1', "$2}], []. []},
{{rs1, "$2', ["$1, "$20 | '_'"1]. [], [I}]

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

Match two arguments where the first is a tuple beginning with alist which in turn begins with the second argument
timestwo (i. e. [{[4x].,y}.,2] or [{[8], y, 7} 4])

[{[s1, "$2'],[{'==, {"*', 2, "$2'}, {hd, {element, 1, '$1'}}}],
[1}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message, else
let the trace message be as is, but set the sequential trace token label to 4711.

[{['$1", "$1', "$1'],
[{is_nunber, '$1'}],
[{message, {process_dunp}}]},
{" ', [1, [{set_seq_token, |abel, 4711}]}]

Ascan be noted above, the parameter list can be matched against asingleVat chVar i abl eoran' _' . Toreplacethe
whole parameter list with asingle variable is aspecial case. In al other casesthe Mat chHead hasto be a proper list.

Match all objects in an ets table where the first element is the atom 'strider' and the tuple arity is 3 and return the
whole object.

[{{strider," "," '}
[1,
['$_"1}]

Match all objectsin an etstable with arity > 1 and the first element is'gandalf', return element 2.

[{ $1",
[{'==", gandalf, {elenent, 1, '$1'}},{'>=",{size, '$1'}, 2}],
[{el ement, 2, $1'}]}]

In the above example, if the first element had been the key, it's much more efficient to match that key in the
Mat chHead part than in the Mat chCondi t i ons part. The search space of the tables is restricted with regards to
the Mat chHead so that only objects with the matching key are searched.

Match tuples of 3 elements where the second element is either ‘'merry’ or 'pippin’, return the whole objects.

[{{" " merry,” '},
L1,
['$_'1},
", pippin,*_"},

[1.
['$_"1}]

Thefunctionet s: t est _ns/ 2 can be useful for testing complicated ets matches.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.4 How to interpret the Erlang crash dumps

1.4 How to interpret the Erlang crash dumps

This document describestheer | _cr ash. dunp file generated upon abnormal exit of the Erlang runtime system.

Important: For OTP release ROC the Erlang crash dump has had a major facelift. This means that the information in
this document will not be directly applicable for older dumps. However, if you use the Crashdump Viewer tool on
older dumps, the crash dumps are translated into a format similar to this.

The system will write the crash dump in the current directory of the emulator or in the file pointed out by the
environment variable (whatever that means on the current operating system) ERL_CRASH_DUMP. For acrash dump
to be written, there has to be awritable file system mounted.

Crash dumps are written mainly for one of two reasons. either the builtin function er | ang: hal t/ 1 is called
explicitly with astring argument from running Erlang code, or else the runtime system has detected an error that cannot
be handled. The most usual reason that the system can't handle the error is that the cause is external limitations, such
as running out of memory. A crash dump due to an internal error may be caused by the system reaching limitsin the
emulator itself (like the number of atoms in the system, or too many simultaneous ets tables). Usually the emulator
or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump correctly
isimportant.

On systemsthat support OSsignals, it isalso possibleto stop the runtime system and generate a crash dump by sending
the SIGUSRL1.

Theerlang crash dump isareadabletext file, but it might not be very easy to read. Using the Crashdump Viewer tool in
theobser ver application will simplify the task. Thisis an wx-widget based tool for browsing Erlang crash dumps.

1.4.1 General information

Thefirst part of the dump showsthe creation timefor the dump, aslogan indicating the reason for the dump, the system
version, of the node from which the dump originates, the compile time of the emulator running the originating node,
the number of atoms in the atom table and the runtime system thread that caused the crash dump to happen.

Reasons for crash dumps (slogan)

The reason for the dump is noted in the beginning of the file as Sogan: <reason> (the word "slogan" has historical
roots). If the system is halted by the BIF er | ang: hal t / 1, the slogan is the string parameter passed to the BIF,
otherwiseit isadescription generated by theemulator or the (Erlang) kernel. Normally the message should be enough to
understand the problem, but neverthel ess some messages are described here. Note however that the suggested reasons
for the crash are only suggestions. The exact reasons for the errors may vary depending on the local applications and
the underlying operating system.

e "<A>: Cannot alocate <N> bytes of memory (of type"<T>")." - The system has run out of memory. <A> is
the allocator that failed to allocate memory, <N> is the number of bytes that <A> tried to alocate, and <T>
is the memory block type that the memory was needed for. The most common case is that a process stores
huge amounts of data. In this case <T> ismost often heap, ol d_heap, heap_f r ag, or bi nary. For more
information on allocators see erts_alloc(3).

e "<A>: Cannot reallocate <N> bytes of memory (of type"<T>")." - Same as above with the exception that
memory was being reallocated instead of being allocated when the system ran out of memory.

* "Unexpected op code N" - Error in compiled code, beamfile damaged or error in the compiler.

e "Module Name undefined” | "Function Name undefined" | "No function Name:Name/1" | "No function
Name:start/2" - The kernel/stdlib applications are damaged or the start script is damaged.

» "Driver_select called with too large file descriptor N* - The number of file descriptors for sockets exceed 1024
(Unix only). The limit on file-descriptors in some Unix flavors can be set to over 1024, but only 1024 sockets/
pipes can be used simultaneously by Erlang (due to limitations in the Unix sel ect call). The number of open
regular filesis not affected by this.

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

* "Received SIGUSR1" - Sending the SIGUSR1 signal to a Erlang machine (Unix only) forces a crash dump.
This slogan reflects that the Erlang machine crash-dumped due to receiving that signal.

« "Kernel pid terminated (Who) (Exit-reason)" - The kernel supervisor has detected afailure, usually that the
application_controll er hasshut down(Wo =application_controll er, Wy =shut down).
The application controller may have shut down for a number of reasons, the most usual being that the node
name of the distributed Erlang node is already in use. A complete supervisor tree "crash” (i.e., the top
supervisors have exited) will give about the same result. This message comes from the Erlang code and not
from the virtual machineitself. It is always due to some kind of failure in an application, either within OTP or a
"user-written" one. Looking at the error log for your application is probably the first step to take.

e "Init terminating in do_boot ()" - The primitive Erlang boot sequence was terminated, most probably because
the boot script has errors or cannot be read. Thisis usually a configuration error - the system may have been
started with afaulty - boot parameter or with a boot script from the wrong version of OTP.

e "Could not start kernel pid (Who) ()" - One of the kernel processes could not start. Thisis probably dueto
faulty arguments (like errorsin a- conf i g argument) or faulty configuration files. Check that al filesarein
their correct location and that the configuration files (if any) are not damaged. Usually there are al so messages
written to the controlling terminal and/or the error log explaining what's wrong.

Other errors than the ones mentioned above may occur, astheer | ang: hal t/ 1 BIF may generate any message. If
the message is not generated by the BIF and does not occur in thelist above, it may be due to an error in the emulator.
There may however be unusual messages that | haven't mentioned, that still are connected to an application failure.
Thereis alot more information available, so more thorough reading of the crash dump may reveal the crash reason.
The size of processes, the number of ets tables and the Erlang data on each process stack can be useful for tracking
down the problem.

Number of atoms

Thenumber of atomsin the system at thetime of the crash is shown as Atoms. <number>. Someten thousands atomsis
perfectly normal, but more could indicatethat the BIF er | ang: | i st _t o_at onf 1 isused to dynamically generate
alot of different atoms, which is never agood idea.

1.4.2 Scheduler information

Under the tag =scheduler information about the current state and statistics of the schedulers in the runtime systemis
displayed. On OSs that do allow instant suspension of other threads, the data within this section will reflect what the
runtime system looks like at the moment when the crash happens.

The following fields can exist for a process:

=scheduler:id
Header, states the scheduler identifier.

Scheduler Seep Info Flags
If empty the scheduler was doing some work. If not empty the scheduler is either in some state of sleep, or
suspended. This entry isonly present in a SMP enabled emulator

Scheduler Seep Info Aux Work
If not empty, a scheduler internal auxiliary work is scheduled to be done.

Current Port
The port identifier of the port that is currently being executed by the scheduler.

Current Process
The process identifier of the process that is currently being executed by the scheduler. If there is such a process
this entry is followed by the Sate,Internal Sate, Program Counter, CP of that same process. See Process
Information for a description what the different entries mean. Keep in mind that thisis a snapshot of what the
entries are exactly when the crash dump is starting to be generated. Therefore they will most likely be different
(and more telling) then the entries for the same processes found in the =proc section. If there is no currently
running process, only the Current Process entry will be printed.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.4 How to interpret the Erlang crash dumps

Current Process Limited Stack Trace
This entry only shows up if there isa current process. It is very similar to =proc_stack, except that only the
function frames are printed (i.e. the stack variables are omited). It is also limited to only print the top and
bottom part of the stack. If the stack is small (lessthat 512 dots) then the entire stack will be printed. If not, an
entry stating

ski ppi ng ## slots

will be printed where ## is replaced by the number of slots that has been skipped.
Run Queue
Displays statistics about how many processes and ports of different priorities are scheduled on this scheduler.
* % Crag‘]aj **
Thisentry isnormally not printed. It signifies that getting the rest of the information about this scheduler failed
for some reason.

1.4.3 Memory information

Under the tag =memory you will find information similar to what you can obtain on a living node with
erlang: memory().

1.4.4 Internal table information

Thetags =hash _table:<table name> and =index_table:<table name> presentsinternal tables. These are mostly of
interest for runtime system developers.

1.4.5 Allocated areas

Under the tag =allocated_areas you will find information similar to what you can obtain on a living node with
erlang:system info(allocated areas).

1.4.6 Allocator

Under the tag =allocator:<A> you will find various information about allocator <A>. The information is similar
to what you can obtain on a living node with erlang: system info({allocator, <A>}). For more information see the
documentation of erlang:system info({allocator, <A>}), and the erts_alloc(3) documentation.

1.4.7 Process information

The Erlang crashdump contains alisting of each living Erlang process in the system. The process information for one
process may look like this (line numbers have been added):

The following fields can exist for a process:
=proc:<pid>

Heading, states the process identifier
Sate

The state of the process. This can be one of the following:
* Scheduled - The process was scheduled to run but not currently running ("in the run queue”).
e Waiting - The process was waiting for something (inr ecei ve).

¢ Running - The process was currently running. If the BIF er | ang: hal t / 1 was called, thiswas the
process calling it.

e Exiting - The process was on its way to exit.

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

e Garbing - Thisisbad luck, the process was garbage collecting when the crash dump was written, the rest
of the information for this processis limited.

e Suspended - The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or because it
istrying to write to a busy port.

Registered name
The registered name of the process, if any.

Soawned as
The entry point of the process, i.e., what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call
The current function of the process. These fields will not always exist.

Spawned by
The parent of the process, i.e. the process which executed spawn or spawn_| i nk.

Sarted
The date and time when the process was started.

Message queue length
The number of messages in the process message queue.

Number of heap fragments
The number of allocated heap fragments.

Heap fragment data
Size of fragmented heap data. Thisis data either created by messages being sent to the process or by the Erlang
BIFs. This amount depends on so many things that thisfield is utterly uninteresting.

Link list
Processid's of processes linked to this one. May also contain ports. If process monitoring is used, thisfield also
tellsin which direction the monitoring isin effect, i.e., alink being "to" a process tells you that the "current"
process was monitoring the other and alink "from" a process tells you that the other process was monitoring
the current one.

Reductions
The number of reductions consumed by the process.

Sack+heap
The size of the stack and heap (they share memory segment)

OldHeap
The size of the "old heap”. The Erlang virtual machine uses generational garbage collection with two
generations. There is one heap for new dataitems and one for the data that have survived two garbage
collections. The assumption (which is almost always correct) is that data that survive two garbage collections
can be "tenured” to a heap more seldom garbage collected, as they will live for along period. Thisisaquite
usua technique in virtual machines. The sum of the heaps and stack together constitute most of the process's
alocated memory.

Heap unused, OldHeap unused
The amount of unused memory on each heap. Thisinformation is usually useless.

Sack
If the system uses shared heap, the fields Stack+heap, OldHeap, Heap unused and OldHeap unused do not
exist. Instead this field presents the size of the process' stack.

Memory
The total memory used by this process. Thisincludes call stack, heap and internal structures. Same as
erlang:process_info(Pid,memory).

Program counter
The current instruction pointer. Thisis only interesting for runtime system devel opers. The function into which
the program counter points is the current function of the process.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.4 How to interpret the Erlang crash dumps

CP
The continuation pointer, i.e. the return address for the current call. Usually useless for other than runtime
system devel opers. This may be followed by the function into which the CP points, which is the function
calling the current function.

Arity
The number of live argument registers. The argument registers, if any are live, will follow. These may contain
the arguments of the function if they are not yet moved to the stack.
Internal State
A more detailed internal represantation of the state of this process.

See also the section about process data.

1.4.8 Port information

This section lists the open ports, their owners, any linked processed, and the name of their driver or external process.

1.4.9 ETS tables

This section contains information about all the ETS tablesin the system. The following fields are interesting for each
table:

=ets.<owner>

Heading, states the owner of the table (a process identifier)
Table

Theidentifier for the table. If thetableisananed_t abl e, thisisthe name.
Name

The name of the table, regardliess of whether itisananmed_t abl e or not.

Hash table, Buckets
Thisoccursif thetableisahash table, i.e. if itisnot an or der ed_set .

Hash table, Chain Length
Only applicable for hash tables. Contains statistics about the hash table, such as the max, min and avg chain
length. Having a max much larger than the avg, and a std dev much larger that the expected std dev isasign
that the hashing of the termsis behaving badly for some reason.

Ordered set (AVL tree), Elements
Thisoccurs only if thetableisan or der ed_set . (The number of elements is the same as the number of
objectsin the table.)

Fixed

If the table is fixed using ets:safe_fixtable or some internal mechanism.
Objects

The number of objectsin thetable
Words

The number of words (usually 4 bytes/word) allocated to datain the table.
Type

Thetype of thetable, i.e. set , bag, dubl i cat e_bag or or der ed_set .
Compressed

If this table was compressed.
Protection

The protection of thistable.
Write Concurrency

If write_concurrency was enabled for this table.
Read Concurrency

If read_concurrency was enabled for thistable.

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

1.4.10 Timers

This section contains information about al the timers started with the BIFs er| ang: start _tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exists for each timer:

=timer:<owner>
Heading, states the owner of the timer (a process identifier) i.e. the process to receive the message when the
timer expires.
Message
The message to be sent.
Time left
Number of milliseconds left until the message would have been sent.

1.4.11 Distribution information

If the Erlang node was alive, i.e., set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>
The name of the node
no_distribution
Thiswill only occur if the node was not distributed.
=visible_node:<channel>
Heading for avisible nodes, i.e. an alive node with a connection to the node that crashed. States the channel
number for the node.
=hidden_node: < channel>
Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the "-
hidden" flag. States the channel number for the node.
=not_connected: <channel>
Heading for a node which is has been connected to the crashed node earlier. References (i.e. process or port
identifiers) to the not connected node existed at the time of the crash. exist. States the channel number for the
node.
Name
The name of the remote node.
Controller
The port which controls the communication with the remote node.
Creation
An integer (1-3) which together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote_proc>
Thelocal process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote _proc>
The remote process was monitoring the local process at the time of the crash.
Remote link: <local_proc> <remote _proc>
A link existed between the local process and the remote process at the time of the crash.

1.4.12 Loaded module information

This section contains information about all loaded modules. First, the memory usage by loaded code is summarized.
There is one field for "Current code" which is code that is the current latest version of the modules. Thereis also a
field for "Old code" which is code where there exists a newer version in the system, but the old version is not yet
purged. The memory usageisin bytes.

All loaded modules are then listed. The following fields exist:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.4 How to interpret the Erlang crash dumps

=mod:<module_name>
Heading, and the name of the module.
Current size
Memory usage for the loaded code in bytes
Old size
Memory usage for the old code, if any.
Current attributes
Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes
Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info
Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.
Old compilation info
Compilation information (options) for the old code, if any. Thisfield is decoded when looked at by the
Crashdump Viewer tool.

1.4.13 Fun information
In this section, al funs are listed. The following fields exist for each fun:

=fun

Heading
Module

The name of the module where the fun was defined.
Unig, Index

Identifiers
Address

The address of the fun's code.
Native address

The address of the fun's code when HiPE is enabled.
Refc

The number of references to the fun.

1.4.14 Process Data

For each process there will be at least one =proc_stack and one =proc_heap tag followed by the raw memory
information for the stack and heap of the process.

For each process there will also be a =proc_messages tag if the process message queue is non-empty and a
=proc_dictionary tag if the process' dictionary (the put / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou will then be able to see the stack
dump, the message queue (if any) and the dictionary (if any).

The stack dump isadump of the Erlang process stack. Most of thelive data (i.e., variables currently in use) are placed
on the stack; thus this can be quite interesting. One has to "guess' what's what, but as the information is symbolic,
thorough reading of this information can be very useful. As an example we can find the state variable of the Erlang
primitive loader on line (5) in the example below:

(1) 3cac44 Return addr Ox13BF58 (<term nate process nornally>)

(2) y(0) ["/view siri_r10_dev/clearcase/otp/erts/libl/kernel/ebin","/viewsiri_r10_dev/

(3) clearcase/otp/erts/lib/stdlib/ebin"]

(4) y(1) <0.1.0>

(5) vy(2) {state, [], none, #Fun<er| _pri m | oader. 6. 7085890>, undef i ned, #Fun<er| _pri m | oader. 7. 9000327>, #Fun<er| _

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

(6) y(3) infinity

When interpreting the datafor aprocess, it is helpful to know that anonymous function objects (funs) are given aname
constructed from the name of the function in which they are created, and a number (starting with 0) indicating the
number of that fun within that function.

1.4.15 Atoms

Now all the atomsin the system are written. Thisisonly interesting if one suspects that dynamic generation of atoms
could be a problem, otherwise this section can be ignored.

Note that the last created atom is printed first.

1.4.16 Disclaimer

Theformat of the crash dump evolves between rel eases of OTP. Some information here may not apply to your version.
A description as this will never be complete; it is meant as an explanation of the crash dump in general and as a help
when trying to find application errors, not as a complete specification.

1.5 How to implement an alternative carrier for the Erlang distribution

This document describes how one canimplement onesown carrier protocol for the Erlang distribution. Thedistribution
is normally carried by the TCP/IP protocol. What's explained here is the method for replacing TCP/IP with another
protocol.

The document is a step by step explanation of the uds_di st example application (seated in the kernel applications
exanpl es directory). Theuds_di st application implements distribution over Unix domain sockets and is written
for the Sun Solaris 2 operating environment. The mechanisms are however general and appliesto any operating system
Erlang runs on. The reason the C code is not made portable, is simply readability.

Note:

This document was written along time ago. Most of it is still valid, but some things have changed since it was
first written. Most notably the driver interface. There have been some updates to the documentation of the driver
presented in this documentation, but more could be done and are planned for the future. The reader is encouraged
to also read the erl_driver, and the driver_entry documentation.

1.5.1 Introduction

To implement a new carrier for the Erlang distribution, one must first make the protocol available to the Erlang
machine, which involves writing an Erlang driver. There is no way one can use a port program, there has to be an
Erlang driver. Erlang drivers can either be statically linked to the emulator, which can be an alternative when using
the open source distribution of Erlang, or dynamically loaded into the Erlang machines address space, which is the
only aternative if aprecompiled version of Erlang isto be used.

Writing an Erlang driver is by no means easy. The driver is written as a couple of call-back functions called by the
Erlang emulator when datais sent to the driver or the driver has any data available on afile descriptor. As the driver
call-back routines execute in the main thread of the Erlang machine, the call-back functions can perform no blocking
activity whatsoever. The call-backs should only set up file descriptors for waiting and/or read/write available data.
All /O has to be non blocking. Driver call-backs are however executed in sequence, why a global state can safely
be updated within the routines.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.5 How to implement an alternative carrier for the Erlang distribution

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. Thisinterface can then be used by the distribution module which will cover the
details of the protocol from thenet _ker nel . The easiest pathisto mimicthei net andi net _t cp interfaces, but
alot of functionality in those modules need not be implemented. In the example application, only a few of the usual
interfaces are implemented, and they are much simplified.

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well defined call-backs, much like agen_ser ver (thereis
no compiler support for checking the call-backs though). The details of finding other nodes (i.e. talking to epmd or
something similar), creating alisten port (or similar), connecting to other nodes and performing the handshakes/cookie
verification are all implemented by this module. There is however a utility module, di st _ut i |, that will do most
of the hard work of handling handshakes, cookies, timers and ticking. Using di st _ut i | makes implementing a
distribution module much easier and that's what we are doing in the example application.

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when al of the system is running, but in areal system the distribution
should start very early, why aboot-script and some command line parameters are necessary. Thislast step also implies
that the Erlang code in the interface and distribution modules is written in such away that it can be run in the startup
phase. Most notably there can be no callsto the appl i cat i on module or to any modules not loaded at boot-time
(i.e.only ker nel , st dl i b and the application itself can be used).

1.5.2 The driver

Although Erlang driversin general may be beyond the scope of thisdocument, abrief introduction seemsto bein place.

Drivers in general

An Erlang driver is a native code module written in C (or assembler) which serves as an interface for some special
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/
O. An Erlang driver can be dynamically linked (or oaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the drivers in OTP are however statically linked to the runtime system, but that's more an
optimization than a necessity.

The driver data-types and the functions available to the driver writer are defined in the header fileer | _dri ver. h
(there is al'so an deprecated version called dr i ver . h, don't use that one.) seated in Erlang's include directory (and
in $ERL_TOP/erts’emul ator/beam in the source code distribution). Refer to that file for function prototypes etc.

When writing adriver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation has to be non blocking and all possible situations should
be accounted for in the driver. A non stable driver will affect and/or crash the whole Erlang runtime system, which
is seldom what's wanted.

The emulator calls the driver in the following situations:

* Whenthedriver isloaded. This call-back has to have a special name and will inform the emulator of what call-
backs should be used by returning a pointer to aEr | Dr vENt ry struct, which should be properly filled in (see
below).

* When aport to the driver is opened (by aopen_port cal from Erlang). This routine should set up internal
data structures and return an opaque data entity of the type Er | Dr vDat a, which is a data-type large enough to
hold a pointer. The pointer returned by this function will be the first argument to all other call-backs concerning
this particular port. It is usually called the port handle. The emulator only stores the handle and does never try
to interpret it, why it can be virtually anything (well anything not larger than a pointer that is) and can point to
anything if it isa pointer. Usually this pointer will refer to a structure holding information about the particular
port, asi t doesin our example.

* When an Erlang process sends data to the port. The data will arrive as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This call-back returns nothing to the caller, answers are sent to the caller

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

asmessages (using aroutinecaled dr i ver _out put availableto al drivers). Thereisalso away totalk ina
synchronous way to drivers, described below. There can be an additiona call-back function for handling data
that is fragmented (sent in adeep io-list). That interface will get the datain aform suitable for Unix wri t ev
rather than in a single buffer. Thereis no need for a distribution driver to implement such a call-back, so we
wont.

e When afiledescriptor issignaled for input. This call-back is called when the emulator detects input on
afile descriptor which the driver has marked for monitoring by using the interfacedr i ver _sel ect .
The mechanism of driver select makesit possible to read non blocking from file descriptors by calling
driver _sel ect whenreading is needed and then do the actual reading in this call-back (when reading is
actually possible). Thetypica scenarioisthat dri ver _sel ect iscaled when an Erlang process orders a
read operation, and that this routine sends the answer when data is available on the file descriptor.

* When afiledescriptor is signaled for output. This call-back is called in asimilar way as the previous, but when
writing to afile descriptor is possible. The usual scenario isthat Erlang orders writing on a file descriptor and
that the driver callsdr i ver _sel ect . When the descriptor is ready for output, this call-back is called an the
driver can try to send the output. There may of course be queuing involved in such operations, and there are
some convenient queue routines available to the driver writer to use in such situations.

When aport is closed, either by an Erlang process or by the driver calling one of thedri ver fai |l ure_XXX
routines. This routine should clean up everything connected to one particular port. Note that when other call-
backscal adri ver _f ai | ur e_XXX routine, this routine will be immediately called and the call-back routine
issuing the error can make no more use of the data structures for the port, as this routine surely has freed al
associated data and closed al file descriptors. If the queue utility available to driver writes is used, this routine
will however not be called until the queue is empty.

e When an Erlang process callser | ang: port _contr ol / 3, which isasynchronous interface to drivers. The
control interface is used to set driver options, change states of ports etc. We'll use this interface quite alot in our
example.

e When atimer expires. The driver can set timerswith the functiondri ver _set _ti ner.When such timers
expire, a specific call-back function is called. We will not use timersin our example.

e When the whole driver is unloaded. Every resource allocated by the driver should be freed.

The distribution driver's data structures

Thedriver used for Erlang distribution should implement areliable, order maintaining, variable length packet oriented
protocol. All error correction, re-sending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big endian 32 bit integer (as Unix domain sockets only can be used
between processes on the same machine, we actually don't need to code the integer in some special endianess, but I'll
do it anyway because in most situation you do need to do it. Unix domain sockets are reliable and order maintaining,
so we don't need to implement resends and such in our driver.

Lets start writing our example Unix domain sockets driver by declaring prototypes and filling in a static ErIDrvEntry
structure.

(1) #include <stdio.h>

(2) #include <stdlib.h>

(3) #include <string.h>

(4) #include <unistd. h>

(5) #include <errno. h>

(6) #include <sys/types. h>
(7) #include <sys/stat.h>

(8) #include <sys/socket.h>
(9) #include <sys/un.h>
(10) #include <fcntl.h>

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.5 How to implement an alternative carrier for the Erlang distribution

(11)
(12)

(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)

On line 1 to 10 we have included the OS headers needed for our driver. As this driver is written for Solaris, we
know that the header ui 0. h exists, why we can define the preprocessor variable HAVE_UI O_H before we include
erl _driver. hatline12. Thedefinition of HAVE_Ul O Hwill makethe1/O vectorsused in Erlang's driver queues

#defi ne HAVE_U O H
#i nclude "erl _driver.h"

/*

** |nterface routines

*/

static Erl DrvData uds_start(Erl DrvPort port, char *buff);

static void uds_stop(Erl DrvData handl e);

static void uds_command(Erl DrvData handl e, char *buff, int bufflen);

static void uds_input(Erl DrvData handl e, ErlDrvEvent event);

static void uds_output (Erl DrvData handl e, ErlDrvEvent event);

static void uds_finish(void);

static int uds_control (Erl DrvData handl e, unsigned i nt conmand
char* buf, int count, char** res, int res_size);

/* The driver entry */
static Erl DrvEntry uds_driver_entry = {

NULL, [* init, NVA */
uds_start, /* start, called when port is opened */
uds_st op, /* stop, called when port is closed */
uds_conmand, /* output, called when erlang has sent */
uds_i nput, /* ready_i nput, called when input
descriptor ready */
uds_out put, /* ready_output, called when out put
descriptor ready */
"uds_drv", /* char *driver_nanme, the argunent
to open_port */
uds_fi ni sh, /* finish, called when unl oaded */
NULL, /* void * that is not used (BC) */
uds_control , /* control, port_control callback */
NULL, /* timeout, called on tinmeouts */
NULL, /* outputv, vector output interface */
NULL, /* ready_async cal |l back */
NULL, /* flush call back */
NULL, /* call callback */
NULL, /* event callback */
ERL_DRV_EXTENDED_MARKER, /* Extended driver interface marker */

ERL_DRV_EXTENDED _MAJOR VERSION, /* Mjor version nunber */
ERL_DRV_EXTENDED M NOR_VERSION, /* M nor version nunber */

ERL_DRV_FLAG _SOFT_BUSY, /* Driver flags. Soft busy flag is
required for distribution drivers */

NULL, /* Reserved for internal use */

NULL, /* process_exit callback */

NULL /* stop_sel ect callback */

b

to correspond to the operating systems ditto, which is very convenient.

The different call-back functions are declared ("forward declarations") on line 16 to 23.

The driver structure is similar for statically linked in drivers and dynamically loaded. However some of the fields
should be left empty (i.e. initialized to NULL) in the different types of drivers. The first field (the i ni t function
pointer) isalways|eft blank in adynamically loaded driver, which can be seen on line 26. The NULL online 37 should
always bethere, thefield isno longer used and is retained for backward compatibility. We use no timersin thisdriver,
why no call-back for timers is needed. The out put v field (line 40) can be used to implement an interface similar
to Unix wr i t ev for output. The Erlang runtime system could previously not use out put v for the distribution, but
since erts version 5.7.2 it can. Since this driver was written before erts version 5.7.2 it does not use the out put v

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

callback. Using the out put v callback is preferred since it reduces copying of data. (We will however use scatter/
gather 1/O internally in the driver).

As of erts version 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present at line 48. As of ertsversion 5.7.4 the ERL_DRV_FLAG_SOFT_BUSY flag
isrequired for drivers that are to be used by the distribution. The soft busy flag implies that the driver is capable of
handling calls to the out put and out put v callbacks even though it has marked itself as busy. This has always
been a requirement on drivers used by the distribution, but there have previously not been any capability information
available about this. For more information see set_busy port()).

Thisdriver waswritten before the runtime system had SMP support. Thedriver will still functionin the runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. Thiscan be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can executein parallel.
When instances safely can execute in paralléel it is safe to enable instance specific locking on the driver. Thisis done
by passing ERL_DRV_FLAG_USE PORT_LOCKING as adriver flag. Thisis|eft as an exercise for the reader.

Our defined call-backs thus are:

e uds start, which shall initiate data for a port. We wont create any actual sockets here, just initialize data
structures.

e uds stop, the function called when a port is closed.

e uds _command, which will handle messages from Erlang. The messages can either be plain datato be sent or
more subtle instructions to the driver. We will use this function mostly for data pumping.

e uds input, thisisthe call-back which is called when we have something to read from a socket.

e uds output, thisisthe function called when we can write to a socket.

e uds finish, whichis called when the driver is unloaded. A distribution driver will actually (or hopefully) never
be unloaded, but we include this for completeness. Being able to clean up after oneself is always a good thing.

e uds control, theer | ang: port _control / 2 call-back, which will be used alot in thisimplementation.

The portsimplemented by thisdriver will operate in two major modes, which i will call the command and data modes.
In command mode, only passive reading and writing (like gen_tcp:recv/gen_tcp:send) can be done, and this is the
mode the port will be in during the distribution handshake. When the connection is up, the port will be switched to data
mode and all datawill be immediately read and passed further to the Erlang emulator. In data mode, no data arriving
to the uds_command will be interpreted, but just packaged and sent out on the socket. The uds_control call-back will
do the switching between those two modes.

Whilethenet _ker nel informsdifferent subsystemsthat the connection is coming up, the port should accept datato
send, but not receive any data, to avoid that data arrives from another node before every kernel subsystem is prepared
to handle it. We have athird mode for this intermediate stage, lets cal it the intermediate mode.

Lets define an enum for the different types of ports we have:

1) typedef enum {

(

(2 por t TypeUnknown, /* An uninitialized port */

(3) port Typeli st ener, /* A listening port/socket */

(4) port TypeAccept or, /* An internedi ate stage when accepting

(5 on a listen port */

(6) por t TypeConnect or, /* An internedi ate stage when connecting */
(7 por t TypeCommand, /* A connected open port in comrmand node */
(8) port Typel nternmedi ate, /* A connected open port in special

(9 hal f active node */

(10) port TypeDat a /* A connectec open port in data node */

(11) } PortType;

Letslook at the different types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

1.5 How to implement an alternative carrier for the Erlang distribution

» portTypeUnknown - The type a port has when it's opened, but not actually bound to any file descriptor.

e portTypeListener - A port that is connected to alisten socket. This port will not do especially much, there will
be no data pumping done on this socket, but there will be read data available when one is trying to do an accept
on the port.

* portTypeAcceptor - Thisisaport that isto represent the result of an accept operation. It is created when one
wants to accept from a listen socket, and it will be converted to a portTypeCommand when the accept succeeds.

» portTypeConnector - Very similar to portTypeAcceptor, an intermediate stage between the request for a connect
operation and that the socket isreally connected to an accepting ditto in the other end. As soon as the sockets
are connected, the port will switch type to portTypeCommand.

* portTypeCommand - A connected socket (or accepted socket if you want) that isin the command mode
mentioned earlier.

» portTypelntermediate - The intermediate stage for a connected socket. There should be no processing of input
for this socket.

e portTypeData - The mode where datais pumped through the port and the uds_command routine will regard
every call as acall where sending is wanted. In this mode all input available will be read and sent to Erlang as
soon asit arrives on the socket, much like in the active mode of agen_t cp socket.

Now lets ook at the state we'll need for our ports. One can note that not al fields are used for al types of ports and
that one could save some space by using unions, but that would clutter the code with multipleindirections, soi simply
use one struct for all types of ports, for readability.

(1) typedef unsigned char Byte;
2) typedef unsigned int Wrd;

—

3) typedef struct uds_data {

(

(4 int fd; /* File descriptor */

(5) Erl DrvPort port; /* The port identifier */

(6) int |ockfd; /* The file descriptor for a lock file in
(7 case of |isten sockets */

(8) Byte creation; /* The creation serial derived fromthe
(9 | ockfile */

(10) Port Type type; /* Type of port */

(11) char *nane; /* Short nanme of socket for unlink */

(12) Word sent; /* Bytes sent */

(13) Word received; /* Bytes received */

(14) struct uds_data *partner; /* The partner in an accept/listen pair */
(15) struct uds_data *next; /* Next structure in list */

(16) /* The input buffer and its data */

(17) int buffer_size; /* The al |l ocated size of the input buffer */
(18) int buffer_pos; /* Current position in input buffer */
(19) i nt header_pos; /* \Where the current header is in the

(20) i nput buffer */

(21) Byte *buffer; /* The actual input buffer */

(22) } UdsDat a;

This structure is used for all types of ports although some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as aunion of structures, but the multipleindirectionsin the code
to access afield in such a structure will clutter the code to much for an example.

Let'slook at the fields in our structure:

« fd- Thefile descriptor of the socket associated with the port.

» port - The port identifier for the port which this structure corresponds to. It is needed for most dr i ver _ XXX
calls from the driver back to the emulator.

» lockfd - If the socket is alisten socket, we use a separate (regular) file for two purposes:

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

* Wewant alocking mechanism that gives no race conditions, so that we can be sure of if another Erlang
node uses the listen socket name we require or if the file is only left there from a previous (crashed)
session.

« Westorethecreation serial number inthefile. The creationisanumber that should change between different
instances of different Erlang emulators with the same name, so that process identifiers from one emulator
won't be valid when sent to a new emulator with the same distribution name. The creation can be between 0
and 3 (two hits) and is stored in every process identifier sent to another node.

In asystem with TCP based distribution, this datais kept in the Erlang port mapper daemon (epnd), which
is contacted when a distributed node starts. The lock-file and a convention for the UDS listen socket's name
will remove the need for epd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.
creation - The creation number for alisten socket, which is calculated as (the value found in the lock-file + 1)
rem 4. This creation value is a so written back into the lock-file, so that the next invocation of the emulator will
found our valuein thefile.

type - The current type/state of the port, which can be one of the values declared above.

name - The name of the socket file (the path prefix removed), which allows for deletion (unl i nk) when the
socket is closed.

sent - How many bytes that have been sent over the socket. This may wrap, but that's no problem for

the distribution, as the only thing that interests the Erlang distribution is if this value has changed (the

Erlang net_kernel ticker uses this value by calling the driver to fetch it, which is done through the

erl ang: port _control routine).

received - How many bytes that are read (received) from the socket, used in similar waysassent .

partner - A pointer to another port structure, which is either the listen port from which this port is accepting a
connection or the other way around. The "partner relation” is always bidirectional.

next - Pointer to next structurein alinked list of al port structures. Thislist is used when accepting connections
and when the driver is unloaded.

buffer_size, buffer_pos, header pos, buffer - data for input buffering. Refer to the source code (in the kernel/
examples directory) for details about the input buffering. That certainly goes beyond the scope of this
document.

Selected parts of the distribution driver implementation

The distribution driversimplementation is not completely covered in thistext, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver call-back routines can befound intheer | _dri ver . h header file.

The driver initiaization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavours of systems). Thisis the only routine that has to have a well defined name. All other

cal-

backs are reached through the driver structure. The macro to useis named DRI VER | NI T and takes the driver

name as parameter.

(1)
(2)

(3)
(4
(5)
(6)

/* Beginning of linked |list of ports */
static UdsData *first_data;

DRI VER | NI T(uds_dr v)

{
first _data = NULL;
return &uds_driver_entry;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

1.5 How to implement an alternative carrier for the Erlang distribution

(1}

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine will be
caledwhener!| _ddl | : 1 oad_dri ver iscaledfrom Erlang.

Theuds_st art routineis called when a port is opened from Erlang. In our case, we only allocate a structure and
initialize it. Creating the actual socket isleft to theuds_comrand routine.

1) static ErlDrvData uds_start(Erl DrvPort port, char *buff)

(

(2 {

(3) UdsDat a *ud;

(4

(5 ud = ALLOC(si zeof (UdsDat a)) ;
(6) ud->fd = -1;

(7 ud->l ockfd = -1;

(8) ud- >creation = 0;

(9 ud- >port = port;

(10) ud- >t ype = port TypeUnknown;
(11) ud- >nanme = NULL;

(12) ud- >buffer_size = 0;
(13) ud- >buf fer_pos = 0;

(14) ud- >header _pos = 0;

(15) ud- >buffer = NULL;

(16) ud- >sent = 0;

(17) ud- >recei ved = 0;

(18) ud- >partner = NULL;

(19) ud- >next = first_data;
(20) first_data = ud;

(21)

(22) return((Erl DrvData) ud);
(23) }

Every dataitem isinitialized, so that no problems will arise when a newly created port is closed (without there being
any corresponding socket). Thisroutineis called when open_port ({spawn, "uds_drv"},[]) iscaledfrom
Erlang.

The uds_conmand routine is the routine called when an Erlang process sends data to the port. All asynchronous
commands when the port is in command mode as well as the sending of all data when the port is in data mode is
handled in this9s routine. Let's have alook at it:

(1) static void uds_conmand(Erl DrvData handl e, char *buff, int bufflen)
(2 {
(

3) UdsData *ud = (UdsData *) handl e;
(4 if (ud->type == portTypeData || ud->type == port Typel nternedi ate) {
(5) DEBUGH((" Passi ve do_send %", bufflen));
(6) do_send(ud, buff + 1, bufflen - 1); /* XXX */
(7 return;
(8 }
(9 if (bufflen == 0) {
(10) return;
(11) }
(12) switch (*buff) {
(13) case 'L':
(14) if (ud->type != port TypeUnknown) {
(15) driver_failure_posix(ud->port, ENOISUP);
(16) return;
(17)
(18) uds_conmand_| i st en(ud, buff, bufflen);

32| Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

(19) return;

(20) case 'A:

(21) if (ud->type != port TypeUnknown) {

(22) driver_failure_posix(ud->port, ENOTSUP);
(23) return;

(24) }

(25) uds_conmand_accept (ud, buf f, buf fl en) ;

(26) return;

(27) case 'C:

(28) if (ud->type != port TypeUnknown) {

(29) driver_failure_posix(ud->port, ENOTSUP);
(30) return;

(31) }

(32) uds_command_connect (ud, buf f, buffl en);

(33) return;

(34) case 'S':

(35) if (ud->type != port TypeCommand) {

(36) driver_failure_posix(ud->port, ENOTSUP);
(37) return;

(38) }

(39) do_send(ud, buff + 1, bufflen - 1);

(40) return;

(41) case 'R :

(42) if (ud->type != port TypeCommand) {

(43) driver_failure_posix(ud->port, ENOTSUP);
(44) return;

(45) }

(46) do_recv(ud);

(47) return;

(48) defaul t:

(49) return;

(50) }

(51) }

The command routine takes three parameters; the handle returned for the port by uds_st ar t , which is a pointer to
the internal port structure, the data buffer and the length of the data buffer. The buffer is the data sent from Erlang (a
list of bytes) converted to an C array (of bytes).

If Erlang sends i.e. the list [$a, $b, $c] to the port, the buf f | en variable will be 3 ant the buf f variable will
contain{'a',"'b',"'c'} (nonull termination). Usually the first byte is used as an opcode, which isthe casein our
driver to (at least when the port isin command mode). The opcodes are defined as:

e 'L'<socketname>: Create and listen on socket with the given name.

* 'Alistennumber as 32 bit bigendian>: Accept from the listen socket identified by the given identification
number. The identification number is retrieved with the uds_control routine.

e 'C'<socketname>: Connect to the socket named <socketname>.

e 'S<data>: Send the data <data> on the connected/accepted socket (in command mode). The sending is acked
when the data has | eft this process.

* 'R Receive one packet of data.

One may wonder what is meant by "one packet of data" in the'R' command. This driver always sends data packeted
with a4 byte header containing a big endian 32 bit integer that represents the length of the datain the packet. Thereis
no need for different packet sizes or some kind of streamed mode, as this driver is for the distribution only. One may
wonder why the header word is coded explicitly in big endian when an UDS socket is local to the host. The answer
simply isthat | see it as a good practice when writing a distribution driver, as distribution in practice usualy cross
the host boundaries.

Online4-8 wehandlethe case wheretheport isin dataor intermediate mode, the rest of the routine handlesthe different
commands. We see (first on line 15) that theroutine usesthedr i ver _fai | ur e_posi x() routineto report errors.
One important thing to remember isthat the failure routines make acall to our uds_st op routine, which will remove

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

1.5 How to implement an alternative carrier for the Erlang distribution

theinternal port data. The handle (and the casted handle ud) istherefore invalid pointers after adri ver _fail ure
call and we should immediately return. The runtime system will send exit signalsto all linked processes.

Theuds_input routine gets called when dataisavailable on afiledescriptor previously passedtothedr i ver _sel ect
routine. Typically this happens when a read command is issued and no datais available. Letslook at thedo_r ecv
routine:

1) static void do_recv(UdsData *ud)

(

(2 {

(3) int res;

(4) char *i buf;

(5) for(;;) {

(6) if ((res = buffered_read_package(ud, & buf)) < 0) {

() if (res == NORVAL_READ FAI LURE) {

(8) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(9 } else {

(10) driver_fail ure_eof (ud->port);

(11) }

(12) return;

(13) }

(14) /* CGot a package */

(15) if (ud->type == port TypeComrand) {

(16) ibuf[-1] = "'R; /* There is always roomfor a single byte
(17) opcode before the actual buffer

(18) (where the packet header was) */

(19) driver_out put (ud->port,ibuf - 1, res + 1);

(20) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(21) return;

(22) } else {

(23) i buf[-1] = DI ST_MAG C RECV_TAG /* XXX */

(24) driver_out put (ud->port,ibuf - 1, res + 1);

(25) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(26) }

(27) }

(28) }

The routine tries to read data until a packet is read or the buf f ered_r ead_package routine returns a
NORMAL_READ_FAI LURE (aninternally defined constant for the modul e that means that the read operation resulted
in an EWOUL DBL OCK). If the port isin command mode, the reading stops when one package isread, but if itisin data
mode, the reading continues until the socket buffer is empty (read failure). If no more data can be read and more is
wanted (always the case when socket is in data mode) driver_select is called to make the uds_i nput call-back be
called when more datais available for reading.

When the port is in data mode, all data is sent to Erlang in a format that suits the distribution, in fact the raw data
will never reach any Erlang process, but will be translated/interpreted by the emulator itself and then delivered in the
correct format to the correct processes. In the current emulator version, received data should be tagged with asingle
byte of 100. Thats what the macro DI ST_MAG C_RECV_TAG s defined to. The tagging of data in the distribution
will possibly change in the future.

The uds_i nput routine will handle other input events (like nonblocking accept), but most importantly handle
data arriving at the socket by callingdo_r ecv:

(1) static void uds_input(ErlDrvData handl e, ErlDrvEvent event)

(2 {

(3) UdsData *ud = (UdsData *) handl e;

(4) if (ud->type == port TypeLi stener) {
(5 UdsData *ad = ud->partner;

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

(6
(7
(8
(9
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26) }

}

struct sockaddr _un peer;
int pl = sizeof(struct sockaddr_un);
int fd;

if ((fd = accept (ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
if (errno != EWOULDBLOCK) {
driver_failure_posix(ud->port, errno);
return;

}

return;

}

SET_NONBLOCKI NG(f d) ;

ad->fd = fd;

ad->partner = NULL;

ad->type = port TypeCommand;

ud- >partner = NULL;

driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
dri ver_out put (ad->port, "Aok", 3);

return;

do_recv(ud);

Theimportant line hereisthe last linein the function, thedo_r ead routineis called to handle new input. The rest of
the function handles input on alisten socket, which means that there should be possible to do an accept on the socket,
which is also recognized as aread event.

The output mechanisms are similar to the input. Letsfirst look at thedo_send routine:

(
(2){
(3
(4
(5
(6)
(7N

(8
(9
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)

1) static void do_send(UdsData *ud, char *buff, int bufflen)

char header[4];

int witten;

Sysl Ovec iov[2];

Erl | Ovec ei o;

Erl DrvBinary *binv[] = {NULL, NULL};

put _packet | engt h(header, bufflen);
iov[0].iov_base = (char *) header;
iov[0].iov_len = 4;
iov[1l].iov_base = buff;
iov[1l].iov_len = bufflen;

eio.iov = iov;

ei 0. binv = binv;

ei 0.vsize = 2;

eio.size = bufflen + 4;

witten = 0;

if (driver_sizeq(ud->port) == 0) {

if ((witten = witev(ud->fd, iov, 2)) == eio.size) {
ud- >sent += written;
if (ud->type == port TypeCommand) {
driver_out put (ud->port, "Sok", 3);
}

return;
} elseif (witten < 0) {
if (errno != EWOULDBLOCK) {
driver_failure_eof (ud->port);
return;
} else {
witten = 0;

} else {

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

1.5 How to implement an alternative carrier for the Erlang distribution

(33) ud->sent += written;

(34) }

(35) /* Enqueue renmining */

(36) }

(37) driver_enqv(ud->port, &eio, witten);
(38) send_out _queue(ud);

(39) }

Thisdriver usesthewr i t ev system call to send data onto the socket. A combination of writev and the driver output
gueuesis very convenient. An ErllOVec structure contains a SyslOVec (which isequivalent to thest r uct i ovec
structure defined in ui 0. h. The ErllOVec also contains an array of ErlDrvBinary pointers, of the same length asthe
number of buffers in the I/O vector itself. One can use this to allocate the binaries for the queue "manually” in the
driver, but we'll just fill the binary array with NULL values (line 7) , which will make the runtime system allocate its
own bufferswhenwecall dri ver _enqgv (line 37).

The routine builds an 1/0 vector containing the header bytes and the buffer (the opcode has been removed and the
buffer length decreased by the output routine). If the queue is empty, we'll write the data directly to the socket (or at
least try to). If any dataisleft, it is stored in the queue and then we try to send the queue (line 38). An ack is sent when
the message is delivered completely (line 22). The send_out _queue will send acks if the sending is completed
there. If the port isin command mode, the Erlang code serializes the send operations so that only one packet can be
waiting for delivery at atime. Therefore the ack can be sent simply whenever the queue is empty.

A short look at thesend_out _queue routine:

1) static int send_out_queue(UdsData *ud)

(

(2 {

(3 for(;;) {

(4) int vlen;

(5 Sysl Ovec *tnp = driver_peekqg(ud->port, &vlen);
(6) int wote;

7 if (tmp == NULL) {

(8) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO WRI TE, 0);
(9 if (ud->type == port TypeCommand) {

(10) driver_out put (ud->port, "Sok", 3);
(11) }

(12) return 0;

(13) }

(14) if (vlen > I O VECTOR MAX) {

(15) vlien = |1 O VECTOR MAX;

(16) }

(17) if ((wote = witev(ud->fd, tnp, vlien)) < 0) {
(18) if (errno == EWOULDBLOCK) {

(19) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd,
(20) DO WRITE, 1);

(21) return O;

(22) } else {

(23) driver_fail ure_eof (ud->port);

(24) return -1;

(25) }

(26) }

(27) driver_deq(ud->port, wote);

(28) ud- >sent += wrote;

(29) }

(30) }

What we do is simply to pick out an I/O vector from the queue (which is the whole queue as an SyslOVex). If the l/O
vectoristolong (I0_VECTOR_MAX isdefinedto 16), the vector length isdecreased (line 15), otherwisethewr i t ev
(line17) call will fail. Writing istried and anything written is dequeued (line 27). If thewritefailswith EWOUL DBL OCK

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

(note that all sockets are in nonblocking mode), dri ver _sel ect iscaled to make the uds_out put routine be
called when there is space to write again.

We will continue trying to write until the queue is empty or the writing would block.

The routine above are called from the uds__out put routine, which looks like this:

(1) static void uds_output(Erl DrvData handl e, ErlDrvEvent event)
(2 {

(3) UdsData *ud = (UdsData *) handl e;

(4 if (ud->type == port TypeConnector) {

(5) ud- >t ype = port TypeConmand;

(6) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO WRI TE, 0);
(7 driver_out put (ud->port, "Cok", 3);

(8) return;

(9

(10) send_out _queue(ud);

(11) }

Theroutineissimple, it first handles the fact that the output select will concern a socket in the business of connecting
(and the connecting blocked). If the socket isin aconnected state it simply sends the output queue, thisroutineis called
when there is possible to write to a socket where we have an output queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface called when Erlang calls
erl ang: port _control /3. Thisisthe only interface that can control the driver when it isin data mode and it
may be called with the following opcodes:

e 'C" Set port in command mode.
e 'I'' Set port in intermediate mode.
e 'D" Set port in data mode.

* 'N': Get identification number for listen port, this identification number is used in an accept command to the
driver, itis returned as a big endian 32 hit integer, which happensto be the file identifier for the listen socket.

e 'S: Get gatistics, which is the number of bytes received, the number of bytes sent and the number of bytes
pending in the output queue. This datais used when the distribution checks that a connection is alive (ticking).
The statisticsis returned as 3 32 bit big endian integers.

e 'T" Send atick message, which is a packet of length 0. Ticking is done when the port isin data mode, so the
command for sending data cannot be used (besides it ignores zero length packages in command mode). This
isused by theticker to send dummy data when no other traffic is present. Note that it isimportant that the
interface for sending ticksis not blocking. Thisimplementation useser | ang: port _cont r ol / 3 which
does not block the caller. If er | ang: port _command isused, useer | ang: port _conmand/ 3 and pass
[force] asoption list; otherwise, the caller can be blocked indefinitely on abusy port and prevent the system
from taking down a connection that is not functioning.

* 'R Get creation number of listen socket, which is used to dig out the number stored in the lock file to
differentiate between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to alocate its own buffer is the provided one is
to small. Hereisthe code for uds_control :

1) static int uds_control (Erl DrvData handl e, unsigned int comrand,

(

(2) char* buf, int count, char** res, int res_size)
(3 {

(4) /* Local macro to ensure |arge enough buffer. */

(5) #define ENSURE(N) \

(6) do { \

(7 if (res_size < N { \

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 37

1.5 How to implement an alternative carrier for the Erlang distribution

(8) *res = ALLOC(N); \
(9 } \
(10) } whil e(0)

(112) UdsData *ud = (UdsData *) handl e;

(12) switch (command) {

(13) case 'S':

(14) {

(15) ENSURE(13) ;

(16) **res = 0;

(17) put _packet length((*res) + 1, ud->received);

(18) put _packet length((*res) + 5, ud->sent);

(19) put _packet length((*res) + 9, driver_sizeq(ud->port));
(20) return 13;

(21) }

(22) case 'C:

(23) if (ud->type < portTypeCommand) {

(24) return report_control _error(res, res_size, "einval");
(25) }

(26) ud- >t ype = port TypeComrand;

(27) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(28) ENSURE(1) ;

(29) **res = 0;

(30) return 1;

(31) case 'I|':

(32) if (ud->type < portTypeCommand) {

(33) return report_control _error(res, res_size, "einval");
(34) }

(35) ud- >t ype = port Typel nt er nedi at e;

(36) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(37) ENSURE(1) ;

(38) **res = 0;

(39) return 1;

(40) case 'D:

(41) if (ud->type < port TypeCommand) {

(42) return report_control _error(res, res_size, "einval");
(43) }

(44) ud- >t ype = port TypeDat a;

(45) do_recv(ud);

(46) ENSURE(1) ;

(47) **res = 0;

(48) return 1;

(49) case 'N:

(50) if (ud->type != portTypeListener) {

(51) return report_control _error(res, res_size, "einval");
(52) }

(53) ENSURE(5) ;

(54) (*res)[0] = O;

(55) put _packet length((*res) + 1, ud->fd);

(56) return 5;

(57) case 'T': [* tick */

(58) if (ud->type != portTypeData) {

(59) return report_control __error(res, res_size, "einval");
(60) }

(61) do_send(ud,"", 0);

(62) ENSURE(1) ;

(63) **res = 0;

(64) return 1;

(65) case 'R :

(66) if (ud->type != portTypeListener) {

(67) return report_control _error(res, res_size, "einval");
(68) }

(69) ENSURE(2) ;

(70) (*res)[0] = O;

38| Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

(72) (*res)[1] = ud->creation;

(72) return 2;

(73) defaul t:

(74) return report_control _error(res, res_size, "einval");
(75) }

(76) #undef ENSURE

(77) }

The macro ENSURE (line 5 to 10) is used to ensure that the buffer is large enough for our answer. We switch on the
command and take actions, there is not much to say about this routine. Worth noting is that we always has read select
active on a port in data mode (achieved by calling do_r ecv on line 45), but turn off read selection in intermediate
and command modes (line 27 and 36).

Therest of the driver ismore or less UDS specific and not of general interest.

1.5.3 Putting it all together

Totest thedistribution, onecanusethenet _ker nel : st art/ 1 function, whichisuseful asit startsthe distribution
on a running system, where tracing/debugging can be performed. The net _kernel : start/ 1 routine takes a
list as its single argument. The lists first element should be the node name (without the " @hostname™) as an atom,
and the second (and last) element should be one of the atoms shor t nanes or | ongnanes. In the example case
shor t nanes ispreferred.

For net kernel to find out which distribution module to use, the command line argument - pr ot o_di st isused. The
argument is followed by one or more distribution module names, with the "_dist" suffix removed, i.e. uds_dist as a
distribution module is specified as- pr ot o_di st uds.

If no epmd (TCP port mapper daemon) is used, one should also specify the command line option - no_epnd, which
will make Erlang skip the epmd startup, both as a OS process and as an Erlang ditto.

The path to the directory where the distribution modul es reside must be known at boot, which can either be achieved by
specifying - pa <pat h> on the command line or by building a boot script containing the applications used for your
distribution protocol (in the uds_dist protocol, it's only the uds_dist application that needs to be added to the script).

The distribution will be started at boot if all the above is specified and an - snane <nane> flag is present at the
command line, here follows two examples:

$ erl -pa $ERL_TOP/Ii b/ kernel / exanpl es/ uds_di st/ ebin -proto_dist uds -no_epnd
Erl ang (BEAM) enul ator version 5.0

Eshell V5.0 (abort with ~"Q

1> net _kernel : start ([bi ng, shortnanes]).
{ ok, <0. 30. 0>}

(bi ng@ador) 2>

$ erl -pa $ERL_TOP/Ii b/ kernel / exanpl es/ uds_di st/ ebin -proto_dist uds \
-no_epmd -sname bong

Erl ang (BEAM enul ator version 5.0

Eshell V5.0 (abort with ~"Q

(bong@ador) 1>

One can utilize the ERL_FLAGS environment variable to store the complicated parametersin:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 39

1.6 The Abstract Format

$ ERL_FLAGS=-pa $ERL_TOP/ | i b/ ker nel / exanpl es/ uds_di st/ ebin \

-proto_dist uds -no_epnd

$ export ERL_FLAGS
$ erl -sname bang
Erl ang (BEAM enul ator version 5.0

Eshell V5.0 (abort with ~"Qg
(bang@ador) 1>

The ERL__FLAGS should preferably not include the name of the node.

1.6 The Abstract Format

This document describes the standard representation of parse trees for Erlang programs as Erlang terms. This
representation isknown asthe abstract format. Functionsdealing with such parsetreesareconpi | e: for s/ [1, 2]
and functionsin the modulesepp, erl _eval ,erl _lint,erl _pp,erl_parse,andi 0. They areaso used as

input and output for parse transforms (see the module comnpi | e).

We use the function Rep to denote the mapping from an Erlang source construct Cto its abstract format representation

R andwriteR = Rep(C) .

Theword LI NE below representsaninteger, and denotesthe number of thelinein the sourcefilewherethe construction

occurred. Several instances of LI NE in the same construction may denote different lines.

Since operators are not termsin their own right, when operators are mentioned bel ow, the representati on of an operator

should be taken to be the atom with a printname consisting of the same characters as the operator.

1.6.1 Module Declarations and Forms

A module declaration consists of a sequence of forms that are either function declarations or attributes.

If D isamodule declaration consisting of theformsF_1, ..., F_k, then Rep(D) =[Rep(F_1), ...,
Rep(F_k)1].

If Fisan attribute - rodul e(Mbd) ,then Rep(F) ={attri but e, LI NE, nodul e, Mod}.

If Fisan attribute - behavi or (Behavi or) , then Rep(F) =

{attribute, LI NE, behavi or, Behavi or}.

If Fisan attribute - behavi our (Behavi our) , then Rep(F) =

{attribute, LI NE, behavi our, Behavi our}.

If Fisanattribute- export ([Fun_1/A 1, ..., Fun_k/A k]),thenRep(F) =
{attribute, LI NE, export,[{Fun_1,A 1}, ..., {Fun_k, A k}1}.

If Fisanattribute-i nport (Mod, [Fun_1/A 1, ..., Fun_k/ A K]),then Rep(F)=
{attribute, LINE, inport, {Md,[{Fun_1,A 1}, ..., {Fun_k, A k}]}}.

If Fisan attribute- export _type([Type 1/ A 1, ..., Type_k/ A k]),thenRep(F) =
{attribute, LI NE, export _type, [{Type_1,A 1}, ..., {Type_k, A k}]}.

If Fisan attribute - conpi | e(Opt i ons) ,thenRep(F) ={attri bute, LI NE, conpi | e, Opti ons}.
If Fisanattribute-fil e(Fil e, Li ne),thenRep(F)={attribute, LINE file,{File,Line}}.
If Fisarecord declaration-record(Nanme, {V_1, ..., V_k}),thenRep(F) =

{attribute, LINE, record, {Name, [Rep(V_1), ..., Rep(V_k)]}}.ForRep(V), seebelow.
If Fisatypedeclaration- Type Name(V_1, ..., V_k) :: T,whereType iseithertheatomt ype
or the atom opaque, each V_i isavariable, and T isatype, then Rep(F) ={attri but e, LI NE, Type,
{Nanme, Rep(T),[Rep(V_1), ..., Rep(V_k)]}}.

40 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 The Abstract Format

» If Fisafunction specification - Spec Nane Ft_1; ...; Ft_k, whereSpec iseither the atom
spec or theatom cal | back, and each Ft _i isapossibly constrained function type with an argument
sequence of the samelength Ari t y, then Rep(F) ={attri but e, Li ne, Spec, {{Name, Arity},
[Rep(Ft_1), ..., Rep(Ft_k)1}}.

e |If Fisafunction specification- spec Mod: Nane Ft_1; ...; Ft_k,whereeachFt i isa
possibly constrained function type with an argument sequence of the same length Ar i t y, then Rep(F) =
{attribute, Line, spec, {{Md, Nane, Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}.
 If Fisawildattribute- A(T) ,thenRep(F) ={attri bute, LI NE, A T}.
e |If FisafunctiondeclarationNane Fc_1 ; ... ; Nane Fc_k,whereeach Fc_i isafunction clause

with a pattern sequence of the same length Ari t y, then Rep(F) ={f uncti on, LI NE, Nane, Arity,
[Rep(Fc_1), ...,Rep(Fc_k)]}.

Record Fields

Each field in arecord declaration may have an optional explicit default initializer expression, as well as an optional
type.

e IfVisAthenRep(V)={record_field, LI NE Rep(A)?}.

« IfVisA = E,whereEisanexpression, then Rep(V) ={record_fiel d, LI NE, Rep(A), Rep(E) }.

e IfVisA :: T,whereTisatypeand it doesnot contain undef i ned syntacticaly, then Rep(V) =
{typed_record_field, {record_field,LINE Rep(A)}, Rep(undefined | T)}.

« IfVisA :: T,whereTisatype then Rep(V)={typed_record_field,
{record_field,LINE Rep(A)}, Rep(T)}.

e IfVisA = E :: T,whereEisanexpressionand T isatype, then Rep(V) ={typed record_field,
{record _field, LINE, Rep(A), Rep(E)}, Rep(T)}.
Representation of Parse Errors and End-of-file

In addition to the representations of forms, the list that represents a module declaration (as returned by functionsin
erl _par se andepp) may containtuples{ err or, E} and{war ni ng, W, denoting syntactically incorrect forms
and warnings, and { eof , LI NE} , denoting an end-of-stream encountered before a complete form had been parsed.

1.6.2 Atomic Literals

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions and guards:

e |If L isaninteger or character literal, then Rep(L) ={i nt eger, LI NE, L}.
« IfLisafloat literal, then Rep(L) ={f | oat, LI NE, L}.

o If Lisastringliteral consisting of the charactersC 1, ..., C_k, then Rep(L) ={ st ri ng, LI NE,
[C1, ..., CK]}.
e IfLisanatomliteral, then Rep(L) ={ at om LI NE, L}.

Notethat negative integer and float literals do not occur as such; they are parsed as an application of the unary negation
operator.

1.6.3 Patterns

If Ps is asequence of patterns P_1, ..., P_k,then Rep(Ps) =[Rep(P_1), ..., Rep(P_k)]. Such
sequences occur asthe list of argumentsto afunction or fun.

Individual patterns are represented as follows:

e If Pisan atomic literal L, then Rep(P) = Rep(L).
* If Pisacompound pattern P_1 = P_2, then Rep(P) ={ mat ch, LI NE, Rep(P_1), Rep(P_2)}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 41

1.6 The Abstract Format

If Pisavariable pattern V, then Rep(P) = { var, LI NE, A}, where A is an atom with a printname consisting of
the same charactersas V.

If Pisauniversal pattern _, thenRep(P) ={var, LINE,"' _'}.

If Pisatuplepattern{P_1, ..., P_k},thenRep(P)={tuple, LI NE [Rep(P_1), ...,
Rep(P_k)1}.

If Pisanil pattern[], then Rep(P) ={ ni | , LI NE} .

If Pisaconspattern[P_h | P_t],then Rep(P) ={cons, LI NE, Rep(P_h), Rep(P_t)}.

If Eisabinary pattern<<P_1: Si ze_1/TSL_1, ..., P_k: Size_k/ TSL_k>>, then Rep(E)

={bin, LINE, [{bin_el ement, LI NE, Rep(P_1), Rep(Si ze_1), Rep(TSL_1)}, ...,
{bin_el ement, LI NE, Rep(P_k), Rep(Si ze_k), Rep(TSL_k) }1}. For Rep(TSL), see below. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .
If PisP_1 Op P_2,where Qp isabinary operator (thisis either an occurrence of ++ applied to aliteral string
or character list, or an occurrence of an expression that can be evaluated to a number at compile time), then
Rep(P) ={ op, LI NE, Op, Rep(P_1), Rep(P_2)}.

If PisOp P_0, where Qp isaunary operator (thisis an occurrence of an expression that can be evaluated to a
number at compile time), then Rep(P) = { op, LI NE, Op, Rep(P_0) }.

If Pisarecord pattern #Name{ Fi el d_1=P_1, ..., Field_k=P_k},then Rep(P) =

{record, LI NE, Nane, [{record _field, LINE, Rep(Field 1), Rep(P_1)}, ...,
{record field,LINE Rep(Field k), Rep(P_k)}1}.

If Pis#Nane. Fi el d, then Rep(P) ={r ecor d_i ndex, LI NE, Nane, Rep(Fi el d)}.

If Pis(P_0),then Rep(P) = Rep(P_0), that is, patterns cannot be distinguished from their bodies.

Note that every pattern has the same source form as some expression, and is represented the same way as the
corresponding expression.

1.6.4 Expressions
A body B isasequence of expressionsE_1, ..., E k,andRep(B)=[Rep(E_1), ..., Rep(EK)].

An expression E is one of the following alternatives:

If Pisan atomic literal L, then Rep(P) = Rep(L).

If EisP = E_O, then Rep(E) ={ mat ch, LI NE, Rep(P), Rep(E_0) }.

If Eisavariable V, then Rep(E) = { var, LI NE, A}, where A isan atom with a printname consisting of the
same charactersas V.

If Eisatupleskeleton{E 1, ..., E k},thenRep(E)={tuple, LINE [Rep(E 1), ...,
Rep(E_k)]}.

If Eis[],thenRep(E) ={ni |, LI NE}.

If Eisaconsskeleton[E_h | E_t],thenRep(E)={cons, LI NE, Rep(E_h), Rep(E_t)}.

If Eisabinary constructor <<V_1: Si ze_1/TSL_1, ..., V_k:Size_k/ TSL_k>>, then Rep(E)
={bin,LINE, [{bin_el ement, LINE, Rep(V_1), Rep(Si ze_1),Rep(TSL_1)}, ...,
{bin_el enment, LI NE, Rep(V_Kk), Rep(Si ze_k), Rep(TSL_k)}]}.For Rep(TSL), see below. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .
IfEiISE_1 Op E_2, where Op isabinary operator, then Rep(E) =

{op, LINE, Op, Rep(E_1), Rep(E_2)}.

If EisOp E_O0, where Op isaunary operator, then Rep(E) = { op, LI NE, Op, Rep(E_0) }.

If Eis#Name{Fi el d_1=E 1, ..., Field_k=E k},then Rep(E)=

{record, LI NE, Name, [{record_field, LINE Rep(Field_ 1), Rep(E_1)}, ...,
{record_field, LINE Rep(Field_k), Rep(E_k)}1}.

42 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 The Abstract Format

If EISE_O#Nanme{Field_1=E 1, ..., Field_k=E _k},thenRep(E)=

{record, LI NE, Rep(E_0), Nane,

[{record_field, LINE Rep(Field_ 1), Rep(E_1)}, ...,

{record_field, LINE Rep(Field_k), Rep(E_k)}1}.

If Eis#Nane. Fi el d, then Rep(E) ={r ecor d_i ndex, LI NE, Nane, Rep(Fi el d)}.

If EiSE_O#Nane. Fi el d, then Rep(E) ={record_fiel d, LI NE, Rep(E_0), Nane, Rep(Fi el d)}.
IfEis#{W1, ..., WKk} whereeachW.i isamap assoc or exact field, then Rep(E) = { map, LI NE,
[Rep(W1), ..., Rep(WKk)]}.For Rep(W), see below.

IfEISE_ O#{W 1, ..., WKk} whereW.i isamap assoc or exact field, then Rep(E) =

{map, LI NE, Rep(E_0), [Rep(W1), ..., Rep(WKk)]}.ForRep(W), see below.

If Eiscatch E _O,thenRep(E) ={' catch', LI NE, Rep(E_0)}.

IfEiIsE O(E_ 1, ..., E Kk),thenRep(E)={call,LINE, Rep(E 0),[Rep(E_1), ...,
Rep(E_k)]1}.

IfEISEEmE_O(E_1, ..., E_K),thenRep(E)={call, LI NE,

{remote, LINE, Rep(E_m), Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}.

If Eisalist comprehension[E 0 || W1, ..., WK],whereeachW i isagenerator or afilter, then
Rep(E) ={l ¢, LINE, Rep(E_0),[Rep(W1), ..., Rep(WKk)]}.ForRep(W), seebelow.

If Eisabinary comprehension<<E 0 || W1, ..., Wk>> whereeachW.i isagenerator or afilter,
then Rep(E) ={ bc, LI NE, Rep(E_0), [Rep(W 1), ..., Rep(WKk)]}.ForRep(W), see below.
If Eisbegi n B end, where Bisabody, then Rep(E) ={ bl ock, LI NE, Rep(B)}.

IfEisif Ic_1; ... ; lc_k end,whereeachlc_i isanif clausethenRep(E)={"if"', LI NE,
[Rep(lc_1), ..., Rep(lc_k)]}.

IfEiscase E 0 of Cc_1 ; ... ; Cc_k end,whereE 0 isanexpressionandeachCc_i isacase
clausethen Rep(E) ={' case', LI NE, Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}.
IfEistry B catch Tc_1 ; ... ; Tc_k end,whereBisabody and each Tc_i isacatch clause
thenRep(E) ={"'try',LINE, Rep(B),[].,[Rep(Tc_1), ..., Rep(Tc_Kk)].[]1}.

IfEistry B of Cc_1; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end,whereBisabody,
each Cc_i isacaseclauseand each Tc_j isacatch clausethenRep(E) ={'try', LI NE, Rep(B),
[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[1}.

IfEistry B after A end,whereBand Aarebodiesthen Rep(E)={"'try', LI NE, Rep(B),[],
[].Rep(A)}.

IfEistry B of Cc_1; ... ; Cc_k after A end,whereBandA areabodiesand each
Cc_i isacaseclausethenRep(E) ={"'try', LI NE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],
[1.Rep(A)}.

IfEistry B catch Tc_1 ; ... ; Tc_k after A end,whereB and A are bodiesand

each Tc_i isacatchclausethen Rep(E) ={'try', LI NE, Rep(B),[],[Rep(Tc_1), ...,
Rep(Tc_k)], Rep(A)}.

IfEistry Bof Cc_1; ... ; Cc_k catch Tc_1; ... ; Tc_n after A end,

where B and A are abodies, each Cc_i isacaseclauseand each Tc_j isacatch clause then Rep(E)
={"try',LINE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_Kk)],[Rep(Tc_1), ...,
Rep(Tc_n)], Rep(A) }.

IfEisreceive Cc_1 ; ... ; Cc_k end,whereeach Cc_i isacaseclausethen Rep(E) =
{'receive' ,LINE, [Rep(Cc_1), ..., Rep(Cc_k)1}.

IfEisreceive Cc_1; ... ; Cc_k after EO -> B_t end,whereeachCc_i isacase clause,

E Oisanexpressionand B t isabody, then Rep(E) ={"' recei ve' ,LINE, [Rep(Cc_1), ...,
Rep(Cc_k)], Rep(E_0), Rep(B_t)}.
If Eisfun Nane / Arity,thenRep(E)={'fun', LI NE, {function, Name, Arity}}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 43

1.6 The Abstract Format

o IfEisfun Modul e: Nanme/ Arity,thenRep(E)={' fun', LI NE,
{function, Rep(Mdul e), Rep(Nane), Rep(Arity)}}. (Beforethe R15 release: Rep(E) =
{'fun',LINE, {function, Modul e, Nane, Arity}}.)

e |IfEisfun Fc_1 ; ... ; Fc_k endwhereeach Fc_i isafunction clausethen Rep(E) =
{'fun',LINE {clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}.

« |IfEisfun Name Fc_1 ; ... ; Nane Fc_k end whereNane isavariableandeachFc_i isa
function clause then Rep(E) = { nanmed_f un, LI NE, Nane, [Rep(Fc_1), ..., Rep(Fc_k)]}.

- |IfEis(E_0),then Rep(E) = Rep(E_0), that is, parenthesized expressions cannot be distinguished from
their bodies.

Generators and Filters
When W is a generator or afilter (in the body of alist or binary comprehension), then:

 IfWisagenerator P <- E, whereP isapattern and E is an expression, then Rep(W) =
{generate, LI NE, Rep(P), Rep(E) }.

 If Wisagenerator P <= E, where P isapattern and E is an expression, then Rep(W) =
{b_generate, LINE, Rep(P), Rep(E) }.

e If Wisafilter E, which is an expression, then Rep(W) = Rep(E) .

Binary Element Type Specifiers

A type specifier list TSL for a binary element is a sequence of type specifiers TS 1 - ... - TS k. Rep(TSL)
=[Rep(TS_1), ..., Rep(TS K)].

When TSis atype specifier for abinary element, then:

e If TSisanatom A, then Rep(TS) = A.

» |If TSisacouple A: Val ue where Aisan atom and Val ue isan integer, then Rep(TS) ={ A, Val ue}.

Map Assoc and Exact Fields
When W is an assoc or exact field (in the body of amap), then:

e [IfWisanassocfield K => V, where K and V are both expressions, then Rep(W) =
{map_field assoc, LI NE, Rep(K), Rep(V)}.

* IfWisanexactfiddK : = V, where Kand V are both expressions, then Rep(W) =
{map_field_exact, LI NE, Rep(K), Rep(V)}.

1.6.5 Clauses

There are function clauses, if clauses, case clauses and catch clauses.

A clause Cisone of the following alternatives:

« [IfCisafunctionclause(Ps) -> BwherePs isa pattern sequence and B is a body, then Rep(C) =
{clause, LI NE, Rep(Ps),[], Rep(B)}.

 IfCisafunctionclause(Ps) when Gs -> BwherePs isapattern sequence, Gs isaguard sequence
and B isabody, then Rep(C) ={ cl ause, LI NE, Rep(Ps), Rep(Gs), Rep(B)}.

« IfCisanif clauseGs -> BwhereGs isaguard sequence and B isabody, then Rep(C) ={ cl ause, LI NE,
[1, Rep(Gs), Rep(B)}.

e« |IfCisacaseclause P - > BwhereP isapattern and B isabody, then Rep(C) ={ cl ause, LI NE,
[Rep(P)],[].Rep(B)}.

« IfCisacaseclauseP when Gs -> BwhereP isapattern, Gs isaguard sequence and B is abody, then
Rep(C) ={cl ause, LINE, [Rep(P)], Rep(Gs), Rep(B) }.

44 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 The Abstract Format

If Cisacatch clause P - > Bwhere Pisapattern and B isabody, then Rep(C) ={ cl ause, LI NE,
[Rep({throw, P, _})].[],Rep(B)}.

If Cisacatchclause X : P -> BwhereXisanatomic literal or avariable pattern, Pisapatternand Bisa
body, then Rep(C) ={ cl ause, LINE, [Rep({X, P, _})].,[], Rep(B)}.

If Cisacatch clauseP when Gs -> BwherePisapattern, Gs isaguard sequence and B is a body, then
Rep(C) ={cl ause, LI NE, [Rep({throw, P, _})], Rep(Gs), Rep(B)}.

If Cisacatchclause X : P when Gs -> BwhereXisanatomic literal or avariable

pattern, P is apattern, Gs isaguard sequence and B is abody, then Rep(C) ={ cl ause, LI NE,

[Rep({X P, _})],Rep(Gs), Rep(B)}.

1.6.6 Guards

A guard sequence Gsisasequenceof guardsG 1; ...; G k,andRep(Gs)=[Rep(G_ 1), ..., Rep(GKk)].
If the guard sequenceis empty, Rep(Gs) =[] .

A guard G is a nonempty sequence of guard tests& _1, ..., & _k,and Rep(G) =[Rep(&x _1), ...,
Rep(& _Kk)].

A guard test & is one of the following alternatives:

If Gtisan atomic literal L, then Rep(Gt) = Rep(L).

If Gtisavariable pattern V, then Rep(Gt) ={ var, LI NE, A}, where A is an atom with a printname consisting
of the same charactersas V.

If Gtisatupleskeleton{G _1, ..., G _k},thenRep(Gt)={tupl e, LINE [Rep(&_1), ...,
Rep(& _k)1}.

If Gtis[],thenRep(Gt)={nil, LI NE}.

If Gtisaconsskeleton[G _h | & _t],thenRep(Gt) ={cons, LI NE, Rep(& _h), Rep(& _t)}.

If Gtisabinary constructor <<& _1:Size 1/TSL_ 1, ..., & _k: Size_k/ TSL_k>>, then Rep(Gt)
={bin,LINE, [{bin_elenent, LINE, Rep(& _1), Rep(Size_1),Rep(TSL_1)}, ...,
{bin_elenent, LINE, Rep(G k), Rep(Si ze_k), Rep(TSL_k) }]}. For Rep(TSL), see above. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .
IfGtisG _1 Op G _2,where Op isabinary operator, then Rep(Gt) =

{op, LINE, Op, Rep(& _1),Rep(& _2)}.

If GtisOp G _0, where Op isaunary operator, then Rep(Gt) ={ op, LI NE, Op, Rep(G& _0) }.

If Gtis#Nane{Field_1=G _1, ..., Field k=& _k},thenRep(E) =

{record, LI NE, Nane, [{record_field, LINE, Rep(Field_1),Rep(& _1)}, ...,
{record_field,LINE Rep(Field k), Rep(&_k)}]}.

If Gtis#Nane. Fi el d, then Rep(Gt) ={recor d_i ndex, LI NE, Nane, Rep(Fi el d)}.

If Gtis@G _O#Nane. Fi el d, then Rep(Gt) =

{record field,LINE Rep(& _0), Nane, Rep(Field)}.

If GtisA(& _1, ..., & _Kk),whereAisanatom,then Rep(Gt) ={cal |, LI NE, Rep(A),
[Rep(G_1), ..., Rep(&_Kk)]}.
IfGtisA mA(G_1, ..., &G _k),whereA mistheatomer| ang and Aisan atom or an operator,

then Rep(Gt) ={cal |, LI NE, {renot e, LI NE, Rep(A M, Rep(A },[Rep(& _1), ...,

Rep(& _k)1}.

IfGtis{AmMA(&G_1, ..., G_k),whereA mistheatomer| ang and Aisan atom or an operator,
thenRep(Gt) ={cal |, LI NE, Rep({A mA}),[Rep(G_1), ..., Rep(&G_Kk)]}.

If Gtis(& _0), then Rep(Gt) = Rep(& _0), that is, parenthesized guard tests cannot be distinguished
from their bodies.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 45

1.6 The Abstract Format

Note that every guard test has the same source form as some expression, and is represented the same way as the
corresponding expression.

1.6.7 Types

e If Tisanannotated type Anno :: Type, where Anno isavariableand Type isatype, then Rep(T) =
{ann_type, LI NE, [Rep(Anno) , Rep(Type)]}.

e If Tisanatom or integer literal L, then Rep(T) = Rep(L).

e IfTisL Op R where Qp isabinary operator and L and R are types (thisis an occurrence of an expression that
can be evaluated to an integer at compile time), then Rep(T) ={ op, LI NE, Op, Rep(L), Rep(R) }.

« IfTisOQp A whereOp isaunary operator and A isatype (thisis an occurrence of an expression that can be
evaluated to an integer at compiletime), then Rep(T) ={ op, LI NE, Op, Rep(A) }.

o If Tisabitstringtype<<_: M _: _* N>>, where Mand N are singleton integer types, then Rep(T) =
{type, LI NE, bi nary, [Rep(M, Rep(N1}.

e If Tistheempty listtype[],thenRep(T) ={type, Line,nil,[]}.

 IfTisafuntypefun(),thenRep(T)={type, LINE, 'fun',[]1}.

« [IfTisafuntypefun((...) -> B),whereBisatype then Rep(T) ={type, LINE, ' fun',
[{type, LI NE, any}, Rep(B)]}.

 IfTisafuntypef un(Ft),whereFt isafunctiontype, then Rep(T) = Rep(Ft) .

 If Tisaninteger rangetypel .. H, wherel and H are singleton integer types, then Rep(T) =
{type, LI NE, range, [Rep(L), Rep(H1}.

« IfTisamaptypemap(),then Rep(T) ={t ype, LI NE, nap, any}.

o IfTisamaptype#{P_1, ..., P_k},whereeachP_i isamap pair type, then Rep(T) =
{type, LI NE, map, [Rep(P_1), ..., Rep(P_K)]}.

e IfTisamappartypeK => V,whereKandV aretypes, then Rep(T) =
{type, LINE, map_field assoc, [Rep(K), Rep(V)]}.

» If Tisapredefined (or built-in) type N(A 1, ..., A k),whereeachA i isatype, then Rep(T) =
{type,LINE, N, [Rep(A_ 1), ..., Rep(AK)]}.

e |IfTisarecordtype#Name{F_1, ..., F_k},whereeachF i isarecord field type, then Rep(T) =
{type, LI NE, record, [Rep(Nane), Rep(F_1), ..., Rep(F_ K)]}.

 If TisarecordfieldtypeName :: Type, where Type isatype, then Rep(T) =
{type,LINE, field_type, [Rep(Nane), Rep(Type)]}.

« IfTisaremotetypeM N(A_1, ..., A k),whereeachA i isatype, then Rep(T) =
{renote_type, LINE, [Rep(M, Rep(N),[Rep(A 1), ..., Rep(AK)]]}.

 |IfTisatupletypet upl e(),then Rep(T) ={t ype, LI NE, t upl e, any}.

« IfTisatupletype{A 1, ..., A k},whereeachA i isatype then Rep(T)={type, LI NE, t upl e,
[Rep(A 1), ..., Rep(AK)]}.

e [IfTisatypeunionT_1 | ... | T_k,whereeachT i isatype, then Rep(T) ={t ype, LI NE, uni on,
[Rep(T_1), ..., Rep(T_Kk)1}.

« If TisatypevariableV, then Rep(T) ={ var, LI NE, A}, where Aiis an atom with a printname consisting of
the same characters as V. A type variable is any variable except underscore ().

o If Tisauser-definedtypeN(A 1, ..., A k),whereeach A i isatype, then Rep(T) =
{user_type,LINE,N [Rep(A_ 1), ..., Rep(AKk)]}.

e IfTis(T_0),thenRep(T)=Rep(T_0), that is, parenthesized types cannot be distinguished from their
bodies.

46 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 tty - A command line interface

Function Types

» If Ftisaconstrained functiontype Ft _1 when Fc, whereFt _1 isafunction type and Fc isafunction
congtraint, then Rep(T) ={t ype, LI NE, bounded_f un, [Rep(Ft _1), Rep(Fc)]}.

« IfFFtisafunctiontype(A 1, ..., A n) -> B,whereeachA i and B aretypes, then Rep(Ft) =

{type, LINE, ' fun',[{type, LI NE product, [Rep(A 1), ..., Rep(An)]},Rep(B)]}.
Function Constraints
A function constraint Fc is a nonempty sequence of constraints C 1, C k, and Rep(Fc) =
[Rep(C 1), ..., Rep(CK)].

o IfCisacongrainti s_subtype(V, T) orV :: T,whereVisatypevariableand T isatype, then Rep(C)
={type, LINE, constraint,[{atom LINE, is_subtype},[Rep(V),Rep(T)]1}.

1.6.8 The Abstract Format After Preprocessing

The compilation option debug_i nf o can be given to the compiler to have the abstract code stored in the
abst ract _code chunk inthe BEAM file (for debugging purposes).

In OTP R9C and later, theabst ract _code chunk will contain
{raw_abstract _v1, Abstract Code}
where Abst r act Code isthe abstract code as described in this document.

Inreleases of OTP prior to R9C, the abstract code after some more processing was stored in the BEAM file. Thefirst
element of the tuple would be either abst r act _v1 (R7B) or abst r act _v2 (R8B).

1.7 tty - A command line interface

t t y isasimple command line interface program where keystrokes are collected and interpreted. Completed lines are
sent to the shell for interpretation. There is a simple history mechanism, which saves previous lines. These can be
edited before sending them to the shell. t t y is started when Erlang is started with the command:

erl
t t y operatesin one of two modes:

+ normal mode, in which lines of text can be edited and sent to the shell.

« shell break mode, which allows the user to kill the current shell, start multiple shells etc. Shell break mode is
started by typing Control G.

1.7.1 Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the emacs line editing
commands are supported. The following isacomplete list of the supported line editing commands.

Note: The notation C- a means pressing the control key and the letter a simultaneously. M f means pressing the ESC
key followed by the letter f . Home and End represent the keys with the same name on the keyboard, whereas Lef t
and Ri ght represent the corresponding arrow keys.

Key Sequence Function
Home Beginning of line
C-a Beginning of line

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 47

1.7 tty - A command line interface

C-b Backward character

C-Left Backward word

M-b Backward word

Cd Delete character

M-d Delete word

End End of line

C-e End of line

C Forward character

C-Right Forward word

M-f Forward word

C-g Enter shell break mode

C-k Kill line

C-u Backward kill line

CH Redraw line

C-n Fetch next line from the history buffer
C-p Fetch previous line from the history buffer
C-t Transpose characters

C-w Backward kill word

C-y Insert previously killed text

Table 7.1: tty text editing

1.7.2 Shell Break Mode

tty enters shell break mode when you type Control G. In this mode you can:

» Kill or suspend the current shell
e Connect to a suspended shell
e Start anew shell

48 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

1.8 How to implement a driver

Note:

This document was written a long time ago. A lot of it is still interesting since it explains important concepts,
but it was written for an older driver interface so the examples do not work anymore. The reader is encouraged
toread erl_driver and the driver_entry documentation.

1.8.1 Introduction

This chapter tells you how to build your own driver for erlang.

A driver in Erlang is alibrary written in C, that is linked to the Erlang emulator and called from erlang. Drivers can
be used when C is more suitable than Erlang, to speed things up, or to provide access to OS resources not directly
accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known as a DLL on windows), or statically loaded, linked
with the emulator when it is compiled and linked. Only dynamically loaded drivers are described here, statically linked
drivers are beyond the scope of this chapter.

When a driver isloaded it is executed in the context of the emulator, shares the same memory and the same thread.
Thismeansthat all operationsin the driver must be non-blocking, and that any crash in the driver will bring the whole
emulator down. In short: you have to be extremely careful!

1.8.2 Sample driver

Thisisasimple driver for accessing a postgres database using the libpg C client library. Postgresis used because it's
free and open source. For information on postgres, refer to the website www.postgr es.or g.

Thedriver issynchronous, it usesthe synchronous calls of theclient library. Thisisonly for simplicity, and isgenerally
not good, since it will halt the emulator while waiting for the database. This will be improved on below with an
asynchronous sample driver.

The codeisquite straight-forward: all communication between Erlang and thedriverisdonewithpor t _control / 3,
and the driver returns data back using ther buf .

An Erlang driver only exports one function: the driver entry function. This is defined with amacro, DRI VER_| NI T,
and returns a pointer to a C st ruct containing the entry points that are called from the emulator. The st r uct
defines the entries that the emulator calls to call the driver, with a NULL pointer for entries that are not defined and
used by the driver.

Thest art entry is called when the driver is opened as a port with open_por t/ 2. Here we alocate memory for
auser data structure. This user datawill be passed every time the emulator calls us. First we store the driver handle,
because it is needed in subsequent calls. We allocate memory for the connection handle that is used by LibPQ. We
also set the port to return allocated driver binaries, by setting the flag PORT_CONTROL_FLAG_BI NARY, calling
set _port_control _flags. (Thisis because we don't know whether our data will fit in the result buffer of
cont r ol , which has adefault size set up by the emulator, currently 64 bytes.)

Thereisanentry i ni t whichiscalled when the driver isloaded, but we don't use this, sinceit is executed only once,
and we want to have the possibility of several instances of the driver.

Thest op entry is called when the port is closed.

The control entry is caled from the emulator when the Erlang code calls port _cont rol / 3, to do the actual
work. We have defined a simple set of commands: connect to login to the database, di sconnect to log out
and sel ect to send a SQL-query and get the result. All results are returned through r buf . The library ei in

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 49

href

1.8 How to implement a driver

erl _i nterface isusedtoencodedatain binary term format. Theresult isreturned to the emulator as binary terms,
sobi nary_t o_t er miscaled in Erlang to convert the result to term form.

Thecodeisavailablein pg_sync. ¢ inthesanpl e directory of ert s.

The driver entry contains the functions that will be called by the emulator. In our simple example, we only provide
start,stopandcontrol.

/* Driver interface declarations */

static ErlDrvData start(Erl DrvPort port, char *command);

static void stop(Erl DrvData drv_data);

static int control (Erl DrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static Erl DrvEntry pg_driver_entry = {

NULL, [* init */

start,

st op

NULL, [* output */

NULL, /* ready_i nput */
NULL, /* ready_out put */
"pg_sync", /* the nanme of the driver */
NULL, [* finish */

NULL, /* handl e */
control

NULL, /* tineout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, [* flush */

NULL, [* call */

NULL /* event */

We have a structure to store state needed by the driver, in this case we only need to keep the database connection.

typedef struct our_data_s {
PGconn* conn;
} our_data_t;

These are control codes we have defined.

/* Keep the follow ng definitions in alignment with the
* defines in erl_pg_sync.erl
*/

#def i ne DRV_CONNECT '
#def i ne DRV_DI SCONNECT '
#def i ne DRV_SELECT '

(2R eNe]

This just returns the driver structure. The macro DRI VER_| NI T defines the only exported function. All the other
functions are static, and will not be exported from the library.

50 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

[* I NI TI ALl ZATI ON AFTER LOADI NG */

/*

* This is the init function called after this driver has been | oaded.
* It nmust *not* be declared static. Must return the address to

* the driver entry.

*/
DRI VER I NI T(pg_drv)
{
return &pq_driver_entry;
}

Herewe do someinitialization, st ar t iscalled fromopen_port . Thedatawill bepassedtocont r ol andst op.

/* DRI VER | NTERFACE */
static ErlDrvData start(Erl DrvPort port, char *conmand)

{
our _data_t* data;
data = (our_data_t*)driver_all oc(sizeof (our_data_t));
dat a- >conn = NULL;
set _port_control _flags(port, PORT_CONTROL_FLAG BI NARY) ;
return (Erl DrvDat a) dat a;

}

We call disconnect to log out from the database. (This should have been done from Erlang, but just in case.)

static int do_disconnect(our_data_t* data, ei_x_buff* x);

static void stop(ErlDrvData drv_data)

{
our_data_t* data = (our_data_t*)drv_data;
do_di sconnect (data, NULL);
driver_free(data);

}

We use the binary format only to return data to the emulator; input data is a string paramater for connect and
sel ect . Thereturned data consists of Erlang terms.

The functions get _s and ei _x_t o_new _bi nary are utilities that are used to make the code shorter. get _s
duplicates the string and zero-terminates it, since the postgres client library wants that. ei _x_t o_new_bi nary
takesanei _x_buf f buffer and allocates abinary and copiesthe datathere. Thishinary isreturnedin* r buf . (Note
that this binary is freed by the emulator, not by us.)

static char* get_s(const char* buf, int |len);
static int do_connect(const char *s, our_data t* data, ei_x_buff* x);
static int do_select(const char* s, our_data t* data, ei_x_buff* x);

/* Since we are operating in binary node, the return value from control
*isirrelevant, as long as it is not negative.

*/

static int control (Erl DrvData drv_data, unsigned int command, char *buf,

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 51

1.8 How to implement a driver

int len, char **rbuf, int rlen)

{ .
int r;
ei _x_buff x;
our_data_t* data = (our_data_t*)drv_data;
char* s = get_s(buf, len);
ei _x_new W th_versi on(&x);
switch (command) {
case DRV_CONNECT: r = do_connect (s, data, &x); break;
case DRV_DI SCONNECT: r = do_di sconnect (data, &x); break;
case DRV_SELECT: r = do_sel ect(s, data, &x); br eak;
defaul t: r = -1; br eak;
}
rbuf = (char)ei _x_to_new binary(&x);
ei _x free(&);
driver_free(s);
return r;
}

do_connect iswherewelog in to the database. If the connection was successful we store the connection handle in
our driver data, and return ok. Otherwise, we return the error message from postgres, and store NULL in thedriver data.

static int do_connect(const char *s, our_data t* data, ei_x_buff* x)

{
PCGconn* conn = PQconnect db(s);
if (PQstatus(conn) != CONNECTI ON_OK) {
encode_error(x, conn);
PQ i ni sh(conn);
conn = NULL;
} else {
encode_ok(x) ;
}
dat a- >conn = conn;
return O;
}

If we are connected (if the connection handle is not NULL), we log out from the database. We need to check if we
should encode an ok, since we might get here from the st op function, which doesn't return data to the emulator.

static int do_disconnect(our_data t* data, ei_x_buff* x)

if (data->conn == NULL)
return O;

PQ i ni sh(dat a- >conn) ;

dat a- >conn = NULL;

if (x !'= NULL)
encode_ok(Xx);

return O;

We execute a query and encode the result. Encoding is done in another C module, pg_encode. ¢ which is aso
provided as sample code.

static int do_select(const char* s, our_data t* data, ei_x_buff* x)

52 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

{
PGresult* res = PQexec(data->conn, s);
encode_result(x, res, data->conn);
PQcl ear (res);
return O;
}

Herewe simply check theresult from postgres, and if it'sdatawe encodeit aslists of listswith column data. Everything
from postgresis C strings, sowejust useei _x_encode_st ri ng to send the result as stringsto Erlang. (The head
of the list contains the column names.)

voi d encode_resul t(ei _x_buff* x, PGesult* res, PGconn* conn)
{
int row, n_rows, col, n_cols;
switch (PQresultStatus(res)) {
case PCRES TUPLES OK:
n_rows = PQntupl es(res);
n_cols = PQnfields(res);
ei _x_encode_t upl e_header (x, 2);
encode_ok(x) ;
ei _x_encode_l i st_header(x, n_rows+1);
ei _x_encode_| i st_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {
ei _x_encode_string(x, PQname(res, col));
}
ei _x_encode_enpty_list(x);
for (row = 0; row < n_rows; ++row) {
ei _x_encode_l| i st_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {
ei _x_encode_string(x, PQyetvalue(res, row, col));
}

ei _x_encode_enpty_list(x);
}
ei _x_encode_enpty_list(x);
br eak;
case PCGRES COWMAND CXK:
ei _x_encode_t upl e_header (x, 2);
encode_ok(x) ;
ei _x_encode_string(x, PQndTupl es(res));
br eak;
defaul t:
encode_error(x, conn);
br eak;

1.8.3 Compiling and linking the sample driver

The driver should be compiled and linked to a shared library (DLL on windows). With gcc this is done with the link
flags- shar ed and - f pi c. Since we usethe ei library we should include it too. There are severa versions of ei ,
compiled for debug or non-debug and multi-threaded or single-threaded. In the makefile for the samples the obj
directory isused for theei library, meaning that we use the non-debug, single-threaded version.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 53

1.8 How to implement a driver

1.8.4 Calling a driver as a port in Erlang

Before adriver can be called from Erlang, it must be loaded and opened. Loadingisdoneusingtheer | _ddl | module
(theer | _ddl | driverthat loadsdynamicdriver, isactually adriver itself). If loading is ok the port can be opened with
open_port/ 2. The port name must match the name of the shared library and the name in the driver entry structure.

When the port has been opened, the driver can be called. Inthe pg_sync example, we don't have any data from the
port, only the return value from theport _contr ol .

The following code is the Erlang part of the synchronous postgres driver, pg_sync. erl .

- modul e(pg_sync) .

- def i ne(DRV_CONNECT, 1).
- def i ne(DRV_DI SCONNECT, 2).
- def i ne(DRV_SELECT, 3).

-export ([connect/1, disconnect/1, select/2]).

connect (Connect Str) ->

case erl _ddll:load_driver(".", "pg_sync") of
ok -> ok;
{error, already_| oaded} -> ok;
E -> exit({error, E})

end,

Port = open_port ({spawn, ?MODULE}, []),

case binary_to_term(port_control (Port, ?DRV_CONNECT, ConnectStr)) of
ok -> {ok, Port};
Error -> Error

end.

di sconnect (Port) ->
R = binary_to_tern(port_control (Port, ?DRV_DI SCONNECT, "")),
port_cl ose(Port),
R

sel ect (Port, Query) ->
binary_to_term(port_control (Port, ?DRV_SELECT, Query)).

The APl is simple: connect / 1 loads the driver, opens it and logs on to the database, returning the Erlang port
if successful, sel ect/ 2 sends a query to the driver, and returns the result, di sconnect/ 1 closes the database
connection and the driver. (It does not unload it, however.) The connection string should be a connection string for
postgres.

The driver is loaded with er| _ddl | : | oad_dri ver/ 2, and if this is successful, or if it's already loaded, it is
opened. Thiswill call thest art function in the driver.

Weusetheport _contr ol / 3 functionfor al callsinto thedriver, theresult fromthedriver isreturned immediately,
and converted to terms by calling bi nary_t o_t er n1 1. (Wetrust that the terms returned from the driver are well-
formed, otherwisethe bi nary_t o_t er mcalls could be contained inacat ch.)

1.8.5 Sample asynchronous driver

Sometimes database queries can take long time to complete, in our pg_sync driver, the emulator halts while the
driver is doing its job. This is often not acceptable, since no other Erlang process gets a chance to do anything. To
improve on our postgres driver, we reimplement it using the asynchronous callsin LibPQ.

The asynchronous version of the driver isin the sasmplefilespg_async. ¢ andpg_asyng. er| .

54 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

/* Driver interface declarations */

static ErlDrvData start(Erl DrvPort port,

static void stop(Erl DrvData drv_data);

static int control (Erl DrvData drv_data, unsigned int conmand,
int len, char **rbuf, int rlen);

static void ready i o(Erl DrvData drv_data, ErlDrvEvent event);

char *command) ;

char *buf,

static Erl DrvEntry pg_driver_entry = {

NULL, [* init */

start,

st op,

NULL, /* output */
ready_i o, /* ready_i nput */
ready_i o, /* ready_out put */
"pg_async", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, /* flush */

NULL, [* call */

NULL /* event */

) ¢

typedef struct our_data t {
PGconn* conn;
Erl DrvPort port;
int socket;
int connecting;
} our_data_ t;

Here some things have changed from pg_sync. c: we use the entry ready_i o for ready_i nput and
r eady_out put whichwill becalled from the emulator only when thereisinput to be read from the socket. (Actually,
the socketisused inasel ect function inside the emulator, and when the socket is signalled, indicating there is data
toread, ther eady_i nput entry iscalled. More on this below.)

Our driver datais also extended, we keep track of the socket used for communication with postgres, and also the port,
which is needed when we send datato the port with dr i ver _out put . Wehaveaflagconnect i ng totell whether
the driver is waiting for a connection or waiting for the result of aquery. (Thisis needed sincethe entry r eady i o
will be called both when connecting and when there is a query resuilt.)

static int do_connect(const char *s,

{

our _data_t* data)

PGconn* conn = PQtonnect Start(s);

if (PQstatus(conn) CONNECTI ON_BAD) {
ei _x_buff x;
ei _x_new with_version(&x);
encode_error (&, conn);
PQ& i ni sh(conn);
conn = NULL;
dri ver_out put (dat a- >port,
ei _x free(&);

x. buff, x.index);

}

PQconnect Pol | (conn);
int socket = PQsocket (conn);
dat a- >socket = socket;
driver_sel ect (dat a- >port,

(Erl DrvEvent)socket, DO READ, 1);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 55

1.8 How to implement a driver

Theconnect function looks a bit different too. We connect using the asynchronous PQconnect St art function.
After the connection is started, we retrieve the socket for the connection with PQsocket . This socket isused with the
driver_sel ect functionto wait for connection. When the socket is ready for input or for output, ther eady_i o

driver_sel ect (data->port, (ErlDrvEvent)socket,

dat a- >conn = conn;
dat a- >connecting = 1;
return O;

function will be called.

Note that we only return data (with dr i ver _out put) if thereisan error here, otherwise we wait for the connection
to be completed, in which case our r eady _i o function will be called.

static int do_sel ect(const char* s,

{

Thedo_sel ect functioninitiatesaselect, and returnsif thereisnoimmediate error. The actual result will bereturned

dat a- >connecting = 0;
PCGconn* conn = dat a- >conn;
/* if there's an error return it now */
if (PQendQuery(conn, s) == 0) {
ei _x_buff x;
ei _x_new with_version(&x);
encode_error (&, conn);

driver_out put (data->port, x.buff, x.index);

ei _x free(&);
}

/* else wait for ready output to get results */

return O;

whenr eady_i o iscalled.

static void ready_i o(Erl DrvData drv_data, ErlDrvEvent event)

{

56 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

PGesult* res = NULL;
our_data_t* data = (our_data_t*)drv_data;
PCconn* conn = dat a->conn;
ei _x_buff x;
ei _x_new_wi th_version(&x);
i f (data->connecting) {
ConnSt at usType st at us;
PQconnect Pol | (conn) ;
status = PQstatus(conn);
if (status == CONNECTI ON_OK)
encode_ok(&x) ;
else if (status == CONNECTI ON_BAD)
encode_error (&, conn);
} else {
PQconsunel nput (conn) ;
i f (PQ sBusy(conn))
return;
res = PQget Resul t (conn);
encode_result (&, res, conn);
PQcl ear (res);
for (55) {

res = PQget Resul t (conn);

DO WRI TE, 1);

our _data_t* data)

1.8 How to implement a driver

if (res == NULL)
br eak;
PQcl ear (res);
}

}
if (x.index > 1) {
driver_out put (data->port, x.buff, x.index);
i f (data->connecting)
driver_sel ect (data->port, (ErlDrvEvent)data->socket, DO WRI TE, 0);

}
ei _x free(&);

Ther eady_i o function will be called when the socket we got from postgresisready for input or output. Herewefirst
check if we are connecting to the database. In that case we check connection status and return ok if the connection is
successful, or error if it'snot. If the connection isnot yet established, wesimply return; r eady _i o will becalled again.

If we have a result from a connect, indicated by having data in the x buffer, we no longer need to select on output
(ready_out put), soweremovethisby calingdri ver _sel ect.

If were not connecting, we're waiting for results from a PQsendQuer y, so we get the result and return it. The
encoding is done with the same functions as in the earlier example.

We should add error handling here, for instance checking that the socket is still open, but thisisjust asimple example.

The Erlang part of the asynchronous driver consists of the samplefilepg_async. er | .

- modul e(pg_async) .

- defi ne(DRV_CONNECT, $C).
- def i ne(DRV_DI SCONNECT, $D).
- defi ne(DRV_SELECT, $S).

-export ([connect/1, disconnect/1, select/2]).

connect (Connect Str) ->
case erl _ddll:load_driver(".", "pg_async") of
ok -> ok;
{error, already_| oaded} -> ok;
_ ->exit({error, could_not_|oad_driver})
end,
Port = open_port ({spawn, ?MODULE}, [binary]),
port _control (Port, ?DRV_CONNECT, ConnectStr),
case return_port_data(Port) of

ok ->

{ok, Port};
Error ->

Error

end.

di sconnect (Port) ->
port _control (Port, ?DRV_DI SCONNECT, ""),
R = return_port_data(Port),
port _cl ose(Port),
R

sel ect (Port, Query) ->
port _control (Port, ?DRV_SELECT, Query),
return_port_data(Port).

return_port_data(Port) ->

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 57

1.8 How to implement a driver

receive
{Port, {data, Data}} ->
bi nary_to_tern(Data)
end

The Erlang code is dlightly different, thisis because we don't return the result synchronously fromport _contr ol ,
instead we get it fromdr i ver _out put asdatain the message queue. The functionr et ur n_port _dat a above
receives data from the port. Since the data is in binary format, we use bi nary_to_t erm 1 to convert it to an
Erlang term. Note that the driver is opened in binary mode (open_port/ 2 is called with the option [bi nar y]).
This means that data sent from the driver to the emulator is sent as binaries. Without the bi nar y option, they would
have been lists of integers.

1.8.6 An asynchronous driver using driver_async

As afina example we demonstrate the use of dr i ver _async. We aso use the driver term interface. The driver is
written in C++. This enables us to use an algorithm from STL. We will usethe next _per nut at i on agorithm to
get the next permutation of alist of integers. For large lists (more than 100000 elements), this will take some time,
so we will perform this as an asynchronous task.

The asynchronous API for driversis quite complicated. First of all, the work must be prepared. In our example we
do thisin out put . We could have used cont r ol just aswell, but we want some variation in our examples. In our
driver, we alocate a structure that contains anything that's needed for the asynchronous task to do the work. Thisis
done in the main emulator thread. Then the asynchronous function is called from a driver thread, separate from the
main emulator thread. Note that the driver-functions are not reentrant, so they shouldn't be used. Finally, after the
function is completed, the driver callback r eady _async is called from the main emulator thread, thisis where we
return the result to Erlang. (We can't return the result from within the asynchronous function, since we can't call the
driver-functions.)

The code below is from the samplefilenext _perm cc.

The driver entry looks like before, but also contains the call-back r eady_async.

static Erl DrvEntry next_permdriver_entry = {

NULL, [* init */

start,

NULL, [* stop */

out put,

NULL, /* ready_i nput */
NULL, /* ready_out put */
"next _pernt, /* the name of the driver */
NULL, [* finish */

NULL, /* handl e */

NULL, /* control */
NULL, [* timeout */
NULL, /* outputv */
ready_async

NULL, [* flush */

NULL, [* call */

NULL [* event */

The out put function allocates the work-area of the asynchronous function. Since we use C++, we use a struct, and
stuff the datain it. We have to copy the original data, it is not valid after we have returned from the out put function,
and the do_per mfunction will be called later, and from another thread. We return no data here, instead it will be
sent later fromther eady_async call-back.

58 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 How to implement a driver

The async_dat a will be passed to the do_per mfunction. We do not use a async_fr ee function (the last
argument todr i ver _async), it'sonly used if the task is cancelled programmatically.

struct our_async_data {
bool prev;
vect or <i nt > dat a;
our _async_data(Erl DrvPort p, int command, const char* buf, int |en);

}s

our _async_dat a: : our _async_dat a(Erl DrvPort p, int comrand,
const char* buf, int |en)
prev(command == 2),
data((int*)buf, (int*)buf + len / sizeof(int))
{
}

static void do_permvoi d* async_data);

static void output(Erl DrvData drv_data, char *buf, int |en)

{
if (*buf <1 || *buf > 2) return;
Erl DrvPort port = reinterpret_cast<Erl DrvPort>(drv_data);
voi d* async_data = new our_async_data(port, *buf, buf+1, |en);
driver_async(port, NULL, do_perm async_data, do_free);
}

Inthedo_per mwe simply do the work, operating on the structure that was allocated in out put .

static void do_pern(voi d* async_dat a)

{
our _async_data* d = reinterpret_cast<our_async_dat a*>(async_data) ;
if (d->prev)
prev_permut ati on(d->dat a. begi n(), d->data.end());
el se
next _permut ati on(d->data. begin(), d->data.end());
}

In the r eady_async function, the output is sent back to the emulator. We use the driver term format instead
of ei . This is the only way to send Erlang terms directly to a driver, without having the Erlang code to call
bi nary_to_ternt 1. In our simple example this works well, and we don't need to use ei to handle the binary
term format.

When the datais returned we deallocate our data.

static void ready_async(Erl DrvData drv_data, ErlDrvThreadData async_data)

Erl DrvPort port = reinterpret_cast<Erl DrvPort>(drv_data);

our _async_data* d = reinterpret_cast<our_async_dat a*>(async_data) ;
int n = d->data.size(), result_n = n*2 + 3;

Erl DrvTernData *result = new Erl DrvTernData[result_n], *rp = result;

for (vector<int>: :iterator i = d->data.begin();
i = d->data.end(); ++i) {
*rp++ = ERL_DRV_I NT;
*rpt+ = *i;

}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 59

1.8 How to implement a driver

*rp++ = ERL_DRV_NIL;
*rp++ = ERL_DRV_LI ST;
*rp++ = n+l,;

driver_output_tern(port, result, result_n);
delete[] result;
del ete d;

Thisdriver is called like the others from Erlang, however, sincewe usedr i ver _out put _t er m there is no need
to call binary_to_term. The Erlang code isin the samplefilenext _perm erl .

Theinput is changed into alist of integers and sent to the driver.

- modul e(next _pern).
-export([next_pernml 1, prev_pernmil, load/0, all_perni1]).
| oad() ->

case wherei s(next_perm of
undefined ->

case erl|l _ddll:load driver(".", "next_pernt) of
ok -> ok;
{error, already_ | oaded} -> ok;
E -> exit(E)

end,

Port = open_port ({spawn, "next_pern'}, []),
regi ster(next_perm Port);
->
ok
end.

list_to_integer_binaries(L) ->
[<<I:32/integer-native>> || | <- L].

next _perm(L) ->
next _perm(L, 1).

prev_permL) ->
next _perm(L, 2).

next _perm(L, Nxt) ->

| oad(),
B =1list _to_integer_binaries(L),
port _control (next _perm Nxt, B),
recei ve
Result ->
Resul t
end.

all _permL) ->
New = prev_pern(L),
al | _perm(New, L, [Newj).

all _perm(L, L, Acc) ->
Acc;
all _permL, Oig, Acc) ->
New = prev_pern(L),
all _perm(New, Oig, [New | Acc]).

60 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Inet configuration

1.9 Inet configuration

1.9.1 Introduction

Thischapter tellsyou how the Erlang runtime systemis configured for IP communication. It al so explainshow you may
configure it for your own particular needs by means of a configuration file. The information here is mainly intended
for users with special configuration needs or problems. There should normally be no need for specific settings for
Erlang to function properly on a correctly IP configured platform.

When Erlang startsup it will read the kernel variablei net r ¢ which, if defined, should specify the location and name
of auser configuration file. Example:

%erl -kernel inetrc ./Icfg_files/erl inetrc

Note that the usage of a. i net r ¢ file, which was supported in earlier Erlang versions, is now obsolete.

A second way to specify the configuration file is to set the environment variable ERL_I NETRC to the full name of
the file. Example (bash):

% export ERL_INETRC=./cfg_files/erl _inetrc
Note that the kernel variablei net r ¢ overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed mode,
Erlang will use default configuration settings and a native lookup method that should work correctly under most
circumstances. Erlang will not read any information from system inet configuration files (like /etc/host.conf, /etc/
nsswitch.conf, etc) in these modes, except for /etc/resolv.conf and /etc/hosts that is read and monitored for changes
on Unix platformsfor theinternal DNSclient inet_res.

If Erlang is started in long name distributed mode, it needs to get the domain name from somewhere and will read
system inet configuration files for this information. Any hosts and resolver information found then is aso recorded,
but not used aslong as Erlang is configured for native lookups. (The information becomes useful if the lookup method
ischangedto' fil e' or' dns', seebelow).

Native lookup (system calls) is aways the default resolver method. Thisistruefor all platforms except VxWorks and
OSE Deltawhere' fil e' or' dns' isused (inthat order of priority).

On Windows platforms, Erlang will search the system registry rather than look for configuration files when started
in long name distributed mode.

1.9.2 Configuration Data

Erlang records the following datain alocal databaseif found in system inet configuration files (or system registry):
* Host names and addresses

e Domain name

* Nameservers

* Search domains

e Lookup method

This data may aso be specified explicitly in the user configuration file. The configuration file should contain lines
of configuration parameters (each terminated with a full stop). Some parameters add data to the configuration (e.g.
host and nameserver), others overwrite any previous settings (e.g. domain and lookup). The user configuration fileis
always examined last in the configuration process, making it possible for the user to override any default values or
previously made settings. Call i net : get _rc() to view the state of the inet configuration database.

These are the valid configuration parameters:

{file, Format, File}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 61

1.9 Inet configuration

Format = atom()
File = string()
Specify a system file that Erlang should read configuration data from. For mat tells the parser how
the file should be interpreted: r esol v (Unix resolv.conf), host _conf freebsd (FreeBSD host.conf),

host _conf _bsdos (BSDOS host.conf), host _conf _| i nux (Linux host.conf), nsswi t ch_conf (Unix
nsswitch.conf) or host s (Unix hosts). Fi | e should specify the name of the file with full path.

{resolv_conf, File}.
File = string()

Specify a system file that Erlang should read resolver configuration from for the internal DNS client inet_res,
and monitor for changes, even if it does not exist. The path must be absol ute.

This may override the configuration parameters naneser ver and sear ch depending on the contents of the
specified file. They may also change any timein the future reflecting the file contents.

If the file is specified as an empty string ", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to / et c/ resol v. conf unless the environment variable
ERL_| NET_ETC DI Ris set which defines the directory for this file to some maybe other than/ et c.

{hosts_file, File}.
File = string()

Specify a system file that Erlang should read resolver configuration from for the internal hosts file resolver and
monitor for changes, even if it does not exist. The path must be absolute.

These host entries are searched after al added with {file, hosts, File} aboveor{host, 1P,
Al i ases} below when the lookup optionfi | e isused.

If the file is specified as an empty string ", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to /etc/hosts unless the environment variable
ERL | NET_ETC DI Risset which definesthe directory for this file to some maybe other than/ et c.

{registry, Type}.
Type = atom()

Specify a system registry that Erlang should read configuration data from. Currently, wi n32 is the only valid
option.

{host, IP, Aliases}.

IP = tuple()
Aliases = [string()]

Add host entry to the hosts table.
{domai n, Domai n}.

Domain = string()

62 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Inet configuration

Set domain name.
{naneserver, IP [,Port]}.

I P = tuple()
Port = integer()

Add address (and port, if other than default) of primary nameserver to use for inet_res.
{alt _naneserver, IP [,Port]}.

I P = tuple()
Port = integer()

Add address (and port, if other than default) of secondary nameserver for inet_res.
{search, Donuins}.

Domains = [string()]

Add search domainsfor inet_res.
{l ookup, Methods}.

Met hods = [atom()]

Specify lookup methods and in which order to try them. The valid methods are: nat i ve (use system calls),
fil e (usehost dataretrieved from system configuration files and/or the user configuration file) or dns (usethe
Erlang DNSclient inet_res for nameserver queries).

The lookup method st ri ng tries to parse the hostname as a IPv4 or IPv6 string and return the resulting IP
address. It isautomatically tried first when nat i ve isnotinthe Met hods list. To skip it in this case the pseudo
lookup method nost r i ng can be inserted anywhere in the Met hods list.

{cache_size, Size}.

Size = integer()

Set size of resolver cache. Default is 100 DNS records.
{cache_refresh, Tine}.

Time = integer()

Set how often (in millisec) the resolver cache for inet_res. is refreshed (i.e. expired DNS records are del eted).
Defaultis1 h.

{tineout, Tine}.
Time = integer()
Set the time to wait until retry (in millisec) for DNS queries made by inet_res. Default is 2 sec.

{retry, N}.

N = integer()

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 63

1.9 Inet configuration

Set the number of DNS queriesinet_reswill try before giving up. Default is 3.
{inet6, Bool}.

Bool = true | false

Tellsthe DNSclient inet_resto look up 1Pv6 addresses. Default isfalse.
{usevc, Bool}.

Bool = true | false

Tellsthe DNSclient inet_resto use TCP (Virtual Circuit) instead of UDP. Default isfalse.
{edns, Version}.

Version = false | O

Sets the EDNS version that inet_res will use. The only allowed is zero. Default is false which means to not use
EDNS.

{udp_payl oad_si ze, Size}.
N = integer()

Sets the allowed UDP payload size inet_res will advertise in EDNS queries. Also sets the limit when the DNS
query will be deemed too large for UDP forcing a TCP query instead, which is not entirely correct since the
advertised UDP payload size of the individual nameserver is what should be used, but this simple strategy will
do until amore intelligent (probing, caching) algorithm need be implemented. The default is 1280 which stems
from the standard Ethernet MTU size.

{udp, Mbdul e}.

Modul e = atom()

Tell Erlang to use other primitive UDP module than inet_udp.
{tcp, Mbodul e}.

Modul e = atom()

Tell Erlang to use other primitive TCP module than inet_tcp.
cl ear _hosts.

Clear the hosts table.
cl ear _ns.

Clear the list of recorded nameservers (primary and secondary).
cl ear _search.

Clear the list of search domains.

64 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

1.9.3 User Configuration Example
Here follows auser configuration example.

Assumeauser does not want Erlang to usethe native lookup method, but wants Erlang to read all information necessary
from start and use that for resolving names and addresses. In case lookup fails, Erlang should reguest the data from
anameserver (using the Erlang DNS client, set to use EDNS allowing larger responses). The resolver configuration
will be updated when its configuration file changes, furthermore, DNS records should never be cached. The user
configuration file (in this example named er | _i net r c, stored in directory . / cf g_f i | es) could then look like
this (Unix):

%% - - ERLANG | NET CONFI GURATI ON FI LE - -
%Woread the hosts file

{file, hosts, "/etc/hosts"}.

%6 add a particul ar host

{host, {134,138,177,105}, ["finwe"]}.

%% do not nonitor the hosts file
{hosts_file, ""}.

%6 read and nonitor naneserver config from here
{resolv_conf, "/usr/local/etc/resolv.conf"}.
%% enabl e EDNS

{edns, 0}.

%% di sabl e caching

{cache_si ze, 0}.

%% speci fy | ookup net hod

{l ookup, [file, dns]}.

And Erlang could, for example, be started like this:

%erl -sname nmy_node -kernel inetrc '"./cfg files/erl _inetrc

1.10 External Term Format

1.10.1 Introduction

The external term format is mainly used in the distribution mechanism of Erlang.

Since Erlang has a fixed number of types, there is no need for a programmer to define a specification for the externa
format used within some application. All Erlang terms has an external representation and the interpretation of the
different terms are application specific.

InErlangtheBIFterm to_binary/1,2 isused to convert atermintothe external format. To convert binary dataencoding
atermthe BIF binary to ternvl isused.

The distribution does this implicitly when sending messages across node boundaries.

The overall format of the term format is:

131 Tag Dat a

Table 10.1:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 65

1.10 External Term Format

Note:

When messages are passed between connected nodes and a distribution header is used, the first byte containing
the version number (131) is omitted from the terms that follow the distribution header. This since the version
number isimplied by the version number in the distribution header.

A compressed term looks like this:

1 1 4 N

131 80 UncompressedSize Zlib-compressedData

Table 10.2:

Uncompressed Size (unsigned 32 bit integer in big-endian byte order) isthe size of the data before it was compressed.
The compressed data has the following format when it has been expanded:

1 Uncompressed Size

Tag Data

Table 10.3:

Note:

Asof ERTSversion5.10 (OTP-R16) support for UTF-8 encoded atoms has been introduced in the external format.
However, only characters that can be encoded using Latinl (1SO-8859-1) are currently supported in atoms. The
support for UTF-8 encoded atoms in the external format has been implemented in order to be able to support all
Unicode characters in atoms in some future release. Until full Unicode support for atoms has been introduced, it
isan error to pass atoms containing characters that cannot be encoded in Latinl, and the behavior is undefined.

When the DFLAG_UTF8_ATQOVS distribution flag has been exchanged between both nodes in the distribution
handshake, all atomsin the distribution header will be encoded in UTF-8; otherwise, al atomsin the distribution
header will be encoded in Latinl. The two new tags ATOM_UTF8 EXT, and SMALL_ATOM_UTF8 EXT will
only be used if the DFLAG_UTF8_ATQVS distribution flag has been exchanged between nodes, or if an atom
containing characters that cannot be encoded in Latinl is encountered.

The maximum number of allowed characters in an atom is 255. In the UTF-8 case each character may need 4
bytes to be encoded.

1.10.2 Distribution header

As of erts version 5.7.2 the old atom cache protocol was dropped and a new one was introduced. This atom cache
protocol introduced the distribution header. Nodes with ertsversions earlier than 5.7.2 can still communi cate with new
nodes, but no distribution header and no atom cache will be used.

The distribution header currently only contains an atom cache reference section, but could in the future contain more
information. The distribution header precedes one or more Erlang terms on the external format. For more information
see the documentation of the protocol between connected nodes in the distribution protocol documentation.

66 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

ATOM_CACHE_REF entrieswith corresponding At onCacheRef er encel ndex intermsencoded on the external
format following a distribution header refersto the atom cache references made in the distribution header. The range
isO<= At onCacheRef er encel ndex < 255, i.e., at most 255 different atom cache references from the following
terms can be made.

The distribution header format is:

1 1 1 NumberOfAt01n0CacheRefs 2+1 N|0O
131 68 Nurfber O At onCacheRgefs Fl ags At onCacheRef s

Table 10.4:

Fl ags consists of Nunber OF At onCacheRef s/ 2+1 bytes, unless Number Of At onCacheRef s is 0. If
Number O At onCacheRef s is 0, FI ags and At onCacheRef s are omitted. Each atom cache reference have
a haf byte flag field. Flags corresponding to a specific At omCacheRef er encel ndex, are located in flag byte
number At onCacheRef er encel ndex/ 2. Flag byte 0 is the first byte after the Nunber OF At onCacheRef s
byte. Flags for an even At onmCacheRef er encel ndex arelocated in the least significant half byte and flags for an
odd At onCacheRef er encel ndex are located in the most significant half byte.

Theflag field of an atom cache reference has the following format:

1 bit 3 bits

NewCacheEnt r yFl ag Segrent | ndex

Table 10.5:

The most significant bit is the NewCacheEnt r yFl ag. If set, the corresponding cache reference is new. The three
least significant bits are the Segrrent | ndex of the corresponding atom cache entry. An atom cache consists of 8
segments each of size 256, i.e., an atom cache can contain 2048 entries.

After flag fields for atom cache references, another half byte flag field is located which has the following format:

3 hits 1 bit

Currentl yUnused LongAt ons

Table 10.6:

Theleast significant bit in that half byteisthe LongAt ons flag. If it isset, 2 bytes are used for atom lengths instead
of 1 bytein the distribution header.

After the Fl ags field follow the At omCacheRef s. The first At onCacheRef is the one corresponding to
At ontCacheRef er encel ndex 0. Higher indices follows in sequence up to index Nunber Of At omCacheRef s
- 1.

If the NewCacheEnt r yFI ag for the next At onCacheRef hasbeen set, aNewAt omCacheRef onthefollowing
format will follow:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 67

1.10 External Term Format

1 1]2 Length

I nt er nal Segnent | ndex Length At onTText

Table 10.7:

I nt er nal Segnent | ndex together with the Segnent | ndex completely identify the location of an atom
cache entry in the atom cache. Lengt h is number of bytes that At omText consists of. Length is a two
byte big endian integer if the LongAt ons flag has been set, otherwise a one byte integer. When the
DFLAG_UTF8_ATQMVS distribution flag has been exchanged between both nodes in the distribution handshake,
charactersin At onTText isencoded in UTF-8; otherwise, encoded in Latinl. Subsequent CachedAt onRef swith
the same Segrrent | ndex and | nt er nal Segnent | ndex as this NewAt onCacheRef will refer to this atom
until anew NewAt omCacheRef with the same Segnent | ndex and | nt er nal Segnent | ndex appear.

For more information on encoding of atoms, see note on UTF-8 encoded atoms in the beginning of this document.

If the NewCacheEnt r yFl ag for the next At onCacheRef hasnot been set, aCachedAt onRef onthefollowing
format will follow:

1

I nt er nal Segment | ndex

Table 10.8:

I nt er nal Segnent | ndex together with the Segrrent | ndex identify the location of the atom cache entry in the
atom cache. The atom corresponding to this CachedAt onRef is the latest NewAt onCacheRef preceding this
CachedAt onRef inanother previously passed distribution header.

1.10.3 ATOM_CACHE_REF

1 1

82 At onCacheRef er encel ndex

Table 10.9:

Refers to the atom with At onCacheRef er encel ndex in the distribution header.

1.10.4 SMALL_INTEGER_EXT

97 Int

Table 10.10:

Unsigned 8 hit integer.

68 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

1.10.5 INTEGER_EXT

98 Int

Table 10.11:

Signed 32 bit integer in big-endian format (i.e. MSB first)

1.10.6 FLOAT_EXT

1 31

99 Float String

Table 10.12:

A float isstored in string format. the format used in sprintf to format the float is"%.20€" (there are more bytesall ocated
than necessary). To unpack the float use sscanf with format "%l f".

Thisterm isused in minor version 0 of the external format; it has been superseded by NEW_FLOAT_EXT .

1.10.7 ATOM_EXT

100 Len At omNane

Table 10.13:

Anatomisstored with a2 byteunsigned length in big-endian order, followed by Len numbersof 8 bit Latinl characters
that forms the At onMNare. Note: The maximum allowed value for Len is 255.

1.10.8 REFERENCE_EXT

101 Node ID Creation

Table 10.14:

Encode a reference object (an object generated with nake ref/ 0). The Node term is an encoded atom, i.e.
ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. The| Dfield contains a big-endian unsigned integer, but
should be regarded as uninterpreted data since this field is node specific. Cr eat i on is a byte containing a node
serial number that makes it possible to separate old (crashed) nodes from a new one.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 69

1.10 External Term Format

In1 D, only 18 bits are significant; the rest should be 0. In Cr eat i on, only 2 bits are significant; the rest should be
0. See NEW_REFERENCE_EXT.

1.10.9 PORT_EXT

102 Node 1D Creation

Table 10.15:

Encode a port object (obtained form open_port/ 2). The | D is a node specific identifier for a local port. Port
operations are not allowed across node boundaries. The Cr eat i on worksjust likein REFERENCE_EXT.

1.10.10 PID_EXT

1 N 4 4 1

103 Node I D Seri al Creation

Table 10.16:

Encode a process identifier object (obtained from spawn/ 3 or friends). The | D and Cr eat i on fields works just
likein REFERENCE_EXT, whilethe Ser i al field isused to improve safety. In | D, only 15 bits are significant; the
rest should be 0.

1.10.11 SMALL_TUPLE_EXT

1 1 N

104 Arity Elements

Table 10.17:

SMALL TUPLE EXT encodesatuple. The Ari t y field is an unsigned byte that determines how many element that
followsinthe El ement s section.

1.10.12 LARGE_TUPLE_EXT

1 4 N

105 Arity Elements

Table 10.18:

Same as SVIALL_TUPLE_EXT with the exception that Ar i t y is an unsigned 4 byte integer in big endian format.

70 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

1.10.13 MAP_EXT

116 Arity Pairs

Table 10.19:

MAP_EXT encodes a map. The Ari ty field is an unsigned 4 byte integer in big endian format that determines the
number of key-value pairs in the map. Key and value pairs (Ki => Vi) are encoded in the Pai r s section in the
following order: K1, V1, K2, V2,..., Kn, Vn.Duplicatekeysare not allowed within the same map.

Since: OTP 17.0

1.10.14 NIL_EXT

106

Table 10.20:

The representation for an empty list, i.e. the Erlang syntax [] .

1.10.15 STRING_EXT

1 2 Len

107 Length Characters

Table 10.21:

String does NOT have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer
in the range 0-255) more efficiently over the distribution. Since the Lengt h field is an unsigned 2 byte integer (big
endian), implementations must make sure that lists longer than 65535 elements are encoded as LIST_EXT.

1.10.16 LIST_EXT

108 Length Elements Tall

Table 10.22:

Lengt h is the number of elements that follows in the El emrent s section. Tai | is the final tail of the ligt; it is
NIL_EXT for aproper list, but may be anything type if thelist isimproper (for instance[a| b]).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 71

1.10 External Term Format

1.10.17 BINARY_EXT

109 Len Data

Table 10.23:

Binaries are generated with bit syntax expression or with list_to_binary/1, term to_binary/1, or asinput from binary
ports. The Len length field is an unsigned 4 byte integer (big endian).

1.10.18 SMALL_BIG_EXT

1 1 1 n

110 n Sign d(0) ... d(n-1)

Table 10.24:

Bignums are stored in unary form with a Si gn byte that is O if the binum is positive and 1 if is negative. The digits
are stored with the L SB byte stored first. To calculate the integer the following formula can be used:

B =256

(do*B™O + d1*B~1 + d2*B”2 + ... d(N-1)*B~(n-1))

1.10.19 LARGE_BIG_EXT

1 4 1 n

111 n Sign d(0) ... d(n-1)

Table 10.25:

Same as SMALL_BIG_EXT with the difference that the length field is an unsigned 4 byte integer.

1.10.20 NEW_REFERENCE_EXT

1 2 N 1 N'

114 Len Node Creation ID ...

Table 10.26:

Node and Creation are asin REFERENCE_EXT.

I D contains a sequence of big-endian unsigned integers (4 byteseach, soN' isamultiple of 4), but should be regarded
as uninterpreted data.

N =4*Len.

72 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 External Term Format

In the first word (four bytes) of | D, only 18 bits are significant, the rest should be 0. In Cr eat i on, only 2 bits are
significant, the rest should be 0.

NEW_REFERENCE_EXT was introduced with distribution version 4. In version 4, N' should be at most 12.
See REFERENCE_EXT).

1.10.21 SMALL_ATOM_EXT

Len

115 Len At omNane

Table 10.27:

An atom is stored with a 1 byte unsigned length, followed by Len numbers of 8 bit Latinl characters that forms
the At onNane. Longer atoms can be represented by ATOM_EXT. Note the SMALL_ ATOM EXT was introduced in
erts version 5.7.2 and require an exchange of the DFLAG_SMALL_ATOM TAGS distribution flag in the distribution
handshake.

1.10.22 FUN_EXT

1 4 N1 N2 N3 N4 N5
117 NumFree Pid Module Index Uniq Freevars...
Table 10.28:

Pi d
isaprocessidentifier asin PID_EXT. It represents the process in which the fun was created.

Modul e
isan encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thisisthe
module that the fun isimplemented in.

| ndex
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. It istypically asmall index into the
modul€e's fun table.

Uni g
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. Uni q isthe hash value of the parse
for the fun.

Free vars
isNuntr ee number of terms, each one encoded according to its type.

1.10.23 NEW_FUN_EXT

1 4 1 16 4 4 N1 N2 N3 N4 N5

) . . . ; Free

112 Size Arity Uniq Index |NumFree| Module |Oldindex| OldUniq| Pid Vars
Table 10.29:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 73

1.10 External Term Format

Thisisthe new encoding of internal funs: f un F/ Aandfun(Argl,..) -> ... end.

Si ze
isthe total number of bytes, including the Si ze field.
Arity
isthe arity of the function implementing the fun.
Uni g
isthe 16 bytes MD5 of the significant parts of the Beam file.
I ndex
isan index number. Each fun within a module has an unique index. | ndex is stored in big-endian byte order.
Nunfr ee
isthe number of free variables.
Modul e
isan encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thisisthe
module that the fun isimplemented in.
a dl ndex
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. It istypically a small index into the
module's fun table.
a duni q
isan integer encoded using SMALL_INTEGER _EXT or INTEGER _EXT. Uni q isthe hash value of the parse
treefor the fun.
Pid
isaprocessidentifier asin PID_EXT. It represents the process in which the fun was created.
Free vars
isNuntr ee number of terms, each one encoded according to its type.

1.10.24 EXPORT_EXT

1 N1 N2 N3

113 Module Function Arity

Table 10.30:

Thisterm isthe encoding for external funs: f un M F/ A.
Modul e and Funct i on are atoms (encoded using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF).
Arity isaninteger encoded using SMALL_INTEGER_EXT.

1.10.25 BIT_BINARY_EXT

77 Len Bits Data

Table 10.31:

Thisterm represents a bitstring whose length in bits does not have to be amultiple of 8. The Len field isan unsigned
4 byte integer (big endian). The Bi t s field isthe number of bits (1-8) that are used in the last byte in the data field,
counting from the most significant bit towards the least significant.

74 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

1.10.26 NEW_FLOAT_EXT

1 8

70 |EEE float

Table 10.32:

A float is stored as 8 bytes in big-endian |EEE format.
Thisterm isused in minor version 1 of the external format.

1.10.27 ATOM_UTF8_EXT

118 Len At omNane

Table 10.33:

An atomisstored with a2 byte unsigned length in big-endian order, followed by Len bytes containing the At ormNane
encoded in UTF-8.

For more information on encoding of atoms, see note on UTF-8 encoded atoms in the beginning of this document.

1.10.28 SMALL_ATOM_UTF8_EXT

119 Len At omNane

Table 10.34:

An atomisstored with al byte unsigned length, followed by Len bytes containing the At omNane encoded in UTF-8.
Longer atoms encoded in UTF-8 can be represented using ATOM_UTF8 EXT.

For more information on encoding of atoms, see note on UTF-8 encoded atoms in the beginning of this document.

1.11 Distribution Protocol

The description here is far from complete and will therefore be further refined in upcoming releases. The protocols
both from Erlang nodes towards EPMD (Erlang Port Mapper Daemon) and between Erlang nodes, however, are stable
since many years.

The distribution protocol can be divided into four (4) parts:

e 1. Low level socket connection.

e 2. Handshake, interchange node name and authenticate.
e 3. Authentication (done by net_kernel).

e 4. Connected.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 75

1.11 Distribution Protocol

A node fetches the Port number of another node through the EPMD (at the other host) in order to initiate a connection
request.

For each host where a distributed Erlang node is running there should also be an EPMD running. The EPMD can be
started explicitly or automatically as a result of the Erlang node startup.

By default EPMD listens on port 4369.

3 and 4 are performed at the same level but the net_kernel disconnects the other node if it communicates using an
invalid cookie (after one (1) second).

Theintegersin al multi-byte fields are in big-endian order.

1.11.1 EPMD Protocol
The reguests served by the EPMD (Erlang Port Mapper Daemon) are summarized in the figure below.

Figure 11.1: Summary of EPMD requests.

Each request * _REQis preceded by a two-byte length field. Thus, the overall request format is:

Length Request

Table 11.1:

Register a node in the EPMD

When a distributed node is started it registers itself in EPMD. The message ALIVE2_REQ described below is sent
from the node towards EPMD. The response from EPMD is ALIVE2_RESP.

1 2 1 1 2 2 2 Nlen 2 Elen

120 PortNo |NodeType| ProtocolH ghstVersﬁJwestVersicrn Nlen [NodeNamg Elen Extra

Table 11.2: ALIVE2_REQ (120)

Por t No
The port number on which the node accept connection requests.
NodeType
77 = norma Erlang node, 72 = hidden node (C-node),...
Pr ot ocol
0 =tcplip-v4, ...
Hi ghest Ver si on
The highest distribution version that this node can handle. The valuein R6B and later is 5.
Lowest Ver si on
The lowest distribution version that this node can handle. The valuein R6B and later is 5.
Nl en
The length (in bytes) of the NodeNane field.
NodeNarne
The NodeName as an UTF-8 encoded string of NI en bytes.

76 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

El en

The length of the Ext r a field.
Extra

Extrafield of El en bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the connection is
closed the node is automatically unregistered from the EPMD.

The response message ALIVE2_RESP is described below.

1 1 2

121 Result Creation

Table 11.3: ALIVE2_RESP (121)

Result = 0 -> ok, Result > 0 -> error

Unregister a node from the EPMD

A node unregisters itself from the EPMD by simply closing the TCP connection towards EPMD established when
the node was registered.

Get the distribution port of another node

When one node wants to connect to another node it starts with a PORT_PLEASE2_REQ request towards EPMD on
the host where the node resides in order to get the distribution port that the node listens to.

1 N

122 NodeName

Table 11.4: PORT_PLEASE2_REQ (122)

whereN = Length - 1

1 1

119 Result

Table 11.5: PORT2_RESP (119) response indicating error, Result > 0.

Or

1 1 2 1 1 2 2 2 Nlen 2 Elen

119 Result | PortNo [NodeTypd ProtocchigheﬂVetsilwestVersion Nlen \IodeNamT Elen Extra

Table 11.6: PORT2_RESP when Result = 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 77

1.11 Distribution Protocol

If Result > 0, the packet only consists of [119, Result].

EPMD will close the socket as soon as it has sent the information.

Get all registered names from EPMD

This request is used via the Erlang function net _adm nanes/ 1, 2. A TCP connection is opened towards EPMD
and this request is sent.

1
110
Table 11.7: NAMES_REQ (110)
The response for aNAMES _REQIooks like this:
4
EPMDPortNo Nodelnfo*

Table 11.8: NAMES_RESP

Nodelnfo is a string written for each active node. When all Nodelnfo has been written the connection is closed by
EPMD.

Nodelnfo is, as expressed in Erlang:

io:format ("name ~ts at port ~p~n", [NodeName, Port]).

Dump all data from EPMD
Thisrequest is not really used, it should be regarded as a debug feature.

1
100
Table 11.9: DUMP_REQ
The response for a DUMP_REQIooks like this:
4
EPMDPortNo Nodel nfo*

Table 11.10: DUMP_RESP

78 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

Nodelnfo isastring written for each node kept in EPMD. When all Nodel nfo has been written the connection is closed
by EPMD.

Nodelnfo is, as expressed in Erlang:

io:format ("acti ve nanme ~ts at port ~p, fd = ~p ~n",
[NodeNane, Port, Fd]).

or
io:format ("ol d/ unused nane ~ts at port ~p, fd = ~p~n",
[NodeNane, Port, Fd]).
Kill the EPMD

This reguest will kill the running EPMD. It is amost never used.

1
107

Table 11.11: KILL_REQ
Theresponsefo aKl LL_REQIlooks like this:

2

OKString
Table 11.12: KILL_RESP
where OKSt ri ng is"OK".
STOP_REQ (Not Used)
1 n
115 NodeName

Table 11.13: STOP_REQ
wheren=Length- 1

The current implementation of Erlang does not care if the connection to the EPMD is broken.
The response for a STOP_REQIooks like this.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 79

1.11 Distribution Protocol

.
OKString
Table 11.14: STOP_RESP
where OKString is"STOPPED".
A negative response can look like this.
.
NOK String

Table 11.15: STOP_NOTOK_RESP

where NOK String is "NOEXIST".

1.11.2 Distribution Handshake

This section describes the distribution handshake protocol introduced in the OTP-R6 release of
Erlang/OTP. This description was previously located in $ERL_TOP/ |i b/ kernel /i nt ernal _doc/
di stribution_handshake. t xt, and has more or less been copied and "formatted" here. It has been more or
less unchanged since the year 1999, but the handshake should not have changed much since then either.

General

The TCP/IP distribution uses a handshake which expects a connection based protocal, i.e. the protocol does not include
any authentication after the handshake procedure.

This is not entirely safe, as it is vulnerable against takeover attacks, but it is a tradeoff between fair safety and
performance.

The cookies are never sent in cleartext and the handshake procedure expects the client (called A) to be the first one
to prove that it can generate a sufficient digest. The digest is generated with the MD5 message digest algorithm and
the challenges are expected to be very random numbers.

Definitions

A challengeisa32 hit integer number in big endian order. Below thefunctiongen_chal | enge() returnsarandom
32 bit integer used as a challenge.

A digestisa (16 bytes) MD5 hash of the Challenge (astext) concatenated with the cookie (astext). Below, thefunction
gen_di gest (Chal | enge, Cooki e) generatesadigest as described above.

An out_cookie is the cookie used in outgoing communication to a certain node, so that A's out_cookie for B should
correspond with B'sin_cookie for A and the other way around. A's out_cookie for B and A's in_cookie for B need
NOT be the same. Below the function out _cooki e(Node) returnsthe current node's out_cookie for Node.

Anin_cookie is the cookie expected to be used by another node when communicating with us, so that A'sin_cookie
for B corresponds with B's out_cookie for A. Below the function i n_cooki e(Node) returns the current node's
i n_cooki e for Node.

The cookies are text strings that can be viewed as passwords.

80 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

Every message in the handshake starts with a 16 bit big endian integer which contains the length of the message (not
counting the two initial bytes). In erlang this correspondsto thegen_t cp option{ packet, 2}.Notethat after the
handshake, the distribution switches to 4 byte packet headers.

The Handshake in Detall
Imagine two nodes, node A, which initiates the handshake and node B, which accepts the connection.
1) connect/accept
A connectsto B via TCP/IP and B accepts the connection.
2) send_name/receive_name

A sendsaninitial identification to B. B receives the message. The message looks like this (every "square" being
one byte and the packet header removed):

S Hemm e aa +-- - +-- - +-- - +-- - +-- - +-- - B +
| ' n'| Versi onO| Versi onl| Fl ag0| Fl agl| Fl ag2| Fl ag3| NameO| Narmel| ... | NanmeN|
S Hemm e aa +-- - +-- - +-- - +-- - +-- - +-- - +- ... H----- +

The 'n' is just a message tag. Version0 and Versionl is the distribution version selected by node A, based on
information from EPMD. (16 bit big endian) Flag0 ... Flag3 are capability flags, the capabilities defined in
$ERL_TOP/ l'i b/ kernel /i ncl ude/ di st. hrl . (32bitbigendian) Name0 ... NameN isthe full nodename
of A, asastring of bytes (the packet length denotes how long it is).

3) recv_status/send_status
B sendsastatusmessageto A, whichindicatesif the connectionisallowed. Thefollowing status codes are defined:

ok
The handshake will continue.

ok_si mul t aneous
The handshake will continue, but A isinformed that B has another ongoing connection attempt that will
be shut down (simultaneous connect where A's name is greater than B's name, compared literally).

nok
The handshake will not continue, as B already has an ongoing handshake which it itself has initiated.
(simultaneous connect where B's name is greater than A's).

not _al | owed
The connection is disallowed for some (unspecified) security reason.

alive
A connection to the node is already active, which either means that node A is confused or that the TCP
connection breakdown of a previous node with this name has not yet reached node B. See 3B below.

Thisisthe format of the status message:

O Hommmm - R +

|"s'|StatusO| Statusl| ... |StatusN
oo dimo=ooco oooo=oc o odmooo==o +

'S isthe message tag Status0 ... StatusN is the status as a string (not terminated)
3B) send_status/recv_status

If status was 'alive', node A will answer with another status message containing either ‘true’ which meansthat the
connection should continue (The old connection from this node is broken), or ' f al se' , which simply means
that the connection should be closed, the connection attempt was a mistake.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 81

1.11 Distribution Protocol

4) recv_challenge/send_challenge

If the status was ok or ok _si rmul t aneous, The handshake continues with B sending A another message, the
challenge. The challenge contains the same type of information as the "name" message initially sent from A to
B, with the addition of a 32 bit challenge:

S Feommmam oo +----- +----- +----- +----- +----- +----- +----- +---- - +----- +----- e e +
| " n'| Versi onO| Versi onl| Fl ag0| Fl agl| Fl ag2| Fl ag3| Chal 0| Chal 1| Chal 2| Chal 3| NaneO| Nanel| ... | NanmeN|
S Feommmam oo +----- +----- +----- +----- +----- +----- +----- +---- - +----- +----- e +

Where Chal0 ... Chal3 is the challenge as a 32 hit big endian integer and the other fields are B's version, flags
and full nodename.

5) send_challenge reply/recv_challenge reply
Now A has generated a digest and its own challenge. Those are sent together in a package to B:

L +----- +----- +----- +----- +----- +----- +----- e T +
| ' r' | Chal 0| Chal 1| Chal 2| Chal 3| Di geO| Di gel| Di ge2| Di ge3| ... | Di gel5|
L +----- +----- +----- +----- +----- +----- +----- e T +

Where 'r' is the tag, Chal0 ... Chal3 is A's chalenge for B to handle and Dige0 ... Digel5 is the digest that A
constructed from the challenge B sent in the previous step.

6) recv_challenge ack/send_challenge_ack

B checks that the digest received from A is correct and generates a digest from the challenge received from A.
The digest isthen sent to A. The message looks like this:

LR S +----- +----- +----- L +
|"a'| Di ge0O| Di gel| Di ge2| Dige3| ... |Di gel5]
LR S +----- +----- +----- L +

Where 'd isthe tag and Dige0 ... Digel5 isthe digest calculated by B for A's challenge.
7)

A checksthe digest from B and the connection is up.

Semigraphic View

A (initiator) B (acceptor)
1CP COMMEEE ============sscccccccccccccscccscccccaaas >
TCP accept
send_name ------------ooo oo >
recv_nane
R e send_st at us

recv_status
(if status was 'alive'
send_status - - - - - - - - - - - - - - - - - - - . >
recv_st at us)
ChB = gen_chal | enge()
(ChB)

82 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

e send_chal | enge
recv_chal | enge

ChA = gen_chal | enge(),
OCA = out _cooki e(B),
Di A = gen_di gest (ChB, OCA)
(ChA, D A
send_chall enge_reply -------------------~-~-~-~-~-~—~-~-~---_ >
recv_chal | enge_reply
I CB = in_cookie(A),

check:

Di A == gen_di gest
(ChB, 1CB) ?

- if K

OCB = out_cooki e(A),
Di B = gen_di gest

(Di B) (ChA, OCB)
O R T T send_chal | enge_ack

recv_chal | enge_ack DONE
I CA = in_cookie(B), - else
check: CLCSE
Di B == gen_di gest (ChA, | CA) ?
- if K

DONE
- else

CLOSE

The Currently Defined Distribution Flags
Currently (OTP-R16) the following capability flags are defined:

%% The node shoul d be published and part of the gl obal nanmespace
- defi ne(DFLAG _PUBLI SHED, 1) .

%% The node inpl ements an atom cache (obsol ete)
- def i ne(DFLAG_ATOM CACHE, 2) .

%% The node inplements extended (3 * 32 bits) references. This is
%Worequired today. If not present connection will be refused.
- def i ne(DFLAG_EXTENDED REFERENCES, 4) .

%% The node inpl enents distributed process nonitoring.
- defi ne(DFLAG DI ST_MONI TOR, 8) .

%% The node uses separate tag for fun's (lanmbdas) in the distribution protocol.
- defi ne(DFLAG_FUN_TAGS, 16#10) .

%% The node inpl ements distributed named process nonitoring.
- defi ne(DFLAG DI ST_MONI TOR_NAME, 16#20) .

%% The (hidden) node inpl ements atom cache (obsol ete)
- defi ne(DFLAG_H DDEN_ATOM CACHE, 16#40) .

%% The node understand new fun-tags
- def i ne(DFLAG_NEW FUN_TAGS, 16#80) .

%% The node is capabl e of handling extended pids and ports. This is
%Worequired today. If not present connection will be refused.
- def i ne(DFLAG_EXTENDED_PI DS_PORTS, 16#100) .

%%
- def i ne(DFLAG_EXPORT_PTR TAG, 16#200) .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 83

1.11 Distribution Protocol

W
- defi ne(DFLAG _BI T_BI NARI ES, 16#400) .

%% The node under stands new fl oat format
- defi ne(DFLAG_NEW FLQOATS, 16#800) .

W
- defi ne(DFLAG_UNI CCDE_| O, 16#1000) .

%% The node inpl ements atom cache in distribution header.
- def i ne(DFLAG DI ST_HDR ATOM CACHE, 16#2000) .

%% The node understand the SMALL_ATOM EXT tag
-defi ne(DFLAG_SVALL_ATOM TAGS, 16#4000).

%% The node understand UTF-8 encoded at onms
- defi ne(DFLAG_UTF8_ATOWVS, 16#10000).

1.11.3 Protocol between connected nodes

Asof ertsversion 5.7.2 the runtime system passes a distribution flag in the handshake stage that enables the use of a
distribution header on all messages passed. Messages passed between nodes are in this case on the following format:

4 d n m

Length Di stributi onHeader Cont r ol Message Message

Table 11.16:

where;
Lengthisequa tod+n+m
Cont r ol Message isatuple passed using the externa format of Erlang.

Message is the message sent to another node using the '!" (in external format). Note that Message is only passed
in combination with a Cont r ol Message encoding asend ('!").

Also note that the version number is omitted from the terms that follow a distribution header.

Nodes with an erts version less than 5.7.2 does not pass the distribution flag that enables the distribution header.
M essages passed between nodes are in this case on the following format:

4 1 n m

Lengt h Type Cont r ol Message Message

Table 11.17:

where:

Lengthisequa tol+n+m

Typeis: 112 (pass through)

Cont r ol Message isatuple passed using the externa format of Erlang.

84 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

Message is the message sent to another node using the '!" (in external format). Note that Message is only passed
in combination with aCont r ol Message encoding asend ('!").

The Cont r ol Message isatuple, where the first element indicates which distributed operation it encodes.
LI NK
{1, FronPid, ToPid}
SEND
{2, Cookie, ToPid}
Note followed by Message
EXIT
{3, FronPid, ToPid, Reason}
UNLI NK
{4, FronPid, ToPid}
NODE_LI NK
{5}
REG_SEND
{6, FronPid, Cookie, ToName}
Note followed by Message
GROUP_LEADER
{7, FronPid, ToPid}
EXI T2
{8, FronPid, ToPid, Reason}

1.11.4 New Ctrimessages for distrvsn =1 (OTP R4)
SEND TT
{12, Cookie, ToPid, TraceToken}
Note followed by Message
EXIT TT
{13, FronPid, ToPid, TraceToken, Reason}
REG SEND TT
{16, FronPid, Cookie, ToNane, TraceToken}
Note followed by Message
EXI T2 TT
{18, FronPid, ToPid, TraceToken, Reason}

1.11.5 New Ctrimessages for distrvsn = 2

distrvsn 2 was never used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 85

1.11 Distribution Protocol

1.11.6 New Ctrimessages for distrvsn = 3 (OTP R5C)

None, but the version number was increased anyway .

1.11.7 New Ctrimessages for distrvsn = 4 (OTP R6)
These are only recognized by Erlang nodes, not by hidden nodes.
MONI TOR_P

{19, FronPid, ToProc, Ref} FronPi d = monitoring process ToPr oc = monitored process pid or
name (atom)

DEMONI TCR_P

{20, FronPid, ToProc, Ref} Weincludethe FromPid justin case we want to trace this. Fr onPi d =
monitoring process ToOPr oc = monitored process pid or name (atom)

MONI TOR P_EXI T

{21, FronProc, ToPid, Ref, Reason} FronProc =monitored process pid or name (atom) ToPi d
= monitoring process Reason = exit reason for the monitored process

86 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Distribution Protocol

2 Reference Manual

The Erlang Runtime System Application ERTS.

Note:

By default, the er t s is only guaranteed to be compatible with other Erlang/OTP components from the same
release asthe er t s itself. See the documentation of the system flag +R on how to communicate with Erlang/
OTP components from earlier rel eases.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 87

erl_prim_loader

erl_prim_loader

Erlang module

erl _prim| oader isused to load all Erlang modules into the system. The start script is also fetched with this
low level loader.

erl _prim.| oader knows about the environment and how to fetch modules.

The- | oader Loader command line flag can be used to choose the method used by theer| _pri m | oader.
Two Loader methods are supported by the Erlang runtime system: ef i | e andi net .

Warning:

The support for loading of code from archive files is experimental. The sole purpose of releasing it before
it is ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future
release. Thefunctions!l i st _dir/1andread fil e i nfo/1laswell astheflag-| oader debug areaso
experimental

Data Types
host() = atom)

Exports

start(ld, Loader, Hosts) -> {ok, Pid} | {error, Wat}
Types.
Id = tern()
Loader = atom() | string()
Hosts = Host | [Host]
Host = host ()
Pid = pid()
VWhat = term)
Startsthe Erlang low level loader. Thisfunction is called by thei ni t process (and module). Thei ni t processreads

the command lineflags-i d 1d, -1 oader Loader, and-hosts Hosts. These are the arguments supplied
tothest art/ 3 function.

If - | oader isnot given, the default loader isef i | e which tells the system to read from the file system.

If -1 oader isinet,the-id 1d,-hosts Hosts, and-setcooki e Cooki e flags must also be supplied.
Host s identifies hosts which this node can contact in order to load modules. One Erlang runtime system with a
erl _boot _server process must be started on each of hosts given in Host s in order to answer the requests. See
erl_boot_server(3).

get _file(Filenane) -> {ok, Bin, FullNane} | error
Types:

88 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader

Filename = atom() | string()

Bin = binary()

Ful | Name = string()
This function fetches afile using the low level loader. Fi | enane is either an absolute file name or just the name of
thefile, for example™” | i st s. beant . If aninternal pathis set to the loader, this path isused to find thefile. If auser

supplied loader is used, the path can be stripped off if it is obsolete, and the loader does not use a path. Ful | Nane is
the complete name of the fetched file. Bi n isthe contents of the file as a binary.

The Fil enanme can aso be a file in an archive. For example $OTPROOT/ | i b/ mesi a-4.4.7. ez/
mmesi a- 4. 4. 7/ ebi n/ mesi a. beam See code(3) about archive files.

get _path() -> {ok, Path}
Types:
Path = [Dir :: string()]

This function gets the path set in the loader. The path is set by thei ni t process according to information found in
the start script.

list _dir(Dir) -> {ok, Filenames} | error

Types.
Dir = string()
Filenames = [Filename :: string()]

Listsall thefilesinadirectory. Returns{ ok, Fi | enames} if successful. Otherwise, itreturnser r or . Fi | enames
isalist of the names of al the filesin the directory. The names are not sorted.

The Dir can adso be a directory in an archive. For example $OTPROOT/ i b/ mesia-4.4.7. ez/
mmesi a- 4. 4. 7/ ebi n. See code(3) about archivefiles.

read_file_info(Filenanme) -> {ok, Filelnfo} | error
Types:

Fil ename = string()

Filelnfo = file:file_info()

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwiseerror. Fil el nfoisa
record f i | e_i nf o, defined in the Kernel include filef i | e. hr | . Include the following directive in the module
from which the function is called:

-include_lib("kernel/include/file.hrl").

See file(3) for moreinfo about therecordfi | e_i nf o.

The Fi |l enane can adso be a file in an archive. For example $OTPROOT/ | i b/ mesi a-4.4.7. ez/
mesi a- 4. 4. 7/ ebi n/ mesi a. See code(3) about archive files.

read_l ink_info(Filename) -> {ok, Filelnfo} | error
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 89

erl_prim_loader

Fi | ename string()
Filelnfo = file:file_info()

Thisfunction workslikeread file info/1 except that if Fi | enane isasymboalic link, information about the link will
bereturnedinthef i | e_i nf o record and thet ype field of the record will be set to sym i nk.

If Fi | enane isnot a symbolic link, this function returns exactly the same result asread_file_i nfo/ 1. On
platforms that do not support symbolic links, this function is always equivaenttor ead_fi | e_i nf o/ 1.

set _path(Path) -> ok
Types:
Path = [Dir :: string()]
This function sets the path of the loader if i ni t interpretsapat h command in the start script.

Command Line Flags
Theer| _pri m_| oader moduleinterprets the following command line flags:
-1 oader Loader

Specifiesthename of theloader usedbyer | _pri m | oader.Loader canbeefi | e (usethelocal filesystem)
ori net (load usingtheboot _ser ver on another Erlang node).

If the- | oader flagisomitted, it defaultstoefi | e.
-1 oader _debug

Makestheef i | e loader write some debug information, such as the reason for failures, while it handlesfiles.
-hosts Hosts

Specifies which other Erlang nodesthei net loader can use. Thisflagismandatory if the- | oader i net flag
is present. On each host, there must be on Erlang node with the er | _boot _ser ver which handles the load
reguests. Host s isalist of 1P addresses (hostnames are not acceptable).

-id Id

Specifiesthe identity of the Erlang runtime system. If the system runs as adistributed node, | d must beidentical
to the name supplied with the - sname or - nane distribution flags.

- set cooki e Cooki e
Specifiesthe cookie of the Erlang runtime system. Thisflag ismandatory if the- | oader i net flagispresent.

SEE ALSO

init(3), erl_boot_server(3)

90 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang

Erlang module

By convention, most Built-In Functions (BIFs) are seen as being in this module. Some of the BIFs are viewed more or
less as part of the Erlang programming language and are auto-imported. Thus, it is not necessary to specify the module
name. For example, thecallsat om to_| i st (Erl ang) anderl ang: atom to_li st (Erl ang) areidentical.

Auto-imported BIFs are listed without module prefix. BIFs listed with module prefix are not auto-imported.

BIFs can fail for various reasons. All BIFsfail with reason badar g if they are called with arguments of an incorrect
type. The other reasons are described in the description of each individual BIF.

Some BIFs can be used in guard tests and are marked with "Allowed in guard tests'.

Data Types
ext _binary()

A binary data object, structured according to the Erlang external term format.

timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
McroSecs :: integer() >= 0}

See erlang: timestamp/0.

time_unit() =
integer() >= 1 |
seconds |
mlli_seconds |
m cro_seconds |
nano_seconds |
native

Supported time unit representations:
PartsPer Second :: integer() >= 1

Time unit expressed in parts per second. That is, the time unit equals 1/ Par t sPer Second second.
seconds

Symbolic representation of the time unit represented by the integer 1.
mlli_seconds

Symbolic representation of the time unit represented by the integer 1000.
m cro_seconds

Symbolic representation of the time unit represented by the integer 1000000.
nano_seconds

Symbolic representation of the time unit represented by the integer 21000000000.
native

Symbolic representation of the native time unit used by the Erlang runtime system.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 91

erlang

The nat i ve time unit is determined at runtime system start, and remains the same until the runtime system
terminates. If aruntime system is stopped and then started again (even on the same machine), the nat i ve time
unit of the new runtime system instance can differ fromthenat i ve timeunit of the old runtime system instance.

One can get an approximation of the nat i ve time unit by caling er| ang: convert _tine_unit (1,
seconds, native). The result equals the number of whole nat i ve time units per second. In case the
number of nat i ve time units per second does not add up to awhole number, the result is rounded downwards.

Note:

The value of the nat i ve time unit gives you more or less no information at all about the quality of time
values. It sets a limit for the resolution as well as for the precision of time values, but it gives absolutely
no information at al about the accuracy of time values. The resolution of the nat i ve time unit and the
resolution of time values can differ significantly.

Thet i me_uni t/ 0 typemay beextended. Useer | ang: convert _ti me_uni t/ 3 inordertoconverttimevalues
between time units.

Exports

abs(Float) -> float()
abs(Int) ->integer() >=0

Types:
Int = integer()
Types:
Float = float ()
Int = integer()

Returns an integer or float that is the arithmetical absolute value of FI oat or | nt , for example:

> abs(-3.33).
3.33

> abs(-3).

3

Allowed in guard tests.
erl ang: adl er32(Data) -> integer() >= 0
Types:

Data = iodata()
Computes and returns the adler32 checksum for Dat a.

erl ang: adl er32(A dAdl er, Data) -> integer() >= 0
Types:

92 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

A dAdler = integer() >= 0
Data = iodata()

Continues computing the adler32 checksum by combining the previous checksum, A dAdl er , with the checksum
of Dat a.

The following code:

erl ang: adl er 32(Dat al) ,
erl ang: adl er 32(X, Dat a2) .

assigns the same valueto Y asthis:

Y = erl ang: adl er 32([Dat al, Dat a2]).

erl ang: adl er 32_conbi ne(Fi rst Adl er, SecondAdl er, SecondSi ze) ->
integer() >=0
Types:
First Adl er = SecondAdl er = SecondSize = integer() >= 0

Combines two previously computed adler32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

erl ang: adl er 32(Dat al) ,
erl ang: adl er 32(Y, Dat a2) .

assigns the same value to Z as this:

erl ang: adl er32(Dat al),
erl ang: adl er 32(Dat a2) ,
erl ang: adl er32_conbi ne(X, Y,iolist_size(Data2)).

N < X
o u

erl ang: append_el enent (Tupl el, Tern) -> Tuple2
Types:
Tupl el = Tuple2 = tuple()
Term = term)
Returnsanew tuplethat has one element morethan Tupl el, and containstheelementsin Tupl el followed by Ter m

asthe last element. Semantically equivalenttol i st _to_tupl e(tuple_to |ist(Tuplel) ++ [Terni),
but much faster.

Example:

> erl ang: append_el ement ({one, two}, three).
{one, two, t hree}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 93

erlang

appl y(Fun, Args) -> term)
Types:
Fun = function()
Args = [tern()]
Cadllsafun, passing the elementsin Ar gs as arguments.

If the number of elements in the arguments are known at compile time, the call is better written as Fun(Ar g1,
Arg2, ... ArgN).

Warning:

Earlier, Fun could also be given as{ Modul e, Functi on}, equivaenttoappl y(Modul e, Functi on,
Ar gs) . Thisuseis deprecated and will stop working in afuture release.

app! y(Modul e, Function, Args) -> tern()
Types.
Modul e = nodul e()
Function = atom()
Args = [tern()]
Returnstheresult of applying Funct i on inModul e to Ar gs. The applied function must be exported from Mbdul e.
The arity of the function isthe length of Ar gs.

Example:

> apply(lists, reverse, [[a, b, c]]).

[c, b, a]

> apply(erlang, atomto list, ['Erlang']).
"Erl ang"

If the number of arguments are known at compile time, the call is better written as Modul e: Functi on(Ar g1,
Arg2, ..., ArgN).

Failure: er r or _handl er: undefi ned_functi on/ 3iscaledif the applied function is not exported. The error
handler can be redefined (see process flag/2). If error _handl er is undefined, or if the user has redefined the
default er r or _handl er so the replacement module is undefined, an error with the reason undef is generated.

atomto_binary(Atom Encoding) -> binary()

Types:
Atom = atom()
Encoding = latinl | unicode | utf8

Returns a binary corresponding to the text representation of At om If Encodi ng isl at i nl, thereis one byte for
each character inthetext representation. If Encodi ngisut f 8 or uni code, thecharactersare encoded using UTF-8
(that is, characters from 128 through 255 are encoded in two bytes).

94 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

atomto_binary(Atom | atinl) neverfailsbecausethetext representation of an atom can only contain
characters from 0 through 255. In a future release, the text representation of atoms can be alowed to contain
any Unicode character and at om t o_bi nary(Atom | ati nl) will then fail if the text representation for
At omcontains a Unicode character greater than 255.

Example:

> atomto_binary('Erlang', latinl).
<<"Erlang">>

atomto_list(Atom -> string()
Types:
Atom = atom()
Returns a string corresponding to the text representation of At om for example:

> atomto_list('Erlang').
"Erl ang"

bi nary_part (Subj ect, PosLen) -> binary()

Types:
Subj ect = binary()
PosLen = {Start :: integer() >= 0, Length :: integer()}

Extracts the part of the binary described by PosLen.
Negative length can be used to extract bytes at the end of a binary, for example:

1> Bin = <<1,2,3,4,5,6,7, 8,9, 10>>.
2> binary_part(Bin, {byte_size(Bin), -5}).
<<6, 7, 8,9, 10>>

Failure: badar g if PosLen in any way references outside the binary.
St art iszero-based, that is:

1> Bin = <<1, 2, 3>>
2> binary_part(Bin,{0,2}).
<<1, 2>>

For details about the PosLen semantics, see the binary manual pagein STDLI B.
Allowed in guard tests.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 95

erlang

bi nary_part (Subject, Start, Length) -> binary()

Types.
Subj ect = binary()
Start = integer() >= 0

Length = integer()
Thesameasbi nary_part (Subject, {Start, Length}).
Allowed in guard tests.

bi nary to_aton(Bi nary, Encoding) -> aton()

Types:
Bi nary = binary()
Encoding = latinl | unicode | utf8

Returns the atom whose text representation is Bi nary. If Encodi ng is| ati nl, no translation of bytes in the
binary isdone. If Encodi ng isut f 8 or uni code, the binary must contain valid UTF-8 sequences. Only Unicode
characters up to 255 are allowed.

Note:

bi nary to_aton(Bi nary, utf8) failsif the binary contains Unicode characters greater than 255. In a
future release, such Unicode characters can be allowed and bi nary _t o_at om(Bi nary, utf8) doesthen
not fail. For more information on Unicode support in atoms, see the note on UTF-8 encoded atoms in Section
"External Term Format" in the User's Guide.

Examples:

> binary_to_aton(<<"Erlang">> |atinl).
' Erl ang'
> binary_to_at on(<<1024/ utf8>>, utf8).
** exception error: bad argunent
in function binary_to_atom 2
called as binary_to_aton(<<208, 128>>, ut f 8)

bi nary_to_exi sting_atonm(Bi nary, Encoding) -> atom()

Types:
Bi nary = binary()
Encoding = latinl | unicode | utf8

Asbinary to_atom/2, but the atom must exist.
Failure: badar g if the atom does not exist.

binary to float(Binary) -> float()
Types:
Bi nary = binary()

Returns the float whose text representation is Bi nar y, for example:

96 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> binary_to _float(<<"2.2017764e+0">>).
2.2017764

Failure: badar g if Bi nary contains abad representation of afloat.

binary to_ integer(Binary) -> integer()
Types.
Bi nary = binary()

Returns an integer whose text representation is Bi nar y, for example:

> binary_to_integer(<<"123">>).
123

Failure: badar g if Bi nary contains abad representation of an integer.

bi nary_to_integer(Binary, Base) -> integer()
Types:
Bi nary = binary()
Base = 2..36
Returns an integer whose text representation in base Base isBi nar y, for example:

> binary_to_integer(<<"3FF'>> 16).
1023

Failure: badar g if Bi nary contains abad representation of an integer.

binary to list(Binary) -> [byte()]
Types:
Bi nary = binary()
Returns alist of integers corresponding to the bytes of Bi nary.

binary to list(Binary, Start, Stop) -> [byte()]
Types:

Bi nary = binary()

Start = Stop = integer() >= 1

1..byte size(Bi nary)

Asbinary_to_I|ist/1,butreturnsalist of integers corresponding to the bytes from position St ar t to position
St op in Bi nar y. The positions in the binary are numbered starting from 1.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 97

erlang

Note:

The one-based indexing for binaries used by this function is deprecated. New code isto use binary:bin to list/3
in STDLI Binstead. All functionsin module bi nary consistently use zero-based indexing.

bitstring to_list(Bitstring) -> [byte() | bitstring()]
Types:
Bitstring = bitstring()

Returnsalist of integers corresponding to the bytesof Bi t st r i ng. If the number of bitsin the binary isnot divisible
by 8, the last element of the list is a bitstring containing the remaining 1-7 bits.

binary to termBinary) -> term)
Types:
Bi nary = ext_binary()

Returns an Erlang term that is the result of decoding binary object Bi nar y, which must be encoded according to the
Erlang external term format.

Warning:

When decoding binaries from untrusted sources, consider using bi nary _to_t erm 2 to prevent Denia of
Service attacks.

See also term to_binary/1 and binary to_ternv2.

binary to termBinary, Opts) -> term)

Types:
Bi nary = ext_binary()
Opts = [safe]

Asbinary to_terni 1, buttakes options that affect decoding of the binary.
saf e
Use this option when receiving binaries from an untrusted source.

When enabled, it prevents decoding data that can be used to attack the Erlang system. In the event of receiving
unsafe data, decoding failswith abadar g error.

This prevents creation of new atoms directly, creation of new atoms indirectly (as they are embedded in certain
structures, such as process identifiers, refs, and funs), and creation of new external function references. None of
those resources are garbage collected, so unchecked creation of them can exhaust available memory.

Failure: badar g if saf e is specified and unsafe data is decoded.
See alsoterm to_hinary/1, binary to termy1, and list_to_existing_atonv1.

bit size(Bitstring) -> integer() >= 0
Types.

98 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Bitstring = bitstring()

Returns an integer that isthe sizein bitsof Bi t st ri ng, for example:

> bit_size(<<433:16, 3: 3>>).
19

> bit_size(<<1,2,3>>).

24

Allowed in guard tests.

erl ang: bunp_reducti ons(Reductions) -> true
Types:
Reductions = integer() >=1
This implementation-dependent function increments the reduction counter for the calling process. In the Beam

emulator, the reduction counter is normally incremented by one for each function and BIF call. A context switch is
forced when the counter reaches the maximum number of reductions for a process (2000 reductionsin OTP R12B).

Warning:

This BIF can be removed in a future version of the Beam machine without prior warning. It is unlikely to be
implemented in other Erlang implementations.

byte_size(Bitstring) -> integer() >= 0
Types:
Bitstring = bitstring()
Returns an integer that is the number of bytes needed to contain Bi t st ri ng. That is, if the number of bits in
Bi t stri ngisnot divisible by 8, the resulting number of bytesis rounded up.

Examples:

> byt e_si ze(<<433: 16, 3: 3>>).
3

> byte_size(<<1,2,3>>).

3

Allowed in guard tests.

erl ang: cancel _timer(TinerRef, Options) -> Result | ok
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 99

erlang

Ti mer Ref = reference()

Async = Info = bool ean()

Option = {async, Async} | {info, Info}
Options = [Option]

Time = integer() >= 0

Result = Tinme | fal se

Cancels atimer that has been created by er | ang: start _tiner(),orerl ang: send_after().Ti mer Ref
identifies the timer, and was returned by the BIF that created the timer.

Available Opt i ons:
{async, Async}

Asynchronous request for cancellation. Async defaults to f al se which will cause the cancellation to be
performed synchronously. When Async issettot r ue, the cancel operation is performed asynchronously. That
is, erl ang: cancel _ti mer () will send an asynchronous request for cancellation to the timer service that
manages the timer, and then return ok.

{info, Info}

Request information about the Resul t of the cancellation. | nf o defaultsto t r ue which means the Resul t
is given. When | nf o is set to f al se, no information about the result of the cancellation is given. When the
operation is performed

synchronously
If Infoistrue,theResul t isreturned by er | ang: cancel _ti mer () ; otherwise, ok isreturned.
asynchronously

If I nfoistrue, amessage on the form {cancel _timer, TinmerRef, Result} issenttothe
caler of erl ang: cancel _ti nmer () when the cancellation operation has been performed; otherwise,
no message is sent.

More Opt i onsmay be added in the future.

If Resul t isaninteger, it represents the time in milli-seconds left until the canceled timer would have expired.

If Resul t isf al se, atimer corresponding to Ti mer Ref could not be found. This can be either because the timer
had expired, already had been canceled, or because Ti mer Ref never corresponded to atimer. Even if the timer had
expired, it does not tell you whether or not the timeout message has arrived at its destination yet.

Note:

The timer service that manages the timer may be co-located with another scheduler than the scheduler that the
calling process is executing on. If thisis the case, communication with the timer service takes much longer time
than if it is located locally. If the calling process is in critical path, and can do other things while waiting for
the result of this operation, or is not interested in the result of the operation, you want to use option { async,

true}.If usingoption{ async, fal se}, the calling process blocks until the operation has been performed.

Seeasoerl ang: send_after/4,erlang: start_timer/4,anderl ang:read_ti mer/ 2.

erl ang: cancel _tinmer(TinerRef) -> Result
Types:

100 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Ti mer Ref = reference()
Time = integer() >=0
Result = Tinme | fal se
Cancelsatimer. Thesameascalinger | ang: cancel _tinmer(TimerRef, []).

check_ol d_code(Mdul e) -> bool ean()
Types.

Modul e = nodul e()
Returnst r ue if Modul e has old code, otherwisef al se.

See also code(3).

check _process_code(Pid, Mdule) -> CheckResult
Types.

Pid = pid()

Modul e = nodul e()

CheckResul t = bool ean()

Thesameaser| ang: check_process_code(Pid, Mdule, []).

check_process_code(Pi d, Mdule, OptionList) -> CheckResult | async
Types.
Pid = pid()
Modul e = nodul e()
Requestld = term))
Option = {async, Requestld} | {allow_gc, boolean()}
OptionList = [Option]
CheckResult = bool ean() | aborted
Checksif the node local process identified by Pi d executes old code for Modul e.
The available Opt i onsare asfollows:
{all ow_gc, bool ean()}

Determines if garbage collection is alowed when performing the operation. If {al | ow _gc, fal se} is
passed, and a garbage collection is needed to determine the result of the operation, the operation is aborted
(see information on CheckResul t in the following). The default is to allow garbage collection, that is,
{al l ow_gc, true}.

{async, Request | d}

Thefunctioncheck _process_code/ 3 returnsthevalueasync immediately after the request has been sent.
When the request has been processed, the process that called this function is passed a message on the form
{check_process_code, Requestld, CheckResult}.

If Pi d equalssel f () ,andnoasync option hasbeen passed, the operation is performed at once. Otherwise arequest
for the operation is sent to the process identified by Pi d, and is handled when appropriate. If no async option has
been passed, the caller blocks until CheckResul t isavailable and can be returned.

CheckResul t informs about the result of the request as follows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 101

erlang

true

The process identified by Pi d executes old code for Modul e. That is, the current call of the process executes
old code for this module, or the process has references to old code for this module, or the process contains funs
that references old code for this module.

fal se
The process identified by Pi d does not execute old code for Mbdul e.
aborted

The operation was aborted, as the process needed to be garbage collected to determine the operation result, and
the operation was requested by passing option{ al | ow_gc, fal se}.

See also code(3).
Failures:

badar g

If Pi d isnot anodelocal processidentifier.
badar g

If Modul e isnot an atom.
badar g

If Opti onLi st isaninvalid list of options.

erl ang: convert _tine unit(Tinme, Fronnit, ToUnit) -> ConvertedTine
Types:

Time = ConvertedTime = integer()

FromJnit = ToUnit = tinme_unit()

ConvertstheTi me valueof timeunit Fr omuni t tothecorresponding Conver t edTi nme valueof timeunit ToUni t .
Theresult is rounded using the floor function.

Warning:

Y ou may lose accuracy and precision when converting between time units. In order to minimize such loss, collect
al dataat nat i ve time unit and do the conversion on the end result.

erlang:crc32(Data) -> integer() >= 0
Types:
Data = iodata()
Computes and returns the crc32 (IEEE 802.3 style) checksum for Dat a.

erlang:crc32(A dCrc, Data) -> integer() >= 0
Types:

A dCrc =integer() >=0

Data = iodata()

Continues computing the crc32 checksum by combining the previous checksum, A dCr ¢, with the checksum of
Dat a.

The following code:

102 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erl ang: crc32(Datal),
erl ang: crc32(X, Dat a2) .

assignsthe samevalueto Y asthis:

Y = erl ang: crc32([Dat al, Data2?]).

erlang: crc32_conbine(FirstCrc, SecondCrc, SecondSize) ->
integer() >=0
Types:
FirstCrc = SecondCrc = SecondSize = integer() >= 0

Combines two previously computed crc32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

erl ang: crc32(Datal),
erl ang: crc32(Y, Dat a2) .

assigns the same value to Z asthis:

erl ang: crc32(Datal),
erl ang: crc32(Dat a2),
erl ang: crc32_conbi ne(X, Y,iolist_size(Data2)).

N < X
o n

date() -> Date
Types:
Date = cal endar: date()
Returnsthe current date as{ Year, Month, Day}.
The time zone and Daylight Saving Time correction depend on the underlying OS.

Example:

> date().
{1995, 2, 19}

erl ang: decode_packet (Type, Bin, Options) ->
{ok, Packet, Rest} |
{nore, Length} |
{error, Reason}
Types:
Type =
raw |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 103

erlang

http_bin |

httph |

htt ph_bin
Bin = binary()
Options = [Opt]
Opt =

{packet _si ze, integer() >= 0} |
{line_length, integer() >= 0}
Packet = binary() | HttpPacket

Rest = binary()

Length = integer() >= 0 | undefined
Reason = term()

Ht t pPacket =

Ht t pRequest | Ht pResponse | HttpHeader | http_eoh | HtpError
Ht t pRequest = {http_request, HttpMethod, HttpUri, HttpVersion}
Ht t pResponse =

{http_response, HttpVersion, integer(), HtpString}
Ht t pHeader =

{http_header,

i nteger(),

Ht t pFi el d,

Reserved :: term),

Value :: HttpString}

HitpError = {http_error, HtpString}

Ht t pMet hod =
" OPTI ONS' |
"CET' |
' HEAD' |
' POST' |
"PUT" |
' DELETE' |
" TRACE' |
HtpString
HtpUi =
ver |
{absol ut eURI ,
http | https,
Host :: HttpString,

104 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Port :: inet:port_number() | undefined,
Path :: HttpString} |
{schenme, Schene :: HttpString, HtpString} |
{abs_path, HttpString} |
HtpString
Ht t pVersion =
{Major :: integer() >= 0, Mnor :: integer() >= 0}
HtpField =
' Cache-Control ' |
' Connection' |
'Date' |
'Pragma’ |
Transf er - Encodi ng' |
Upgr ade' |
"Via' |
" Accept' |
Accept - Charset' |
Accept - Encodi ng' |
Accept - Language' |
Aut hori zation' |
"From |
' Host' |
| f-Mdified-Since |
| f-Match' |
| f- None- Mat ch' |
| f- Range' |
| f-Unnodified-Since' |
Max- Forwar ds' |
Proxy- Aut hori zation' |
Range' |
Referer' |
"User- Agent' |
Age' |
Location' |
Proxy- Aut henti cate' |
Public' |
Retry-After' |
Server' |
Vary' |
War ni ng' |
" Www Aut henti cate' |
"Allow |
' Cont ent - Base' |
' Cont ent - Encodi ng' |
Cont ent - Language' |
' Content-Length' |
' Cont ent - Location' |
' Cont ent - Mi5' |
' Cont ent - Range' |
' Cont ent - Type' |
'Etag' |
'Expires' |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 105

erlang

'Last-Modified |

' Accept - Ranges' |

' Set - Cooki e' |

' Set - Cooki e2' |

' X- Forwar ded- For' |

' Cooki e' |

' Keep-Alive' |

' Proxy- Connection' |

HtpString

HtpString = string() | binary()

Decodes the binary Bi n according to the packet protocol specified by Type. Similar to the packet handling done by
sockets with option { packet, Type} .

If an entire packet is contained in Bin, it is returned together with the remainder of the binary as
{ ok, Packet, Rest }.

If Bi n does not contain the entire packet, { nor e, Lengt h} isreturned. Lengt h is either the expected total size
of the packet, or undef i ned if the expected packet size is unknown. decode_packet can then be caled again
with more data added.

If the packet does not conform to the protocol format, { er r or , Reason} isreturned.

Thefollowing Typesarevalid:

raw | O
No packet handling is done. The entire binary is returned unlessit is empty.

1] 2] 4
Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes. The
length of the header can be one, two, or four bytes; the order of the bytes is big-endian. The header is stripped
off when the packet is returned.

line
A packet is aline terminated by a delimiter byte, default is the latinl newline character. The delimiter byte is
included in the returned packet unless the line was truncated according to option | i ne_| engt h.

asnl | cdr | sunrm| fcgi | tpkt
The header is not stripped off.
The meanings of the packet types are as follows:

asnl - ASN.1BER
sunr m- Sun's RPC encoding
cdr - CORBA (GIOP 1.1)
fcgi - Fast CGI
t pkt - TPKT format [RFC1006]
http | httph | http_bin | httph_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to Ht t pPacket described
earlier. A packet is either arequest, a response, a header, or an end of header mark. Invalid lines are returned
asHtt pError.

Recognized request methods and header fields are returned as atoms. Others are returned as strings. Strings of
unrecognized header fields are formatted with only capital letters first and after hyphen characters, for example,
" Sec- Websocket - Key".

106 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

The protocol type ht t p isonly to be used for the first line when an Ht t pRequest or an Ht t pResponse
is expected. The following calls are to use ht t ph to get Ht t pHeader suntil ht t p_eoh is returned, which
marks the end of the headers and the beginning of any following message body.

Thevariantsht t p_bi nand ht t ph_bi n return strings (Ht t pSt r i ng) as binariesinstead of lists.
The following options are available:
{packet size, integer() >= 0}

Sets the maximum allowed size of the packet body. If the packet header indicates that the length of the packet is
longer than the maximum allowed length, the packet isconsidered invalid. Default is 0, which meansno sizelimit.

{l'ine_length, integer() >= 0}
For packet typel i ne, lineslonger than the indicated length are truncated.

Option | i ne_| ength aso applies to htt p* packet types as an alias for option packet _si ze if
packet _si ze itself isnot set. Thisuseisonly intended for backward compatibility.

{l'ine_delimter, 0 =< byte() =< 255}
For packet typel i ne, setsthe delimiting byte. Default is the latinl character $\ n.

Examples:

> erl ang: decode_packet (1, <<3, "abcd">>,[]).
{ ok, <<"abc">>, <<"d" >>}

> erl ang: decode_packet (1, <<5, "abcd">>,[]).
{nore, 6}

erl ang: del et e_el enent (I ndex, Tuplel) -> Tuple2
Types:

Index = integer() >=1

1..tuple_size(Tuplel)